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Abstract. Well-structured transition systems (WSTS) became a well-known tool in the study
of concurrency systems for proving decidability of properties based on coverability and
boundedness. Each year brings new formalisms proven to be WSTS systems. Despite the large
body of theoretical work on the WSTS theory, there has been a notable gap of empirical
research of well-structured transition systems. In this paper, the tool for behavioural analysis
of such systems is presented. We suggest the extension of SETL language to describe WSTS
systems (WSTSL). It makes the description of new formalisms very close to the formal
definition. Therefore, it is easy to introduce and modify new formalisms as well as conduct
analysis of the behavioural properties without much programming efforts. It is highly
convenient when a new formalism is still under active development. Two most studied
algorithms for analysis of well-structured transition systems behavior (backward reachability
and the Finite Reachability Tree analyses) have been implemented; and, their performance was
measured through the runs on such models as Petri Nets and Lossy Channel Systems. The
developed tool can be useful for incorporating and testing analysis methods to formalisms that
occur to be well-structuredness transition systems.
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1. Introduction

Formal verification provides researchers and developers with approaches that are
widely-used for proving that a program satisfies a formal specification of its behavior.
These methods are highly demanded in the software and hardware engineering, as
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they provide appropriate level of systems reliability; which, in most cases, cannot be
ensured by simulation.

One of the most common technique of formal verification is model checking or
property checking. It involves algorithmic methods that are applied to check
satisfiability of a logic formula used for the representation of the specification and the
model of a system. The main advantage of model checking is considered to be the
fact that it enables almost completely automatic process of verification. Model
checking proved to be effective in practice for analysis of finite-state systems [1];
however, in case of systems with infinite state space the situation is more complicated
because exhaustive search, which is usually used by verification tools, cannot be
applied directly.

In order to deal with infinite-state systems Finkel proposed the idea of well-structured
transition systems (WSTS) in 1987 [2]. “These are transition systems where the
existence of a well-quasi-ordering over the infinite set of states ensures the
termination of several algorithmic methods. [3]” The suggested model has provided
researchers with an abstract generalization of several models (e.g. Petri nets, lossy
channel systems and timed automata). Therefore, the results obtained from the
analysis of such a generalized model can be also applied to these specific models.
The WSTS analysis can be used to solve, for instance, covering, termination,
inevitability and boundedness problems. However, the application of the WSTS
analysis is hampered by the necessity of implementing algorithms and data structures
to support the analysis for each new formalism. In this work, the tool that can be used
for analysis of WSTS is presented. We introduce the WSTSL language - modification
of SETL language [13,14] — set-theoretical programming language. The language
provides the user with opportunity to define the structure of analyzed system as close
to the original formal definition as possible. After definition of the formalism, it is
immediately possible to run backward reachability method [4] or the Finite
Reachability Tree [5] on it. It is convenient for computer science researcher to
postpone the implementation phase after what-if experiments.

The rest of the paper is organized as follows. The second section describes WSTS’s
basic terms and underlying concepts. The third section provides the description of
two used algorithms (the backward reachability method and the Finite Reachability
Tree). The forth section presents the architecture of the developed analysis tool. The
fifth section shows how the developed tool is used for the analysis of Petri nets and
provides performance analysis results. The sixth section summarizes and provides
possible applications of the study for the future research.

2. Well-Structured Transition Systems

The definition of well-structured transition systems (WSTS) was proposed by Finkel
in [2]. It is based on the two main concepts: transition systems (TS) and well-quasi-
orderings between the states of these systems.
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Transition system (TS) is one of the most widely-used models for formal description
of the behavior of different systems. A transition system is defined by a structure
TS =(S,—,...) where S = {s,¢, ...} is a set of states, and -CS § X § is any set of
transactions [3]. TS can be also supplemented by other structures such as initial states,
labels for transitions, durations or causal independence relations [3]; however, for the
consideration of the concept of WSTS using of set of states along with set of
transactions is sufficient.

A binary relation < on a set X is called preorder or quasi-ordering (qo) if it is
reflexive and transitive. So for any a, b, c € X we have:

1) a < a (reflexivity);

2) ifa<bandb < cthena < c (transitivity).

Definition 1. A well-quasi-ordering (wqo) is a qo in which for every infinite
sequence of elements x, X1, X,, X3, ... © X there exist such indices i < j that x; <
x; [3, 6]. According to [7], there are a range of equal definitions of wqo; however, the
definition given above is generally used in papers on WSTS.

Definition 2. A well-structured transition system (WSTS) is a transition system TS =
(S, =, <) equipped with a qo <C S X S between states such that the two following
conditions hold:

1) well-quasi-ordering: < is a wqo, and

2) compatibility: < is (upward) compatible with —, i.e. for all s; < t; and
transition s, — s,, there exists such a sequence of transitions t; =" t, that
5, <ty [3].

Succ(s) denotes the set {s' € S|s — s’} of immediate successors of s. Likewise,
Pred(s) denotes the set {s’ € S| s" - s} of immediate predecessors.

An upward-closed set is any set I € X such that y > x and x € [ entail y € I. A basis
of an upward-closed I is a set I” such that | =U,_;»T x, where T x =%/ {y | y > x}.

3. Algorithms

3.1 Backward Reachability Method

Backward reachability method proposed by Abulla et al. in [4] is intended to solve
the covering problem which is to decide, given two states s and t, whether starting
from s it is possible to reach a state t' > t. This is essentially one of set-saturation
methods termination of which relies on the lemma that says that any increasing
sequence of upward-closed sets (I, S I; € I, € -+-) eventually stabilizes (i.e. there is
suchak € Nthat I, = Iy 41 = Iy4p = -+ ) [3].

Assume there is some WSTS TS = (S, —, <) and some upward-closed set of states
I € S. Backward reachability method on the each j-th step generates the set of states
from which I can be reached by a sequence at most j transitions [4].

177

Dworzanski L.V., Mikhaylov V.E. Tool for Behavioral Analysis of Well-Structured Transition Systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 175-190.

More strict generalization was suggested by Finkel and Schnoebelen in [3], where it
involves computing Pred*(I) as the limit of the sequence I, S I; C --- where
Iy =%/ I and I,,,, =% I, U Pred(l,).

Definition 3. A WSTS has effective pred-basis if there exists an algorithm accepting
any state s € S and returning pb(s), a finite basis of T Pred (T s).

The covering problem is decidable for WSTS if it has effective pred-basis and
decidable <. The proof of this statement is given in [3]. Essentially, it is said that if
there is a sequence Ko, K; ... with K, =%/ [P (finite basis of 1), K,,; =% K, U
pb(K,) and m is the first index such that T K, =T K,,, 41, then TU K; = Pred™(I).
By decidability of <, it is possible to check whether s € T Pred™(T t).

3.2 Finite Reachability Tree

The Finite Reachability Tree belongs to tree-saturation methods which represent
methods that consider all possible computations inside a finite tree-like structure [3].
It is also called the forward analysis method, in contrast to the backward analysis.
Essentially, it is based on the ideas proposed by Karp and Miller in [5].
Assume there is some WSTS TS = (S§,—,<). For any state s €S, the Finite
Reachability Tree is such a finite directed graph (tree) that:

1) nodes of the tree are labeled by states of S;

2) nodes are either dead or live;

3) the root node is a live node n,, labeled by s (written n; : s);

4) dead nodes have no child nodes;

5) alive node n : t has one child n’ : t’ for each successor t’ € Succ(t);

6) if along the path from the root n, : s to some node n': t' there exists a node
n:t(n #n') suchthat t < t’, we say that n subsumes n’, and then n' is a
dead node [3, 6].

The Finite Reachability Tree is effectively computable if S has (1) a decidable <, and
(2) Succ mapping is computable [3]. All paths in the finite reachability tree are finite
as any infinite path would include a covering node [6].

This algorithm can be applied to termination, inevitability, and boundedness problems
(see [3] for details).

4. Proposed Architecture

The general structure of the architecture of the developed tool is illustrated in Fig. 1.
It consists of two main parts: Well-Structured Transition Systems Language
(WSTSL) and WSTS Analyzer. Also there are four input parameters that are set by
the user through WSTSL.
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well-quasi-
ordering

WSTS Analyzer

Fig. 1. Architecture of the developed tool

WSTSL is a programming language used in the developed system as the front-end
which provides user with a means of describing input parameters. Therefore, the
following data types are included: integers, tuples, maps and sets. To run the
appropriate algorithm the wuser has to wuse either backwardanalysis() or
forwardanalysis() command. As it is depicted in Fig.1 the parser for WSTSL is built
with Another Tool for Language Recognition (ANTLR), which generates it from a
formal language description called a grammar [8]. The parser’s sources are generated
in Java, since ANTLR itself is written in Java and provides more parsing capabilities
for some cases in comparison with other supported target languages (C#, JavaScript,
Python2, Python3, Swift, Go).

WSTS Analyzer represents that part of the system which is responsible for the
processing of the input transition system, which it gets from the WSTSL parser, and
the application of the algorithm selected by the user. WSTS Analyzer is implemented
in Java, as it allows running it in all platforms that support Java, and, most
importantly, naturally interacts with parser’s Java classes generated by ANTLR.

As it was noted above, the input that is provided by the user includes four main parts.
Firstly, a general structure (WSTS structure) of the analyzed transition system should
be described (e.g. Petri nets or lossy channel systems in general). Secondly, a well-
quasi-ordering should be specified. Then, a structure of a specific transition system
(WSTS instance) that corresponds to the general structure is provided. Finally, the
desired analysis algorithm with appropriate parameters (query) is specified.
Essentially, all these parts are described in a single input program written in WSTSL.
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Afterwards, the WSTS Analyzer runs the selected algorithm on the specified system
and generates report which format depends on the choice of the algorithm.

5. Experiment

5.1 Petri Net

The applicability of the proposed approach could be demonstrated by an example
with common well-structured transition system called Petri net. The classical
definition of this model is the following.

Definition 4. A Petri net (P/T-net) is a 4-tuple (P, T, F, W) where
e P and T are disjoint finite sets of places and transitions, respectively;
e FC (PXT)U(T X P)is aset of arcs;

e W :F — N\ {0} - an arc multiplicity function, that is, a function which
assigns every arc a positive integer called an arc multiplicity or weight.

e A marking of a Petri net (P, T, F, W) is a multiset over P, i.e. a mapping
M : P - N. By M(N) we denote the set of all markings of the P/T-net N.

e We say that a transition t in the P/T-net N = (P, T, F, W) is active in
marking M if for every p € {p | (p,t) € F}:
M(p) = W(p,t). An active transition may fire, resulting in a marking M’,
such as forallp € P: M'(p) = M(p) — W(p,t)
ifpe{p|(pt) €F}, M'(p)=MP)—W(p,t) + W(tp)
ifp €e{p| (t,p) € F)and M'(p) = M(p) otherwise.
For simplicity’s sake, we consider here the Petri net which arcs can only have
multiplicity 1.
For the experiment the Petri net illustrated in Fig. 2 will be considered.

P4

Fig. 2. Instance of the Petri net for consideration in the experiment

First of all, the general structure of the Petri net model described above should be
defined by means of WSTL (Fig. 3).
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type P : set of int;

type T : set of int;

type PT(RPl:P, T1:T) : set of [from Pl,from Tl];
type TP(P1:T, P1:P) : set of [from T1l,from P1];
type M(P1:P) : map <from P1l,int>;

type PN(B1:P; Tl:T,;
BETaBT, TRL:TEYN i [PlsTL,PT1,;TEL]:

Fig. 3. General structure of Petri net in WSTSL

Secondly, we describe the specific Petri net instance in WSTSL (Fig. 4). PT1 and TP1
represent the arcs from places to transitions and vice versa, respectively. In tuples,
defining arcs, the corresponding transition goes first for the convenience in
description of Succ and Pred function as it will be seen below.

var P1:P = {"P1","P2","P3","P4"};

var TLsT = {FTL™, WiDw],

var PT1:PT(P1,Tl) = {["T1","P1"],["T2","P2"],
[llT2","P3"] },.

var TP1:TP(T1,Pl) = {["T1","P2"],["T1","P3"],
["T2","P1"] , ["T2","P4"] };

Fig. 4. Description of the specific Petri net instance in WSTSL

Then, a well-quasi-ordering should be described (Fig. 5). As it is shown in [3], the
inclusion ordering (M € M'when M(p) < M'(p) for every place) is a wqo and it is
known as Dickson’s lemma [9]. Operator forall iterator | test generates a boolean
value true if the condition fest is met for each step in iterator and a boolean value
false otherwise.

func wgo (PN1:PN, sl:M, s2:M)
return forall p in PN[0] | sl[p] <= s2[pl:
end func;

Fig. 5. Well-quasi-ordering function described as inclusion ordering in WSTSL

As it has been mentioned above in the Algorithms section, Backward Reachability
Method requires effective algorithm for computation of pred-basis. The algorithm to
compute it for Petri Net was suggested in [4]. How it is described in WSTSL is shown
in Fig. 6.
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func pred(PN1:PN, K:set of M)
var P1:P = PN1[0];
var Tl:T = PNL[L]s
var PT1:PT(P1,T1l) = PN1[2];
var TPl:TP(Tl,BLl) = BNL1[3];
var predecessors: set of M(P1l) = { };

for s in K
for £t in T
if forall tp in TP1[t] | s[tp[l]] - 1 >= 0 then
sl = s;
for pt in PTL[E]
slpt[1]] = sl[pt[1]] + 1;
end for;
for Epr in TPL[E]
s1[tp[1]] = sl[tp[1]] - 1;
end for;
predecessors = predecessors with sl;
end if;
end for;
end for;
return predecessors;
end func;

func pb (PN1:PN, K:set of M)
return min (pred(PN1, I), wqgo)
end func;

Fig. 6. Description of the pred-basis and pred functions in WSTSL

To solve the covering problem the initial state and the state which coverability it is
required to check should be specified. Afterwards, backwardanalysis function should
be invoked with appropriate arguments (Fig. 7).
var mO:M(P1l) = {<"P1",1>,<"P2",0>,
<"P3M,2>,<"P4", 1>} ;
var mc:M(Pl) = {<"P1",1>,<"P2",1>,
LB IM L LMPAY, 23] 8

backwardanalysis (PN1,wqo, pb,m0,mc) ;

Fig. 7. Description of the initial marking and the marking which coverability it is required to
check with Backward Reachability Method invocation

The tool provides the user with the output that contains sequence of sets K;, where
Ky ={m.}, K41 = pb(K,), their union U;cy K; and its minimal elements (basis).
Finally, it is reported whether the analyzed state (marking) m,. is covered or not (Fig.
8).
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KO: [{P1=1,P2=1,P3=1,P4=2}] func succ(PN1:PN, s:M)
Kl: [{P1=0,P2=2,P3=2,P4=1}, il igim
va . = ;
{P1=2,P2=0,P3=0,P4=2}] var PT1:PT(P1,Tl) = PN1[2];
K2: [{P1=1,P2=1,P3=1,P4=1}] var TP1:TP(T1,P1l) = PN1[3];
K3: [{P1=0,P2=2,P3=2,P4=0}, var successors : set of M(Pl) = { };
{P1=2,P2=0,P3=0,P4=11}] . P
s _ _ _ o or in
K4: [{P1=1,P2=1,P3=1,P4=0}] if forall pt in PT1[t] | s[pt[1]] - 1 >= 0 then
K5: [{P1=2,P2=0,P3=0,P4=0}] Sl = (g0
Unions [{P1=0,P2=2,P3=2,P4=0}, for pt in PT1([t]
{P1=0,P2=2,P3=2,P4=1}, slipt[l]] = sl[pt[l]] - 1:
{P1=1,P2=1,P3=1,P4=0}, igﬁ i;rin -
{P1=1,P2=1,P3=1,P4=1}, s1[tp[l]] = sl[tp[l]] + 1:
{P1=1,P2=1,P3=1,P4=2}, end for;
{P1=2,P2=0,P3=0,P4=0}, successors = successors with sl;
{P1=2,P2=0,P3=0,P4=1}, end.if;
{P1=2,P2=0,P3=0,P4=2}] g
. . return successors;
min (Union): [{P1=0,P2=2,P3=2,P4=0}, stdl Erngs

{P1=1,P2=1,P3=1,P4=0}, ) o o

{P1=2, P2=0, P3=0, P4=0} ] Fig. 9. Description of the Succ function in WSTSL
var mO:M(P1) = {<"p1",1>,<"P2",0>,

The state {P1=1,P2=1,P3=1,P4=2} is not covered <"P3",2>,<"P4",1>};

Fig. 8. Report of the tool for the backward analysis invocation Formiardanalyeis (Bl vae, s, )

As it has been mentioned above in the Algorithms section, Finite Reachability Tree

. . . . .. . . Fig. 10. D ipti the initial ki d the Finite Reachability Ti tructi
requires effective algorithm for computation of Succ. How it is described in WSTSL & escription of the initial marking and the Finite Reachability Tree construction

et
is shown in Fig. 9. . . mv.oca ion o -
To construct Finite Reachability Tree only the initial state should be specified. The tool provides the user with the image which illustrates constructed Finite
Afterwards, forwardanalysis function should be invoked with appropriate arguments Reachability Tree (Fig. 11). Nodes are labeled with their states. Dead nodes are red.
(Fig. 10). The node labeled with {P1=1, P2=0, P3=2, P4=2} state is dead since {P1=1, P2=0,

P3=2, P4=2} ={P1=1, P2=0, P3=2, P4=1} (the latter state is represented by the root
which subsumes the dead node labeled by the former state).

P1=1 P2=0 P1=0 P2=1 P1=1 P2=0
P3=2 P4=1 P3=3 P4=1 P3=2 P4=2

Fig. 11. Constructed finite reachability tree
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5.2. Lossy Channel Systems

Another model that we considered was Lossy channel system (LCS) which is a
subclass of FIFO-channel systems.
Definition 5. FIFO-channel system is a 6-tuple (S, sy, 4, C, M, §) where

e S is a finite set of control states;
e 5, € S is the initial control state;
e A is a finite set of actions;

e (s a finite set of channels;

e M is a finite set of messages (M™ is a set of finite strings composed of
elements from M),

e { is a finite set of transitions, each of which is represented by one of the
following tuples (s;, c!'m, s,), (S1,¢?m, s;), (51,4, S,), where s;,5, € S,
c€C,m € Manda € A (see below).

Transition (s, ¢! m, s, ) changes the control state from s, to s,, adding the message m
to the end of the channel c. Operation c! m is also known as a send action.
Transition (s;,c?m,s,) changes the control state from s; to s,, removing the
message m from the beginning of the channel c. If the channel c is empty or its first
element is not m, then this transition cannot occur. Operation c? m is also known as
a receive action.

Transition (s;,c?m, s,) changes the control state from s; to s, and does not change
the state of the channels.

Considering LCS it is also assumed that some message in some channel can be lost
at any moment. To model this behavior one more operation 7(c, m) is introduced.

Transition (s, T(c, m) , s,) removes the message m from the channel c, and does not

change the control state.

For LCS = (S,50,4,C,M,§) the ordering < is defined on the set of global states

{(s,w)]| s € S,w:C - M*} as follows:

s,w)s(s w)yes=s"Aw(c) Kw'(c) Ve ecC.

The ordering « is a subword ordering: u < v iff u can be obtained by erasing letters

from v. It is shown in [6] that this ordering is a wqo.

The concrete model that we considered was Alternating Bit Protocol (ABP). It is

represented by Sender and Receiver which communicate via two FIFO-channels ¢y,

and c¢4. Sender sends messages to Receiver via ¢y, while Receiver sends

acknowledgements via c,. Both channels can lose messages. Messages and

acknowledgements contain one-bit sequence number 0 or 1. Sender continuously

sends the same message with the same sequence number, until it receives an

acknowledgement from Receiver with the same sequence number. Then, Sender

changes (flips) the sequence number and proceeds with sending the next message.

Receiver starts by waiting the message with the sequence number 0 (actually, it can

initially send acknowledgments with the sequence number 1). When it receives such
185

a message it starts sending acknowledgements with the same sequence number, until
it receives the message with the flipped sequence number and so on. The described
model is illustrated in terms of Lossy Channel System in Fig. 12.

Cy!0 Ca21 Cp?1 Cupl1

Cal0

Cul1 Sender Receiver

Fig. 12. Alternating Bit Protocol modelled as a Lossy Channel System

5.3 Performance

To measure the performance of the implemented Finite Reachability Tree algorithm
we applied it to the four different models, which include a model shown in Fig. 2
(Example 1) and the Petri Net models simulating the dining philosophers problem
[10] for a number of philosophers equal to 5, 6 and 7. We executed the experiment
on the following machine: Intel Core i7, 2.22 GHz, 16 GB RAM running OS X El
Capitan (v. 10.11.6). System.nanoTime() method was invoked immediately before of
the beginning of construction of a FRT and immediately after the end of construction,
then the difference was calculated to measure run time for one run. In Table 1 in the
Run time column average results for 20 runs are given in seconds. As well, sizes of
the constructed FRTs are given. It can be seen that both run time and size of FRT
grow exponentially for the philosophers problem.

Table 1. Performance of the tool during Philosophers problem solving

Run time (s) | Size of FRT
Example 1 0.03596 3
Phil5 0.08587 241
Phil6 1.87815 25711
Phil7 5221.64756 88062003
6. Summary

This paper addresses a lack of practical results in studies of well-structured transition
systems. In order to fill this gap, there was presented one of the possible ways for
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development of the system capable to analyze WSTS with two common algorithms:
backward reachability method and the Finite Reachability Tree. Well-Structured
Transition Systems Language is introduced as a means of describing the user’s input,
which consists of the description of transition system’s structure in general and
specific instance’s relations and values.

The tool can be used by researchers to investigate the efficiency of the implemented
algorithms. It is expected that it is appropriate for conducting experiments on small
and mediumsized WSTS. The technology eases the efforts required to check the
potential of the WSTS analysis algorithms for practical applications and to make
what-if experiments on newly developed formalisms.

The application of the tool is illustrated for the Petri nets and Lossy Channel System
formalisms. Also, there were given results of the experiment on Petri nets modeling
the dining philosophers problem. The performance analysis of the Finite Reachability
Tree applied to this problem demonstrated the expected exponential growth of
execution time; and, it indicates the need for further investigations of optimizations
(e.g. reduction rules) that can be applied to make the algorithm effectively applicable
in practice.
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MHCcTpyMmeHT onAa aHanuMsa noBeAeHUs BMNOJIHe
CTPYKTYPUPOBaAHHbIX CUCTEM NepexoaoB
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AHHOTammsl. BroigHe CTPYKTYpHpOBaHHBIC CHCTEMBI MEPEXOAOB SBISIIOTCS  XOPOIIO
U3BECTHBIM MHCTPYMEHTOM JUISl JOKa3aTEJIbCTBA Pa3pelIMMOCTH CBOWCTB MOKPHIBAEMOCTH M
OrpaHM4eHHOCTH. Kakaplil roJ MOsBIAIOTCS HOBbIE (OPMAIM3MBI, KOTOpbIE OKa3bIBAIOTCS
BIIOJIHE CTPYKTYPHPOBAHHBIMH CHCTEMaMH IiepexonoB. Hecmorpss Ha OGombmoi o6bem
TEOPETHYECKOIl PaboTHI, CyIIEeCTBYeT OoJbIlas IOTPEOHOCTh B SMIUPUUECKUX H3YUCHUH
BIIOJTHE CTPYKTYPHPOBAHHBIX CHCTEM IIepexo0B. B ranHoi paboTe npencraBieH HHCTPYMEHT
JUISL aHaIn3a TaKuX cucTeM. MBI IpejuiaraeM pacliupeHne BHICOKOYpoBHEBOro sizbika SETL
JUIsL OLIMCAHMS BIIOJIHE-CTPYKTYPUPOBAHHBIX CUCTEM HEPEXOA0B. DTO MO3BOJISAET ONUCHIBATH
HOBbIE (hOpMaATN3MBbI OJIM3KO K UX (POpMaNbHOMY omnpeeeHuto. TakuM o6pa3oM yrpoiaercs
CO3JaHME€ M M3MEHEHHE HOBBIX (OPMAIM3MOB, a TaKKe OCYILIECTBICHHE aHAIM3a
MOBEACHYECKUX CBOWCTB 0e3 O0JbIIOro odbemMa HMPOrpaMMHCTCKUX YCHIMH. JTO yHoOHO,
KOTZIa HOBBIH (popManu3M HaXOJWUTCS B CTAAWH M3yUYEeHUS U pa3paboTku. beumm peanusoBansr
JIBa CaMBIX M3yYECHHBIX aJTOPUTMA aHAJIN3a ITOBEACHHS BIOJHE CTPYKTYPHUPOBAHHBIX CHCTEM
nepexonoB (OOpaTHBIN adrOPUTM M aHAIN3 KOHEUYHBIX JEPEBBEB JOCTIDKUMOCTH). X
NIPOM3BOJUTENIFHOCTG OBUIA M3MepeHa Ha Mojensix cered [letpu m cucreM ¢ mortepeit
curHasioB. Pa3paboTaHHBII MHCTPYMEHT MOXET OBITH IIOJIE3HBIM IIPH BHEAPEHHU U
TECTUPOBAaHMM METOJOB aHanu3a (OPMAIU3MOB, KOTOpbIE OKa3bIBAIOTCSA  BIIOJIHE
CTPYKTYPHPOBaHHBIMU CUCTEMaMH II€PEX0/I0B.

KnroueBbie cioBa: ¢opManbHas BepHQUKALMSA; CHCTEMBI C OECKOHEYHBIM YHCIOM
COCTOSIHMI; BIIOJIHE CTPYKTYpUPOBaHHbIe cucTeMsbl [lepexonos; cetu Ilerpu.
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