
155

Mining Hybrid UML Models from Event Logs
of SOA Systems

K.V. Davydova <kvdavydova@edu.hse.ru>
S.A. Shershakov <sshershakov@hse.ru>

National Research University Higher School of Economics,
PAIS Lab at the Faculty of Computer Science,
20 Myasnitskaya st., Moscow, 101000, Russia

Abstract. In the paper we consider a method for mining so-called “hybrid” UML models, that
refers to software process mining. Models are built from execution traces of information
systems with service-oriented architecture (SOA), given in the form of event logs. While
common reverse engineering techniques usually require the source code, which is often
unavailable, our approach deals with event logs which are produced by a lot of information
systems, and some heuristic parameters. Since an individual type of UML diagrams shows only
one perspective of a system’s model, we propose to mine a combination of various types of
UML diagrams (namely, sequence and activity), which are considered together with
communication diagrams. This allows us to increase the expressive power of the individual
diagram. Each type of diagram correlates with one of three levels of abstraction (workflow,
interaction and operation), which are commonly used while considering web-service
interaction. The proposed algorithm consists of four tasks. They include splitting an event log
into several parts and building UML sequence, activity and communication diagrams. We also
propose to encapsulate some insignificant or low-level implementation details (such as internal
service operations) into activity diagrams and connect them with a more general sequence
diagram by using interaction use semantics. To cope with a problem of immense size of
synthesized UML sequence diagrams, we propose an abstraction technique based on regular
expressions. The approach is evaluated by using a developed software tool as a Windows-
application in C#. It produces UML models in the form of XML-files. The latter are compatible
with well-known Sparx Enterprise Architect and can be further visualized and utilized by that
tool.

Keywords: event log, process mining, hybrid UML model, UML sequence diagram, UML
activity diagram, reverse engineering.

DOI: 10.15514/ISPRAS-2017-29(4)-10

For citation: Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs
of SOA Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOI:
10.15514/ISPRAS-2017-29(4)-10

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

156

1. Introduction
Nowadays we use information systems everywhere. They are used not only at home
to increase the comfort of our life but also to support business processes. The
complexity of the systems is growing together with the complexity of processes and
tasks. Moreover, a lot of systems interact with each other. There is an increasing
chance of error as the complexity of the system increases. If the system finds these
errors, they are written into so-called event logs together with other information about
system execution. The logs store a lot of information during the work of the system.
On the one hand, manual processing of the logs is almost impossible because of their
size and lack of structure. On the other hand, the event logs are an inestimable source
of knowledge about real-life system behavior. Tools, which help to obtain this
knowledge in suitable form for analytics are extremely useful.
Different approaches, such as modeling, development within the standardized life
cycle, testing, quality assurance (QA), verification, etc., are applied to improve the
system quality and error correction. Using combinations of these instruments (for
example, testing and verification, modeling and reverse engineering with continuous
delivery) gives good results. New tools, modeling tools in particular, help to make the
process more convenient and more effective.
Models are built on different life cycle stages. In the classic approach, an architect
models an information system based on the customer‘s requirements. However, the
implemented system often differs from previously developed models because the
system is developed faster than its models. Developers may sometimes make mistakes
and may need to spend additional time on critical situations and deadlines. This means
that the design and implementation of some components is not completed properly.
When there is no complete model of a system, reverse engineering techniques can be
applied to extract the necessary information from the system and build an appropriate
model. It allows us to obtain models of a real-life system automatically or semi-
automatically. These models correspond to a developed system rather than to an
initial plan and initial models. Such models aim both to understand a
structure/behavior of a real system and to eliminate any inadequacy of a real model
as compared to the initial model. This also makes it easier to fix errors in the system.
There are a number of approaches and tools aimed for this purpose. Most of them
require the source code of a system to perform analysis. It is not always possible
because of different reasons: the source code may not be available to analysts; it is
impossible to get the last copy of code or it can be lost. Moreover, different work
groups can develop different system components which complicates centralized
collection of source code.
Unlike existing reverse engineering approaches that use source code, we propose an
approach that works with system execution traces which can be extracted from event
logs. Our approach can be considered as a particular implementation of Process
Mining [1], a discipline aimed to discover, analyze and improve business processes
and their models. Our approach also includes features that are relevant to software
engineering. Hence, we refer to it as software process mining [2].

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

157

Process mining usually uses process models such as Petri nets, BPMN, Fuzzy maps,
etc. which are produced by applying different algorithms such as α-algorithm [1], [3],
[4], NLP-algorithm [5] or fuzzy miner [6] respectively. However, these models are
not perfectly suitable for software developers. In the software engineering area, more
specific approaches such as the Unified Modeling Language (UML) [7] are more
common. The most common approaches deal with static class diagrams, statecharts,
sequence and activity diagrams considering them as more descriptive than other.
According to UML 2.5, there are two groups of diagrams: structural and behavioral.
In this work we primarily focus on the behavioral group, in particular, on sequence,
activity and communication diagrams.
Modern approaches to the development of information systems make out small
reusable well-defined pieces of code, which are commonly refered to as services.
Systems, using services as a main component, are based on service-oriented
architecture (SOA) [8]. Services from heterogeneous SOA-systems are developed
using different languages, environments and tools, but they work in a single
information space. Mining unified models of those systems is a challenge and has
some difficulties. For example, none of the popular reverse engineering tools works
with all languages used for web-service development [9]. As almost all systems
produce event logs which contain information about interesting system components,
it is possible to build models including all of these components. It simplifies the
process of reverse engineering and allows us to expand its application area.
In the paper, we consider event logs written by SOA-systems. Our goal is to expand
the applicability of UML-based models for SOA-systems by developing new
approaches and tools for mining such models from event logs. UML standard
describes different types of models which suit different modeling aspects of an
information system. Nevertheless, there are situations when analysts would like to
use expressive opportunities of several diagram types. UML 2.5 does not describe
such diagrams, and it does not forbid them either. In our paper, we propose a new
approach to UML-modeling, which includes mining a so-called hybrid diagram that
comprises elements of UML sequence and UML activity diagrams.
To illustrate the proposed approach, consider the following example.

1.1. Motivating example
We consider an event log (Table I) produced by an online banking information system
with service-oriented architecture. The log contains a number of traces corresponding
to individual instances of a business process maintained by the information system.
Our goal is to obtain a UML model that represents some behavioral aspects of the
system from different perspectives [9].
Each row of Table I represents a single event. Columns represent attributes of the log.
Events are grouped in cases (by CaseID attribute); then, cases are represented in the
log by traces. Events are ordered by Timestamp attribute. Different components of
SOA are represented by other attributes such as Domain, Service/Process and

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

158

Operation. Domains contain services and processes while the latter consist of
operations [10].
Table 1. Log fragment L1. Banking SOA-system

CaseID Domain Service/Process Operation Action Payload Timestamp

23 Account Operations GetLastOperations REQ

user=a,
today=23.07.2015,
client=Maria,
manager=Julia

17:32:15
135

23 Account CardInfo GetCardID REQ user=a, num=0
17:32:15
250

23 Account CardInfo GetCardInfo REQ num=0
17:32:15
260

23 Account CardInfo GetCardInfo RES

date=07/16,
name=MARIA
GRISHINA,
id=15674839

17:32:15
267

23 Account CardInfo GetCardID RES res=15674839
17:32:15
297

23 Card Operations GetOperations REQ days=30
17:32:15
378

23 Utils Calendar GetDate REQ days=30
17:32:15
409

23 Utils Calendar GetDate RES res=23.06.2015
17:32:15
478

23 Card Operations GetOperations RES
res={BP Billing
Transfer}

17:32:15
513

23 Card OperationData GetPlaceAndDate REQ
op=BP Billing
Transfer

17:32:15
559

23 Card OperationData GetPlace REQ
op=BP Billing
Transfer

17:32:15
563

23 Card OperationData GetPlace RES
res=RUS
SBERBANK
ONLAIN PLATEZH

17:32:15
571

23 Card OperationData GetDate REQ
op=BP Billing
Transfer

17:32:15
575

23 Card OperationData GetDate RES res=20.07.2015
17:32:15
589

23 Card OperationData GetPlaceAndDate RES

res=RUS
SBERBANK
ONLAIN PLATEZH,
date=20.07.2015

17:32:15
601

23 Account Operations GetLastOperations RES res=succ
17:32:15
822

25 Account Operations GetLastOperations REQ

user=a,
today=23.07.2015,
client= Maxim,
manager=Julia

17:40:18
345

25 Account CardInfo GetCardID REQ user=a
17:40:18
408

25 Account CardInfo GetCard REQ num=0
17:40:18
422

25 Account CardInfo GetCard RES res=no cards
17:40:18
434

25 Account CardInfo GetCardID RES res=error
17:40:18
489

25 Account Operations GetLastOperations RES res=no bounded cards
17:40:18
523

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

159

By applying a method [9] to the example log, we obtain a UML sequence diagram as
depicted in Figure 1 representing the overall process. The diagram contains all
possible details (excluding operation parameters) of the behavior of the system as it
is represented in the event log. Along with regular messages which connect two
different lifelines (depicted as vertical dash lines), the diagram also contains a number
of self-calls represented as labeled loop arrows, e.g. GetCardInfo, GetCard. These
self-calls are not important for studying the model from a more abstract perspective.
In contrast, they are important when modeling the process of the individual service
or another SOA component.

Fig. 1. Usual UML sequence diagram mined from event log L1.

Thus, we propose to hide these calls on the general model with giving a reference to
another diagram. Note, that the hidden calls are restricted by one lifeline only. So,
using UML sequence diagram here loses its meaning, since only one agent is
involved. Therefore, it is convenient to model such behavior by using UML activity
diagrams, another type of UML diagram. Figures 2, 3 and 4 illustrate this idea and
represent a hybrid UML diagram combining the best features of two different model
types.
A distinctive feature of SOA, which is considered, is that processes call other
processes and services while services do not call other participants. To demonstrate
this feature, it is important to show the interaction between one selected service and

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

160

its direct services-neighbors which the service communicates with. A UML
communication diagram suits this purpose. Example diagrams for
Card::Operations and Card::OperationData processes from example event
log are depicted in Figures 5 and 6 respectively. We can see that these processes are
called by other processes and call both different services and themselves. 
We developed a tool that builds hybrid diagrams of UML sequence and activity
diagrams automatically. Moreover, the tool is able to build a UML communication
diagram for a selected SOA component.

Fig. 2. UML sequence diagram with hidden self calls. High-level diagram of a hybrid UML
diagram.

Fig. 3. UML activity diagram with an activity inside Account::CardInfo service.

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

161

Fig. 4. UML activity diagram with an activity inside Card::OperationData service.

1.2. Related work
Reverse engineering of behavioral UML diagrams is not a new area. There are a
number of works [11], [12], [13], [14], about building the UML diagrams based on
static source code analysis. Besides, there are some CASE tools [15], [16], [17], [18],
which can be used for reverse engineering of sequence and activity UML diagrams.
There is also a plug-in [19] for NetBeans development environment that is able to
build different types of behavioral models from Java source code.
However, all of the methods and tools mentioned above use static program analysis
(getting models from source code without execution) for their work. As it was
considered earlier, source code and all of its versions are not always available for
analysis. Hence, these tools and methods are useless in this case. Furthermore, none
of these tools is able to infer models from the code written in most popular languages
used for developing SOA information systems. Moreover, SOA architectures are
often developed with various programming languages. For example, some modules
can be written in C#, whereas others can be developed in Java; they can interact with
LAMP service, so a single CASE tool cannot produce models for that system. Mining
diagrams from event logs solves this problem.

Fig. 5. UML communication diagram for Card::Operations service.

Fig. 6. UML communication diagram for Card::OperationData service.

In [20], [21], [22], approaches to building models based on execution traces are
proposed. One related work [20] analyzes a single trace using meta-models of an
event log trace and a UML sequence diagram (UML SD). The trace includes
information not only about invocation of methods but also about loops and conditions,

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

162

which makes easier recognition of fragments such as iteration, alternatives and
options. However, logs of information systems do not usually include this
information, so it is necessary to modify the source code to apply this approach.
There is a description of the mining UML sequence diagrams method based on several
execution traces in [22]. The authors propose to use a labeled transition system (LTS)
as an intermediate model to present one trace and an algorithm to merge LTSs built
by several traces. After that, the LTS is transformed into a UML sequence diagram.
Moreover, LTS can be used to build a Petri net that can then be converted into a UML
activity diagram [23]. This conversion possibility can be used to apply different
process mining algorithms for receiving a UML activity diagram. The approach to
mining hierarchical UML sequence diagrams is proposed in [9] (see Section III-D).
In [24], the authors describe a framework which allows not only behavioral but also
static UML diagrams to be built. Their framework generates execution traces by itself
from Java source code. After that, the framework is able to build UML activity
diagrams from traces, but it requires source code for its work.
Process mining proposes to use three abstraction levels for mining models for web
services interaction [25]: workflow, interaction and operation. At the operation level,
only one service is considered in order to look at its internal behavior and
functionality. At the interaction level, they consider not only one selected service but
also its direct callers and callees. Finally, the overall services interaction is covered
at the workflow level. We apply all of these levels to service-oriented architecture in
the paper.
Furthermore, research on service mining was described in [26]. The author builds
different Petri nets for different services (considered at the operation level) and then
combines them by places. Thus, he builds a generalized model which refers to the
workflow level.
The rest of the paper is organized as follows. Section II gives definitions. Section III
introduces our approach to mining hybrid UML models. Section IV contains a
description of tool implementation. Section V concludes the paper and gives
directions for further research.

2. Preliminaries
𝒫(𝑋) is the powerset over some set X; Λ is a set of all possible string labels.
Definition 1. (Event log) Let 𝑒 = (𝑎ଵ, 𝑎ଶ, … , 𝑎௡) be an event, where 𝑎௜ is an i-th
attribute and n is a number of them. E is a set of events. 𝜎 =< 𝑒ଵ, 𝑒ଶ, … , 𝑒௞ > is an
event trace where 𝑒ଵ, 𝑒ଶ, … , 𝑒௞ is an ordered set of events. 𝐿𝑜𝑔 = 𝒫(𝐸) is an event
log which is a powerset of traces.
Definition 2. (UML Sequence Diagram) A UML sequence diagram is a tuple 𝑈ௌ஽ =
(𝐿, 𝑇, 𝐴, 𝑃, 𝑀, 𝑅𝑒𝑓, 𝐹), where:

 T is a set of moments of discrete time, which determine a partial order over
diagram components.

 L is a set of named lifelines. 𝐿 = {𝑙 = (𝜆, 𝑡)|𝜆 ∈ 𝛬, 𝑡 ∈ 𝑇}

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

163

 A is a set of activations mapped onto lifelines. 𝑎 ∈ 𝐴: 𝑎 = (𝑙, 𝑡௕ , 𝑡௘), where
𝑙 ∈ 𝐿, 𝑡௕ , 𝑡௘ ∈ 𝑇, 𝑡௕ < 𝑡௘

 𝑃 ⊂ 𝛬 is a set of message parameters.  

 Ref is a set of interaction use (ref fragments) which group lifelines and hide
them interaction. 𝑟𝑒𝑓 ∈ 𝑅𝑒𝑓 ∶ 𝑟𝑒𝑓 = (𝐿ᇱ, 𝜆), where 𝐿ᇱ ⊂ 𝐿, 𝜆 ∈ Λ

 M is a set of messages. 𝑚 ∈ 𝑀: 𝑚 = (𝑎ଵ, 𝑡, 𝜆, 𝑎ଶ, 𝑡𝑦𝑝𝑒), where 𝑎ଵ, 𝑎ଶ ∈ 𝐴 ∪
𝑅𝑒𝑓, 𝑡 ∈ 𝑇, 𝜆 ∈ 𝑃, 𝑡𝑦𝑝𝑒 ∈ {𝑐𝑎𝑙𝑙, 𝑟𝑒𝑡𝑢𝑟𝑛}. 𝑎ଵ = (𝑙ଵ, 𝑡ଵଵ, 𝑡ଵଶ), 𝑎ଶ =
(𝑙ଶ, 𝑙ଶଵ, 𝑙ଶଶ): 𝑡ଵଵ ≤ 𝑡ଶଵ, 𝑡ଵଵ < 𝑡ଵଶ, 𝑡ଶଵ < 𝑡ଶଶ

 F is a set of combined fragments of the diagram. 𝐹 = {(𝑓𝑟𝑎𝑔, 𝑀ᇱ)|𝑀ᇱ ⊆
𝑀, 𝑓𝑟𝑎𝑔 ∈ {𝑎𝑙𝑡, 𝑙𝑜𝑜𝑝, 𝑜𝑝𝑡, 𝑝𝑎𝑟}}

Figure 1 represents an example of UML sequence diagram. A lifeline is represented
as a vertical dashed line with its name at the top. An activation is represented as a
rectangle on a lifeline, which takes and emits messages (represented as arrows).
Message can be call and return and they contain text parameters. Messages inside
one fragment are ordered by time. Fragments contain a number of messages and can
contain other combined fragments. They are able to show alternatives, loops,
parallelisms and other control structures. Another type of fragment, ref fragments,
refer to other diagrams. Such diagrams can be both UML sequence diagrams and

UML activity ones.  
Definition 3. (UML Activity Diagram) A UML activity diagram is a tuple 𝑈஺஽ =
(𝑁, 𝐸, 𝑁𝑇), where:

 NT is a set of node types. 𝑁𝑇 = {𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒} 

 N is a set of nodes. 𝑛 ∈ 𝑁: 𝑛 = (𝜆, 𝑡𝑦𝑝𝑒), where 𝜆 ∈ 𝛬, 𝑡𝑦𝑝𝑒 ∈ 𝑁𝑇  

 E is a set of edges. 𝑒 ∈ 𝐸: 𝑒 = (𝑛ଵ, 𝑛ଶ), where 𝑛ଵ, 𝑛ଶ ∈ 𝑁
Figure 3 represents an example of a UML activity diagram for Account::CardInfo
service. Different node types have different meanings. Control nodes represent
different behavioral elements such as start, fork and decision. Object nodes represent
data (input and output) of an action. Executable nodes represent steps (actions) of the
modeling activity. There are three named executable nodes and four control nodes
(start, end, decision and merge) in Figure 3. Different control nodes can impose
limitations. For instance, start nodes cannot have incoming edges, end nodes cannot
have outgoing edges, decision and fork nodes can have only one incoming edge but
several outgoing ones; the opposite is true for merge and join.
𝔘஺஽ is a set of all possible UML activity diagrams 𝑈஺஽.
Definition 4. (Hybrid UML Diagram) A hybrid UML diagram is a tuple 𝑈ு஽ =
(𝑈ௌ஽ , 𝐴𝐷, 𝑓), where:

 𝑈ௌ஽ = (𝐿, 𝑇, 𝐴, 𝑃, 𝑀, 𝑅𝑒𝑓, 𝐹) is a UML sequence diagram.

 𝐴𝐷 ⊂ 𝔘஺஽

 𝑓: 𝑅𝑒𝑓 → 𝐴𝐷 is a function which maps ref fragments from a UML sequence
diagram onto corresponding activity diagram.

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

164

Figures 2, 3 and 4 illustrate an example of a hybrid UML diagram. Figure 2 is a UML
sequence diagram and represents a high-level diagram. It refers to UML activity
diagrams (Figures 3 and 4) using ref fragments.
Definition 5. (UML Communication Diagram) A UML communication diagram is
a tuple 𝑈С஽ = (𝐿஼஽ , 𝑀஼஽), where:

 𝐿஼஽ ⊂ Λ is a set of named lifelines which represent interaction participants. 

 𝑀஼஽ is a set of messages. 𝑚஼஽ ∈ 𝑀஼஽: 𝑚஼஽ = (𝑙ଵ, 𝑙ଶ, 𝜆), where 𝑙ଵ, 𝑙ଶ ∈
𝐿஼஽ , 𝜆 ∈ Λ.

Figures 5 and 6 provide examples of UML communication diagrams for two different
services.

𝔘஼஽ is a set of all possible UML communication diagrams 𝑈஼஽.
Definition 6. (Hybrid UML Model) A hybrid UML model is a tuple 𝑈С஽ =
(𝑈ு஽, CD), where:

 𝑈ு஽ is a hybrid UML diagram.

 CD ⊂ 𝔘஼஽.
Figures 2, 3, 4, 5 and 6 represent a hybrid UML model built for example event log
L1.

3. Mining Hybrid UML Models
The authors in [25] propose definitions of three levels of abstraction: operation,
interaction and workflow. The levels are used for consideration of web service
interaction. It motivated us to use different types of UML diagrams which
demonstrate features of these levels. In the following sections, we consider which
UML diagrams suit each abstraction level and why.

3.1. Operation and workflow abstraction levels
Operation level of abstraction shows what is happening inside one isolated service.
Activities outside the service are not considered at the operation level; the only
process participants are services. Using a UML sequence diagram leads to a large
number of self-calls and “snowball models”. It makes the diagram less readable and
less understandable. A UML activity diagram suits this purpose since it allows us to
demonstrate the complex relationships between operations inside a single participant.
Figure 3 shows an example of a UML activity diagram for service
Card::OperationData.
A business process, provided by services, is represented at a workflow abstraction
level. There are a lot of participants, so it is useful to use a UML sequence diagram
for this level. The diagram is suitable to present not only a sequence of business
process actions but also participants of this process and their interaction. An example
for event log L1 is depicted in Figure 1.
To bind different abstraction levels, it is necessary to connect them. Our proposal is
to use hybrid UML diagrams to represent and connect operation and workflow

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

165

abstraction levels together. A UML sequence diagram is used to represent a business
process at a workflow abstraction level. The diagram contains special objects, ref
fragments, which make a connection to corresponding UML activity diagram. Every
such activity diagram models the behavior of a single service. An example of
considered hybrid diagram is presented in Figures 2, 3 and 4.

Algorithm 1. Building a hybrid UML model 𝑈ுெ

3.2. Interaction abstraction level
This level shows interaction of one selected service or process with its nearest
neighbors. For a given service, its nearest neighbors are caller and callee services. A
UML sequence diagram does not fully suit for representing this level as well as an
activity diagram. In the former case, a UML sequence diagram contains a time
perspective on which no relation can be mapped. Thus, this leads us to have a “blind”
diagram. In the latter case, it does not support multiple participants which is important
for this abstraction level.
We propose to use UML communication diagrams for depicting processes occurring
in SOA system at interaction abstraction level. An example of such a diagram for
Card::Operations and Card::OperationData from an event log example is
presented in Figures 5 and 6.

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

166

Algorigm 2. Splitting of an event log into
several parts splitEventLog

Algorithm 3. Building a UML sequence
diagram buildSD

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

167

Algorithm 4. Looking for differences
between corresponding events in other

traces findFrames

Algorithm 5. Building UML communication

diagrams for each service buildCDs

3.3. Building process
Figure 7 represents a workflow diagram of a hybrid mining process. The scheme
contains the following tasks (see Algorithm 1):

 An event log is split into several parts. The workflow part of the log refers
to services communication. Such communication is represented on a UML
sequence diagram at workflow level. The operation parts consist of events
referred to activity only inside a specific service.  

 A UML sequence diagram is built from a workflow part of an event log using
the method proposed in [9] (see Section III-D) extended by a number of
necessary ref fragments used for connecting with corresponding activity
diagrams.  

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

168

 UML activity diagrams are built from the operation parts of the log
independently using one of the process mining algorithms which produces a
Petri net. For instance, α-algorithm [4] or inductive miner [27] can be
considered here. Then, Petri nets are converted into activity diagrams by a
simple translation routine. This conversion is rather trivial since UML
activity diagrams are initially based on Petri nets [7], [23].

3.4. Mining UML sequence diagrams
To mine a UML sequence diagram we use a method proposed in [9]. There, we
propose an approach to mining UML sequence diagrams with different levels of
abstraction. It consists of three steps. The first step of the approach is mapping event
log attributes onto UML sequence diagram components. There are two functions for
mapping attributes onto lifelines and message parameters. The smaller the SOA
element we choose for mapping onto lifelines, the lower the abstraction level we
receive.

Fig. 7. The workflow diagram of a hybrid mining process.

The second step is set to build a smaller model by applying regular expressions for
merging similar messages and lifelines on a diagram. For example, we have two
messages with the following parameters: GetPlaseAndDate, op=BP Billing
Transfer and GetPlaseAndDate, op=Retail. They differ in op value, thus, these
messages can be combined into one message with the following parameter:
GetPlaseAndDate, op=.*. After the merging, a derived model becomes more
generalized and its size decreases in width and height.
To demonstrate the hierarchy of calls, which is important for SOA, a hierarchical
diagram can be applied. Thus, the third step of our approach contains a way to present
a complex model by using hierarchical UML diagrams. UML standard [7] allows us
to divide the model into some parts and connect them by means of interaction use (ref
fragment) and gates.

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

169

4. Tool Overview
This section presents a brief overview of the software tool implementing the proposed
algorithm.

4.1. Event log
The tool requires an input event log to be presented in definite format. We use simple
CSV text files to represent event logs. An event log should contain a number of fields
that are mapped onto mandatory attributes, namely CaseID, Timestamp and Activity.

4.2. Tool implementation
The tool is implemented as a Windows application written in C# programming
language. The tool allows users to configure main parameters such as regular
expressions, hierarchy and type of output diagram (regular UML, hierarchical or
hybrid). Regular expressions are applied for merging diagram components. It is
implemented as shown in Figure 8. The GUI allows the user to set the type of diagram.
The perspective of the diagram (a mapping attributes onto diagram lifelines and
messages) is set as it described in [9].
The output of the tool is an XMI-file containing a model and a description of
diagrams. It can be visualized by Sparx Enterprise Architect [15].

Fig. 8. GUI to set a type of the diagram and regular expressions for merging its components.

5. Conclusion
This paper introduced a new concept of hybrid UML models and proposed a method
of mining them from event logs of SOA information systems using a service mining

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

170

approach. Our method can also be applied to other types of UML diagrams. The paper
discussed approaches to mining diagrams at different abstraction levels.
Our method builds models by using only event logs. This is an advantage over some
reverse engineering techniques because the source code is not always available. The
proposed method includes mining hybrid UML diagrams that represent workflow
abstraction level on UML sequence diagrams and operation level on UML activity
diagrams. Moreover, we proposed to build UML communication diagrams to show
interaction abstraction level with regards to the service mining approach.
Generally, control structures in system‘s behavior lead to a presence of a big number
of nested combined fragments within a UML sequence diagram. It makes the diagram
less readable and less understandable. Although UML activity diagrams have no time
perspective in contradistinction to sequence diagrams, the former show alternatives,
loops and parallelism more clearly. Since there are also a lot of event logs which are
not produced by SOA systems, we are going to expand our approach to mining hybrid
UML diagrams from event logs of more broad types of software architecture in the
future.

Acknowledgement

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.

References

[1]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.  

[2]. V. Rubin, C. W. Günther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen, and W.
Schäfer. Process Mining Framework for Software Processes, ICSP 2007, pages 169–181.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.  

[3]. A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M. Weijters.
Process mining: Extending the α-algorithm to mine short loops. In Eindhoven University
of Technology, Eindhoven, 2004.  

[4]. W. M. P. van der Aalst, A. J. M. M. Weijter, and L. Maruster. Workflow Mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16:2004, 2003.  

[5]. F. Friedrich, J. Mendling, and F. Puhlmann. Process Model Generation from Natural
Language Text, CAiSE 2011, pages 482–496. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.  

[6]. C. W. Günther and W. M. P. van der Aalst. Fuzzy Mining – Adaptive Process
Simplification Based on Multiperspective Metrics, BPM 2007, pages 328–343. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.  

[7]. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,
August 2015.  

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

171

[8]. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.  

[9]. K. V. Davydova and S. A. Shershakov. Mining Hierarchical UML Sequence Diagrams
from Event Logs of SOA systems while Balancing between Abstracted and Detailed
Models. Trudy ISP RAN/Proc. ISP RAS, 28(3):85–102, 2016.  

[10]. S. A. Shershakov and V. A. Rubin. System runs analysis with process mining. In Modeling
and Analysis of Information Systems, pages 818–833, 2015.  

[11]. A. Rountev and B. H. Connell. Object Naming Analysis for Reverse-engineered Sequence
Diagrams. In Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 254–263, New York, NY, USA, 2005. ACM.  

[12]. A. Rountev, O. Volgin, and M. Reddoch. Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96–102,
September 2005.  

[13]. P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In International Conference on Software Maintenance, pages 159–168. IEEE
Computer Society, 2003. 

[14]. E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R. Mousavi. CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297–298. IEEE Computer Society, 2006.

[15]. Sparx Systems’ Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.
[16]. IBM Rational Software Architect. https://www.ibm.com/

developerworks/downloads/r/architect/.  
[17]. Visual Paradigm. https://www.visual-paradigm.com/ features/.  
[18]. Altova UModel. http://www.altova.com/umodel.html.  
[19]. NetBeans UML. http://plugins.netbeans.org/plugin/1801/netbeans-uml.  
[20]. L. C. Briand, Y. Labiche, and J. Leduc. Toward the  Reverse Engineering of UML

Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng., 32(9):642–
663, September 2006.  

[21]. R. Delamare, B. Baudry, and Y. Le Traon. Reverse-engineering of UML 2.0 Sequence
Diagrams from Execution Traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.  

[22]. T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A Fully Dynamic Approach to
the Reverse Engineering of UML Sequence Diagrams. In Isabelle Perseil, Karin Breitman,
and Roy Sterritt, editors, ICECCS, pages 107– 116. IEEE Computer Society, 2011.  

[23]. B. Agarwal. Transformation of UML Activity Diagrams into Petri Nets for Verification
Purposes. IJECS, 2(3):798–805, 2013.  

[24]. A. Bergmayr, H. Bruneliere, J. Cabot, J. García, T. Mayerhofer, and M. Wimmer. fREX:
FUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE ’16, pages 20–26, New York, NY, USA, 2016. ACM.  

[25]. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Tech. Rep.
TUV-1841-2004-16. 2004.  

[26]. W. M. P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and
Improve Service Behavior. IEEE Transactions on Services Computing,  6(4):525–535,
2013.  

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

172

[27]. S. J. J. Leemans, D. Fahland, and W. M. P. van der  Aalst. Discovering Block-Structured
Process Models from Event Logs Containing Infrequent Behaviour, BPM 2013, pages 66–
78. Springer International Publishing, Cham, 2014.

Метод автоматического построения гибридных UML-
моделей на основе журналов событий систем с сервис-

ориентированной архитектурой
К.В. Давыдова <kvdavydova@edu.hse.ru>

C.A. Шершаков <sshershakov@hse.ru>
Национальный исследовательский университет Высшая школа экономики,

лаборатория ПОИС факультета компьютерных наук,
101000, Россия, г. Москва, ул. Мясницкая, д. 20

Аннотация. В данной статье мы предлагаем метод автоматического построения так
называемых «гибридных» UML-моделей, что относится к области извлечения и анализа
процессов ПО. Модели строятся на основе трасс исполнения, представленных в виде
журналов событий, систем с сервис-ориентированной архитектурой (СОА). В то время
как известные техники обратной разработки обычно используют исходный
программный код, который часто недоступен, наш подход работает с журналами
событий, записываемыми большинством информационных систем, и некоторыми
эвристическими параметрами. Так как отдельный класс UML-диаграмм представляет
только одну перспективу модели системы, мы предлагаем синтезировать комбинацию
нескольких классов UML-диаграмм (последовательности и деятельности), которые
рассматриваются совместно с диаграммами коммуникаций. Это позволяет повысить
выразительную силу отдельной «гибридной» диаграммы. Каждый класс диаграмм
представляет один из уровней абстракции (workflow, operation и interaction), которые
обычно используются при рассмотрении взаимодействия web-сервисов. Предлагаемый
алгоритм состоит из четырех этапов: разделение журнала событий на несколько частей,
построение UML диаграмм последовательности, деятельности и коммуникаций. Мы
также предлагаем инкапсулировать некоторые незначительные или низкоуровневые
имплементационные детали (например, внутренние операции сервисов) в диаграммы
деятельности и соединять их с более высокоуровневыми диаграммами
последовательности с использованием «interaction use» фрагментов. Чтобы решить
проблему больших размеров синтезируемых UML диаграмм последовательности, мы
предлагаем обобщающую технику, основанную на регулярных выражениях.
Предложенный подход оценен с использованием разработанного программного
инструмента в виде Windows-приложения, написанного на языке C#. Этот инструмент
строит UML модели и сохраняет их в виде XML-файлов. Такие файлы совместимы с
хорошо известным интрументом проектирования программной архитектуры Sparx
Enterprise Architect, в котором синтезированные модели могут быть визуализированы и
отредактированы.

Ключевые слова: журнал событий; извлечение и анализ процессов (process mining);
гибридные UML модели; диаграмма последовательности UML; диаграмма деятельности
UML; обратная разработка.

Давыдова К.В., Шершаков С.А. Метод автоматического построения гибридных UML моделей на основе
журналов событий СОА-систем. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 155-174.

173

DOI: 10.15514/ISPRAS-2017-29(4)-10

Для цитирования: Давыдова К.В., Шершаков С.А. Метод автоматического построения
гибридных UML моделей на основе журналов событий СОА-систем. Труды ИСП РАН,
том 29, вып. 4, 2017 г., стр. 155-174 (на английском языке). DOI: 10.15514/ISPRAS-2017-
29(4)-10

Список литературы
[1]. W. M. P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of

Business Processes. Springer Publishing Company, Incorporated, 1st edition, 2011.  
[2]. V. Rubin, C. W. Günther, W. M. P. van der Aalst, E. Kindler, B. F. van Dongen, and W.

Schäfer. Process Mining Framework for Software Processes, ICSP 2007, pages 169–181.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.  

[3]. A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J. M. M. Weijters.
Process mining: Extending the α-algorithm to mine short loops. In Eindhoven University
of Technology, Eindhoven, 2004.  

[4]. W. M. P. van der Aalst, A. J. M. M. Weijter, and L. Maruster. Workflow Mining:
Discovering process models from event logs. IEEE Transactions on Knowledge and Data
Engineering, 16:2004, 2003.  

[5]. F. Friedrich, J. Mendling, and F. Puhlmann. Process Model Generation from Natural
Language Text, CAiSE 2011, pages 482–496. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.  

[6]. C. W. Günther and W. M. P. van der Aalst. Fuzzy Mining – Adaptive Process
Simplification Based on Multiperspective Metrics, BPM 2007, pages 328–343. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.  

[7]. OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.5,
August 2015.  

[8]. T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2005.  

[9]. K. V. Davydova and S. A. Shershakov. Mining Hierarchical UML Sequence Diagrams
from Event Logs of SOA systems while Balancing between Abstracted and Detailed
Models. Trudy ISP RAN/Proc. ISP RAS, 28(3):85–102, 2016.  

[10]. S. A. Shershakov and V. A. Rubin. System runs analysis with process mining. In Modeling
and Analysis of Information Systems, pages 818–833, 2015.  

[11]. A. Rountev and B. H. Connell. Object Naming Analysis for Reverse-engineered Sequence
Diagrams. In Proceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 254–263, New York, NY, USA, 2005. ACM.  

[12]. A. Rountev, O. Volgin, and M. Reddoch. Static Control-flow Analysis for Reverse
Engineering of UML Sequence Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96–102,
September 2005.  

[13]. P. Tonella and A. Potrich. Reverse engineering of the interaction diagrams from C++
code. In International Conference on Software Maintenance, pages 159–168. IEEE
Computer Society, 2003. 

Davydova K.V., Shershakov S.A. Mining Hybrid UML Models from Event Logs of SOA Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174.

174

[14]. E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R. Mousavi. CPP2XMI:
Reverse Engineering of UML Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297–298. IEEE Computer Society, 2006.

[15]. Sparx Systems’ Enterprise Architect. http://www.sparxsystems.com.au/products/ea/.
[16]. IBM Rational Software Architect. https://www.ibm.com/

developerworks/downloads/r/architect/.  
[17]. Visual Paradigm. https://www.visual-paradigm.com/ features/.  
[18]. Altova UModel. http://www.altova.com/umodel.html.  
[19]. NetBeans UML. http://plugins.netbeans.org/plugin/1801/netbeans-uml.  
[20]. L. C. Briand, Y. Labiche, and J. Leduc. Toward the  Reverse Engineering of UML

Sequence Diagrams for Distributed Java Software. IEEE Trans. Softw. Eng., 32(9):642–
663, September 2006.  

[21]. R. Delamare, B. Baudry, and Y. Le Traon. Reverse-engineering of UML 2.0 Sequence
Diagrams from Execution Traces. In Proceedings of the workshop on Object-Oriented
Reengineering at ECOOP 06, Nantes, France, July 2006.  

[22]. T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane. A Fully Dynamic Approach to
the Reverse Engineering of UML Sequence Diagrams. In Isabelle Perseil, Karin Breitman,
and Roy Sterritt, editors, ICECCS, pages 107– 116. IEEE Computer Society, 2011.  

[23]. B. Agarwal. Transformation of UML Activity Diagrams into Petri Nets for Verification
Purposes. IJECS, 2(3):798–805, 2013.  

[24]. A. Bergmayr, H. Bruneliere, J. Cabot, J. García, T. Mayerhofer, and M. Wimmer. fREX:
FUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE ’16, pages 20–26, New York, NY, USA, 2016. ACM.  

[25]. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Tech. Rep.
TUV-1841-2004-16. 2004.  

[26]. W. M. P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and
Improve Service Behavior. IEEE Transactions on Services Computing,  6(4):525–535,
2013.  

[27]. S. J. J. Leemans, D. Fahland, and W. M. P. van der  Aalst. Discovering Block-Structured
Process Models from Event Logs Containing Infrequent Behaviour, BPM 2013, pages 66–
78. Springer International Publishing, Cham, 2014.

