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Abstract. In this paper we consider Markov analysis of models of complex software and
hardware systems. A Markov analysis tool can be used during verification processes of models
of avionics systems. In the introduction we enumerate main advantages and disadvantages of
Markov analysis. For example, with Markov analysis, unlike other approaches, such as fault
tree analysis and dependency diagram analysis, it is possible to analyze models of systems that
are able to recovery. The main drawback of this approach is an exponential growth of models
size with number of components in analyzed system. It makes Markov analysis barely used in
practice. The other important problem is to develop a new algorithm for translating a model of
a system to a model suitable for Markov analysis (Markov chain), since the existing solutions
have significant limitations on the architecture of analyzed systems. Next we give a brief
description of the context — AADL modeling language with Error Model Annex library,
MASIW framework, and also give an explanation of Markov analysis method. In a main
section we suggest an algorithm for translating a system model into a Markov chain, partially
solving the problem of exponential growth of Markov chain. Then follows a description of
further steps, and some heuristics that allow to extremely reduce running time of the algorithm.
In this paper we also consider other Markov analysis tools and their features. As a result, we
suggest a Markov analysis tool that can be effectively use in practice.
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1. Introduction

In this paper we consider a task related to verification of models of software and
hardware systems. Such systems can be, for example, control systems for airplanes,
ships, medical equipment, etc. The price of error in these systems is very high, but
they are too complicated for “manually” analysis. Therefore such systems are
modeled before implementation. On the stages of design, development, and
verification of the models, it is necessary to constantly investigate system safety.

At present, three main methods of system safety assessment [ 1] are widely used: fault
tree analysis, dependency diagram analysis, and Markov analysis. Each method has
its own advantages and disadvantages. In this paper, Markov analysis is considered.
Markov analysis works with a Markov chain [2] — a stochastic process, which can be
represented as a directed graph with weighted edges. Vertices of Markov chain
represent different states, and edges are labeled by probabilities of a transition
between states. The main drawback of Markov analysis is a size of Markov chains,
which increases exponentially with number of components in the system. In addition,
it is necessary to develop an algorithm, that takes system model and translate it to the
Markov chain. These problems make Markov analysis not so popular as the other
methods, and number of tools that use Markov analysis for complex systems is
relatively small. However, such approach has its advantages: Markov analysis allows
to look at the entire system, to consider not only causes and probabilities of certain
single failure, but also investigate how various failures affect the system in the
aggregate. Also Markov analysis, unlike the other approaches, allows to analyze self-
recovering systems, since return to operational state is natural for Markov chains.
Thus, the task of development the Markov analysis tool of complex hardware-
software systems is quite important and relevant.

2. Context

2.1 AADL and Error Model Annex

Architecture Analysis & Design Language (AADL) [3] is a language, that widely
used for describing models of real-time hardware and software systems. Its features
include description of both hardware (so-called execution platform) and software
components of an analyzed system, and various connections between them. The
models, described in AADL, may be used for documentation, for various kinds of
analysis and for code generation.

Error Model Annex [4] is an extension of AADL, that allows to simulate appearance
and propagation of errors in the system. For each component, a modeller can add a
description of component’s behavior states, for example, operational and failed.
Transitions between system states are triggered by randomly occured error events and
internal errors propagated from other components. An error propagation condition
may depend on certain behavior state of the component, some error events, or error
propagated from environment. Each propagated error has its own type, that allows to
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control what is exactly happened in the system. Also transitions between states can
be defined implicitly — a state of some component may be a composite state of its
subcomponents.

AADL and Error Model Annex together describe not only an architecture, but also
error behavior of systems. It becomes possible to evaluate such properties of models
as safety, reliability, the availability of its various states and ability to recover from
them.

2.2 MASIW

MASIW [5] is an open-source framework for designing and analyzing of integrated
modular avionics systems, that use AADL as a modelling language.

The project designed as plugins for Eclipse IDE, includes a variety of tools for
working with AADL and Error Model Annex models. There is a big number of
different analysis tools, for example, a fault tree analysis tool, but there is no Markov
analysis tool.

2.3 Markov analysis

Any model subjected to Markov analysis must be represented as a Markov chain. A
Markov chain can be represented in the form of a directed graph with vertices
containing system states, and edges labeled with intensities of transitions between
corresponding states. A Markov chain has the property of Markov process — a
probability of a transition to any state depends only on a current state and a moment
in time, and previous transitions are unimportant (can be characterized as
memorylessness).
Markov models can be divided into models with discrete and continuous time, as well
as time-homogeneous (also called stationary) and time-inhomogeneous. In time-
homogeneous Markov chains, the intensities of transitions are constant, while in time-
inhomogeneous Markov chains they depend on time. In time-homogeneous Markov
chains, transitions occur according to the binomial (or fixed) distribution for discrete-
time chains, and according to the Poisson distribution for continuous-time chains.
To determine the behavior of an analyzing system, it is necessary to specify a system
of differential equations. The equations follow from the Markov chain. For all
Markov processes (and a Markov chain, in particular) we have the Kolmogorov-
Chapman equation [6]:

PEAN(S;/8)) = Biiea PO (Sic/SHPO(S;/5) (1
This equation means that probability of a transition from state S;to state S;for some
time t + dtis equal to a sum of probabilities of passes into the target state S;through
all of intermediate states Sj.
Consider a time-homogeneous chain with an intensity of the transition between states
Siand Sjequal to A(S;/S;). Then for continuous-time Markov chains, the
Kolmogorov-Chapman equation implies a system of differential equations
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U0 = SR AGS/SOPOS/S) + B AS/SOPOS/S) ()
And for discrete-time chains, a system of difference equations

P+ (s5;/51)-PO(s;/5))
! v L= = = YR ASi/SOPO(S;/S:) + Xitaa ASk/SHPO(S;/Sk)
(3)
Denote by S; a certain initial state of the system, and consider equations (2)-(3) in case
when S; = S;. Denote by P;(t)the function P®(S, /S;). Then, the previous equations

takes the following form:
dpPi(t) _

U — ¥ A /SOPUE) + Ty A(Si/S)P(D) @)
i At)-P; n n
PRI = — ¥y AGS/SOPE) + Ty A/ S)P() (5)
In addition, initial conditions appear:
P (0) =1,P(0) =0,i =-2,n (6)

Thus, we obtain the Cauchy problem [7]. The solution of this problem is a set of
probabilistic functions of being a system in a definite state. This is the result of
Markov analysis.

In this paper, we consider only the analysis of time-homogeneous Markov chains and
models, as the most common ones. However, all results can be applied to time-
inhomogeneous models, with the only difference being that intensities of Markov
chain transitions depend on time, and they need to be stored as formulas, not as
numbers.

3. Problem

The goal of this work is a development and implementation of a Markov analysis tool
for complex hardware-software systems models within the MASIW framework. The
tool takes input of some system model and a set of time points. At the output, the
analyzer provides the probabilities of being the system in each of its possible states at
moments of time, defined by user.

The main problem is to create a Markov chain on the basis of the original model.
First, we need an algorithm that creates a correct Markov chain corresponding to the
input data. Secondly, the result chain should be of acceptable size, so that the program
can work for acceptable time in limited memory.

After a construction of a Markov chain, further action reduces to solving a Cauchy
problem with a system of linear differential equations. An analytical solution of the
Cauchy problem is too complicated, resource-intensive, and result is difficult to
comprehend, so we use numerical methods.
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4. Solution

4.1 Markov chain

The primary task is to translate an AADL model into a Markov chain. In particular,
it is necessary to find out what to regard as a chain node and what generates transitions
between system states.

Obviously, the node must contain the state of the system, which is a combination of
the states of all system components (the states of the components are described in the
model as behavior states). However, if we take as a node any of all possible
combinations, then the number of nodes will be no less than 2", where nis the number
of system components. Real systems often contain more than 20 components, that, on
the one hand, are few, but on the other hand, results in size of such Markov chain
outside available memory.

We suggest the following solution of this problem. Let us exclude from the chain all
unreachable states of the system, which, as practice shows, are the vast majority. First,
some states of the system are unreachable by definition of ananalyzing model. For
example, the state of some component may completely depend on the states of its
subcomponents. Accordingly, the component can not be in a failed state, while all its
subcomponents are in operational states. Second, the failure of some components
entails an almost immediate failure of others — for example, a breakdown of a
processor entails a failure of all processes running on it. Thus, the state in which the
processor is broken, but the processes on it are still working, though reachable in
theory, at the very moment of the failure, but instantly replaced by another state.
Thus, we suggest the following approach. We assume that speed of error propagation
between components is extremely small in comparison with time of system operation
(which, in practice, is the case — for a unit of time measurement usually takes hour
and even a day). Let us define a stable state of the sistem as a state, that does not
change until new error events occur in the system and its components. We consider
as nodes of designed Markov chain only the stable states of the system. The sets of
arising events generate transitions between nodes of the chain.

For the sake of saving memory, we insert only reachable states to the Markov chain,
and build it dynamically, from the initial state of the system, which is a combination
of the initial states of the components. In each new node it is necessary to analyze
transitions from the current state of the system. The state can change for some event
or combination of events. So, we perform complete search for all possible sets of
events — either of them can initiate a new transition. The probability of occurrence of
each set of events is easily calculated, since each event contains information about its
probability distribution. This is a multiplication product of probabilities of occurrence
or negation of occurrence of each of the events, since all events are independent. The
total probability of all sets of events, according to the law of total probability, should
be equal to 1.
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The algorithm is completed when all nodes of Markov chain are analyzed, starting
from the node corresponding to the initial state of the system.
markovChain.addNode(initialStateNode)
queue.add(initialStateNode)
while not queue.isEmpty() do
analyzeNode(queue.head())
queue.add(newNodes)
end while
The analysis of each node of Markov chain looks like this: all possible sets of error
events are searched, for each of them we calculate a stable state of the system into
which the given set leads, and then a new transition (and, if necessary, a new node) is
added to the chain.
for each errorEventSet in possibleSets do
state = currentNode.getState()
repeat
watchedStates.add(state)
state = calculateState(state, errorEventSet)
until watchedStates.contains(state)
node = markovChain.addNode(state)
markovChain.addTransition(
currentNode, node, errorEventSet.getProbability())
watchedStates.clear()
end for
In the above algorithm, the state of the system is considered stable if we have already
reached it before. This correctly handles the case when the state of the system has not
changed — we have reached the same state as in the previous step. However, in theory,
in a self-recovering systems, cycling may occur if an event with a failure and an event
with component recovery occur simultaneously. With this condition, the loop stops,
but this situation is not handled correctly. One of the main opportunities for further
improvement of the algorithm is to improve the condition for achieving a stable state
of the system.

4.2 Calculation of new states

In the previous paragraph, a general algorithm for constructing a chain was described,
omitting the details of calculating new states of the system. To find out exactly how
the system has changed, it is enough to go through all its components, and see what
transitions between states are triggered for a given set of events and the current state
of the system. The triggered transition is immediately applied to the system, and the
algorithm step is completed.
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for each componentState in systemState do
for each compositeState in comp.getCompositeStates() do
if checkStateExpression(compositeState.getExpression())
then
systemState.apply Transition(compositeState)
return
end if
end for
for each transition in comp.getTransitions() do
if transition.getSource() == compState
and checkErrorCondition(transition.getCondition())
then
systemState.apply Transition(transition)
return
end if
end for
end for
The checkStateExpression and checkErrorCondition functions check whether the
transition condition is met. Such conditions can be interpreted as a logical formula,
where variables corresponding to components behavior states, error events, and
propagated errors, have value of true or false, depending on whether the system is in
this state, whether an error event has occurred or whether an error of the specified
type has propagated.
As soon as some component of the system changes its state, it means that we obtain
a new state of the system, and the step of the algorithm is completed. If none of the
transitions is triggered, then the system state has not changed, which is noticed by the
algorithm described in the previous section.

4.3 Construction and solution of the Cauchy problem

After construction of a Markov chain, the final stage of the Markov analysis of the
system is to construct a system of equations and solve the Cauchy problem. As
mentioned earlier, each node of the Markov chain generates a differential equation
(4) (or similar difference equation (5)). To save memory, it is not necessary to store
the system of equations — the equation for any node can be easily constructed
dynamically, passing through all transitions entering into this node and outgoing from
it.

The resulting Cauchy problem can be solved by a numerical method from the Runge-
Kutta [8] family of methods. In the analyzer, two methods are implemented: the Euler
method, for discrete-time Markov chains, and the fourth-order Runge-Kutta method,
for continuous-time Markov chains. The type of the chain is determined in advance,
according to probability distributions of error events. An algorithm for calculating the
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variation of the function P;(t)on each time interval delta t, taking into account the
dynamic construction of the equation (Euler’s method):

for each node in markovChain.getNodes() do
i = indexOf{node)
res =0
for each transition in node.getInTransitions() do
k = indexOf{(transition.getNode())
res += transition.getProbability() * pPrev[k]
end for
for each transition in node.getOurTransitions() do
res -= transition.getProbability() * pPrev[i]
end for
pCur[i] = pPrev[i] + delta t * res
end for
Also, the value of the vector of probability functions P (t) is saved at every time point

defined by user. As soon as values at each necessary time point are calculated, the
algorithm is completed.

4.4 Getting Analysis Results

Since number of system states in Markov chain can be very large, the result of
analysis in the form of probabilities of being the system in each of them is practically
impossible for reading. Considering that each system has its root component, we
group all system states according to the states of the root component.

In this case, all the probability functions within the same group are summed up:
for each node in chainNodes do
i = indexOf{node)
state = node.getSystemState().get(rootComp)
analysisResult.get(state) += p[i]
end for
After this, for each state of the root component, the probability of being the system in
a this state at given time points is obtained. This is the desired result of the Markov
analysis of the system.

4.5 Algorithm acceleration

Despite a partial solution of the problem of exponential growth of Markov chain size,
the running time of full version of the algorithm still grows exponentially — due to a
thorough search of all possible combinations of error events. Thus, we use some
heuristics in the final program, accelerating the algorithm.

First, we limit the search of combinations of events. Since the probability of
occurrence of one event is usually extremely small, the situation in which several
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events occur simultaneously is practically impossible. Therefore, a very small
numerical parameter, limiting the probability of the combination of events under
consideration, was added to the program. If the probability of occurrence of the set of
events is less than this parameter, then the effect of the set of events on the system is
not considered. This solution significantly reduced the running time of the program,
without much loss of accuracy of the result.

The second solution relates to system’s ability to self-recovery. In practice, there are
few examples of self-recovering systems, and, in most cases, even a short-term failure
of the system itself means fatal consequences. Accordingly, if the analyzed system
has come to failed state, its further changes are not interesting to us — no matter what
else can fail in the already failed system. Therefore, we introduce a set of states of the
root component, that are considered as «absolutely» failed. If some node of Markov
chain has failed state of the root component, then we do not analyze transitions from
it. If analyzed system is not self-recovering, the result of the program remains the
same, but is obtained in much shorter time.

Both modifications of the program are optional, as they may change final result in
some cases, but their application reduces the operating time by several orders of
magnitude. For example, a complete analysis of a system containing 24 components
revealed 919 states of the Markov chain and took 1 hour. Limiting the frequency of
the events considered by the number 103%gave a significant gain — the same set of
states of the Markov chain and the same result of the analysis were obtained in 7
minutes. Since the system under test was not self-recovering system, the analysis with
the stop-on-failed option was correct, and got the same result in 10 seconds. Setting
relevant parameters allows to significantly accelerate work of the analyzer. One of
the further options for improving the tool can be automatic detection and selection of
optimizing parameters.

5. Related works

Markov analysis of AADL and Error Model Annex models is usually applied to
systems consisting of only one component. Such algorithms doesnt consider error
propagation mechanism and composite states, and limited by root component.

The tool from OSATE [9] framework, created for export AADL model into Markov
chain model for PRISM [10] toolset, which provide further steps of Markov analysis,
supports only the first nesting level of the component hierarchyand does not support
different types of propagated errors. In addition, there were some problems associated
with the syntactic correctness of the final PRISM model.

6. Conclusion

In this paper we present a new Markov analysis tool, and in particular, an algorithm
for translating AADL and Error Model Annex models into Markov chains. In
addition, there were added some improvement for accelerating the algorithm, which
make it possible to effectively use the tool in practice.
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The presented tool can be further improved in various ways: adding support for time-
inhomogeneous Markov chains, accelerating the work of the algorithm, changing
some details of algorithm.
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CToxacTuuyeckue MeToabl aHanM3a KOMMEKCHbIX
nporpaMMHo-annapaTHbIX CUCTEM
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AnHoTanus. B nannoit paboTe paccMaTpuBaeTCst MApKOBCKHIH aHAIN3 MOJIEJIeH KOMIUIEKCHBIX
HPOTrPaMMHO-ANNAPATHBIX CHCTEM. IHCTPYMEHT MAapKOBCKOTO aHAIU3a MOXET OBITh
UCHOJIb30BaH, B YaCTHOCTH, JUI BepU(HKALUKM MOJeJeil CUCTeM MHTErpalbHON MOAYJIBHOM
aBHOHMKH. BO BBe/IeHHH NEPEUHCIIAIOTCSA OCHOBHBIE JOCTOMHCTBA U HEAOCTATKU MaPKOBCKOTO
anamm3a. K npumepy, MapKkOBCKHI aHAIN3, B OTJIMYNE OT JPYTUX MOAXOI0B — aHAIN3a JIepeBa
HEHCIIPaBHOCTU M aHAJIU3 aJOTUYECKOH CXEMBI, T03BOJISICT aHAIM3UPOBATh MOJIETN CHUCTEM,
CIOCOOHBIX K BOCCTaHOBIEHHIO. OCHOBHBIM HEIOCTaTKOM JAHHOTO IIOAXOJA SIBIISETCS
SKCIIOHCHITMANBHBIA POCT pa3sMepa Mojeneil B 3aBHCHMOCTH OT YHCIA KOMIIOHCHTOB B
AQHAJIM3UPYEMOI CHCTEeMe. DTO CYLIECTBEHHO OIPaHMYMBACT BO3MOXHOCTb HMPHUMEHEHHS
MapKOBCKOT'O aHaNW3a Ha MpakTuke. J[pyroi BaxxHO MpobiaeMoii ABIIeTCs CO3AaHIe HOBOTO
AITOPUTMA TPAHCIALMU UCXOAHOI MOJIEIH CUCTEMBI B MOJIEIIb, IIPUTOHYIO JUIS MAPKOBCKOTO
aHa;mmM3a (MAapKOBCKYIO Lielb), TaK KaK CYIIECTBYIOIIME pEIICHHS HAKJIaJbIBAIOT
CYILECTBEHHBIE OTPAaHIUYCHIS HA apXUTEKTYpy aHATIM3UpPyeMoii cucteMsl. [laee uuer kpatkoe
OIMICaHHe KOHTEKCTa, B KOTOPOM HHCTPYMEHT IOJDKEH paboTaTh — SI3BIK MOJIEIMPOBAHMS
AADL c 6ubmmorexoit Error Model Annex, maGop mHCTpymMeHToB MASIW, a Takxe
OITMCHIBACTCSI CaM METOJ MapKOBCKOTO aHANN3a. B 0CHOBHOM 4acTH mpeuraraeTcst aaropuT™
TPAHCISALMM MOJEJH CHCTEMbl B MAapKOBCKYIO Lielb, YAaCTHYHO peELIAIONIMII mpobiemy
9KCHOHEHIMAJILHOTO POCTA MAPKOBCKOH LIeNH. 3aTeM ClielyeT ONMCaHKie AalbHEHIINX [11aros,
a TaKoKe MPEeUIaraloTcsi 3BPUCTHKH, MO3BOJIAIOIINE 3HAYUTEIBLHO COKPATUTh BPEMst pabOTh
UTOTOBOH Mporpammbl. B pabore Tarke paccMaTpUBAIOTCS CYLIECTBYIOLIME HMHCTPYMEHTBI
MapKOBCKOTO aHaiM3a W HX HEAOCTaTKu. B KkadecTBe pesysnbraTa JaHHOH pabOTHI
TIpeIaraeTcsi HOBBIIf MHCTPYMEHT MapKOBCKOTO aHaIM3a, KOTOPBIH MOXKET OBITh 3 (EKTHBHO
UCHOJIb30BaH Ha MIPAKTHUKE.
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