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Abstract. In this paper we consider Markov analysis of models of complex software and 
hardware systems. A Markov analysis tool can be used during verification processes of models 
of avionics systems. In the introduction we enumerate main advantages and disadvantages of 
Markov analysis. For example, with Markov analysis, unlike other approaches, such as fault 
tree analysis and dependency diagram analysis, it is possible to analyze models of systems that 
are able to recovery. The main drawback of this approach is an exponential growth of models 
size with number of components in analyzed system. It makes Markov analysis barely used in 
practice. The other important problem is to develop a new algorithm for translating a model of 
a system to a model suitable for Markov analysis (Markov chain), since the existing solutions 
have significant limitations on the architecture of analyzed systems. Next we give a brief 
description of the context – AADL modeling language with Error Model Annex library, 
MASIW framework, and also give an explanation of Markov analysis method. In a main 
section we suggest an algorithm for translating a system model into a Markov chain, partially 
solving the problem of exponential growth of Markov chain. Then follows a description of 
further steps, and some heuristics that allow to extremely reduce running time of the algorithm. 
In this paper we also consider other Markov analysis tools and their features. As a result, we 
suggest a Markov analysis tool that can be effectively use in practice. 
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1. Introduction 
In this paper we consider a task related to verification of models of software and 
hardware systems. Such systems can be, for example, control systems for airplanes, 
ships, medical equipment, etc. The price of error in these systems is very high, but 
they are too complicated for ”manually” analysis. Therefore such systems are 
modeled before implementation. On the stages of design, development, and 
verification of the models, it is necessary to constantly investigate system safety. 
At present, three main methods of system safety assessment [1] are widely used: fault 
tree analysis, dependency diagram analysis, and Markov analysis. Each method has 
its own advantages and disadvantages. In this paper, Markov analysis is considered. 
Markov analysis works with a Markov chain [2] – a stochastic process, which can be 
represented as a directed graph with weighted edges. Vertices of Markov chain 
represent different states, and edges are labeled by probabilities of a transition 
between states. The main drawback of Markov analysis is a size of Markov chains, 
which increases exponentially with number of components in the system. In addition, 
it is necessary to develop an algorithm, that takes system model and translate it to the 
Markov chain. These problems make Markov analysis not so popular as the other 
methods, and number of tools that use Markov analysis for complex systems is 
relatively small. However, such approach has its advantages: Markov analysis allows 
to look at the entire system, to consider not only causes and probabilities of certain 
single failure, but also investigate how various failures affect the system in the 
aggregate. Also Markov analysis, unlike the other approaches, allows to analyze self-
recovering systems, since return to operational state is natural for Markov chains. 
Thus, the task of development the Markov analysis tool of complex hardware-
software systems is quite important and relevant. 

2. Context 

2.1 AADL and Error Model Annex 
Architecture Analysis & Design Language (AADL) [3] is a language, that widely 
used for describing models of real-time hardware and software systems. Its features 
include description of both hardware (so-called execution platform) and software 
components of an analyzed system, and various connections between them. The 
models, described in AADL, may be used for documentation, for various kinds of 
analysis and for code generation. 
Error Model Annex [4] is an extension of AADL, that allows to simulate appearance 
and propagation of errors in the system. For each component, a modeller can add a 
description of component’s behavior states, for example, operational and failed. 
Transitions between system states are triggered by randomly occured error events and 
internal errors propagated from other components. An error propagation condition 
may depend on certain behavior state of the component, some error events, or error 
propagated from environment. Each propagated error has its own type, that allows to 
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control what is exactly happened in the system. Also transitions between states can 
be defined implicitly – a state of some component may be a composite state of its 
subcomponents. 
AADL and Error Model Annex together describe not only an architecture, but also 
error behavior of systems. It becomes possible to evaluate such properties of models 
as safety, reliability, the availability of its various states and ability to recover from 
them. 

2.2 MASIW 
MASIW [5] is an open-source framework for designing and analyzing of integrated 
modular avionics systems, that use AADL as a modelling language. 
The project designed as plugins for Eclipse IDE, includes a variety of tools for 
working with AADL and Error Model Annex models. There is a big number of 
different analysis tools, for example, a fault tree analysis tool, but there is no Markov 
analysis tool. 

2.3 Markov analysis 
Any model subjected to Markov analysis must be represented as a Markov chain. A 
Markov chain can be represented in the form of a directed graph with vertices 
containing system states, and edges labeled with intensities of transitions between 
corresponding states. A Markov chain has the property of Markov process – a 
probability of a transition to any state depends only on a current state and a moment 
in time, and previous transitions are unimportant (can be characterized as 
memorylessness). 
Markov models can be divided into models with discrete and continuous time, as well 
as time-homogeneous (also called stationary) and time-inhomogeneous. In time-
homogeneous Markov chains, the intensities of transitions are constant, while in time-
inhomogeneous Markov chains they depend on time. In time-homogeneous Markov 
chains, transitions occur according to the binomial (or fixed) distribution for discrete-
time chains, and according to the Poisson distribution for continuous-time chains. 
To determine the behavior of an analyzing system, it is necessary to specify a system 
of differential equations. The equations follow from the Markov chain. For all 
Markov processes (and a Markov chain, in particular) we have the Kolmogorov-
Chapman equation [6]: 

 𝑃(௧ାௗ௧)(𝑆௝ 𝑆௜⁄ ) = ∑ 𝑃(ௗ௧)(𝑆௞ 𝑆௜⁄ )𝑃(௧)(𝑆௝ 𝑆௞⁄ )௡
௞ୀଵ  (1) 

This equation means that probability of a transition from state 𝑆௝to state 𝑆௜for some 
time 𝑡 + 𝑑𝑡is equal to a sum of probabilities of passes into the target state 𝑆௜through 
all of intermediate states 𝑆௞. 
Consider a time-homogeneous chain with an intensity of the transition between states 
𝑆௜and 𝑆௝equal to 𝜆(𝑆௜ 𝑆௝⁄ ). Then for continuous-time Markov chains, the 
Kolmogorov-Chapman equation implies a system of differential equations 

Karnov A.A., Zelenov S.V. Stochastic Methods for Analysis of Complex Hardware-Software Systems. Trudy ISP 
RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 191-202. 

194 

 
ௗ௉(೟)(ௌೕ ௌ೔⁄ )

ௗ௧
= −∑ 𝜆(𝑆௜ 𝑆௞⁄ )𝑃(௧)(𝑆௝ 𝑆௜⁄ )௡

௞ୀଵ + ∑ 𝜆(𝑆௞ 𝑆௜⁄ )𝑃(௧)(𝑆௝ 𝑆௞⁄ )௡
௞ୀଵ  (2) 

And for discrete-time chains, a system of difference equations 

 
௉(೟శ∆೟)(ௌೕ ௌ೔⁄ )ି௉(೟)(ௌೕ ௌ೔⁄ )

∆௧
= −∑ 𝜆(𝑆௜ 𝑆௞⁄ )𝑃(௧)(𝑆௝ 𝑆௜⁄ )௡

௞ୀଵ + ∑ 𝜆(𝑆௞ 𝑆௜⁄ )𝑃(௧)(𝑆௝ 𝑆௞⁄ )௡
௞ୀଵ  

  (3) 
Denote by 𝑆ଵa certain initial state of the system, and consider equations (2)-(3) in case 
when 𝑆ଵ = 𝑆௝. Denote by 𝑃௜(𝑡)the function 𝑃(௧)(𝑆ଵ 𝑆௜⁄ ). Then, the previous equations 
takes the following form: 

 
ௗ௉೔(௧)

ௗ௧
= −∑ 𝜆(𝑆௜ 𝑆௞⁄ )𝑃௜(𝑡)

௡
௞ୀଵ + ∑ 𝜆(𝑆௞ 𝑆௜⁄ )𝑃௞(𝑡)

௡
௞ୀଵ  (4) 

 
௉೔(௧ା∆௧)ି௉೔(௧)

∆௧
= −∑ 𝜆(𝑆௜ 𝑆௞⁄ )𝑃௜(𝑡)

௡
௞ୀଵ + ∑ 𝜆(𝑆௞ 𝑆௜⁄ )𝑃௞(𝑡)

௡
௞ୀଵ  (5) 

In addition, initial conditions appear: 
 𝑃ଵ(0) = 1, 𝑃௜(0) = 0, 𝑖 = −2, 𝑛 (6) 
Thus, we obtain the Cauchy problem [7]. The solution of this problem is a set of 
probabilistic functions of being a system in a definite state. This is the result of 
Markov analysis. 
In this paper, we consider only the analysis of time-homogeneous Markov chains and 
models, as the most common ones. However, all results can be applied to time-
inhomogeneous models, with the only difference being that intensities of Markov 
chain transitions depend on time, and they need to be stored as formulas, not as 
numbers. 

3. Problem 
The goal of this work is a development and implementation of a Markov analysis tool 
for complex hardware-software systems models within the MASIW framework. The 
tool takes input of some system model and a set of time points. At the output, the 
analyzer provides the probabilities of being the system in each of its possible states at 
moments of time, defined by user. 
The main problem is to create a Markov chain on the basis of the original model. 
First, we need an algorithm that creates a correct Markov chain corresponding to the 
input data. Secondly, the result chain should be of acceptable size, so that the program 
can work for acceptable time in limited memory. 
After a construction of a Markov chain, further action reduces to solving a Cauchy 
problem with a system of linear differential equations. An analytical solution of the 
Cauchy problem is too complicated, resource-intensive, and result is difficult to 
comprehend, so we use numerical methods. 
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4. Solution 

4.1 Markov chain 
The primary task is to translate an AADL model into a Markov chain. In particular, 
it is necessary to find out what to regard as a chain node and what generates transitions 
between system states. 
Obviously, the node must contain the state of the system, which is a combination of 
the states of all system components (the states of the components are described in the 
model as behavior states). However, if we take as a node any of all possible 
combinations, then the number of nodes will be no less than 2௡, where 𝑛is the number 
of system components. Real systems often contain more than 20 components, that, on 
the one hand, are few, but on the other hand, results in size of such Markov chain 
outside available memory. 
We suggest the following solution of this problem. Let us exclude from the chain all 
unreachable states of the system, which, as practice shows, are the vast majority. First, 
some states of the system are unreachable by definition of ananalyzing model. For 
example, the state of some component may completely depend on the states of its 
subcomponents. Accordingly, the component can not be in a failed state, while all its 
subcomponents are in operational states. Second, the failure of some components 
entails an almost immediate failure of others – for example, a breakdown of a 
processor entails a failure of all processes running on it. Thus, the state in which the 
processor is broken, but the processes on it are still working, though reachable in 
theory, at the very moment of the failure, but instantly replaced by another state. 
Thus, we suggest the following approach. We assume that speed of error propagation 
between components is extremely small in comparison with time of system operation 
(which, in practice, is the case – for a unit of time measurement usually takes hour 
and even a day). Let us define a stable state of the sistem as a state, that does not 
change until new error events occur in the system and its components. We consider 
as nodes of designed Markov chain only the stable states of the system. The sets of 
arising events generate transitions between nodes of the chain. 
For the sake of saving memory, we insert only reachable states to the Markov chain, 
and build it dynamically, from the initial state of the system, which is a combination 
of the initial states of the components. In each new node it is necessary to analyze 
transitions from the current state of the system. The state can change for some event 
or combination of events. So, we perform complete search for all possible sets of 
events – either of them can initiate a new transition. The probability of occurrence of 
each set of events is easily calculated, since each event contains information about its 
probability distribution. This is a multiplication product of probabilities of occurrence 
or negation of occurrence of each of the events, since all events are independent. The 
total probability of all sets of events, according to the law of total probability, should 
be equal to 1. 
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The algorithm is completed when all nodes of Markov chain are analyzed, starting 
from the node corresponding to the initial state of the system. 
 markovChain.addNode(initialStateNode) 
 queue.add(initialStateNode) 
 while not queue.isEmpty() do 
  analyzeNode(queue.head()) 
  queue.add(newNodes) 
 end while 
The analysis of each node of Markov chain looks like this: all possible sets of error 
events are searched, for each of them we calculate a stable state of the system into 
which the given set leads, and then a new transition (and, if necessary, a new node) is 
added to the chain. 
 for each errorEventSet in possibleSets do 
  state = currentNode.getState() 
  repeat 
   watchedStates.add(state) 
   state = calculateState(state, errorEventSet) 
  until watchedStates.contains(state) 
  node = markovChain.addNode(state) 
  markovChain.addTransition( 
   currentNode, node, errorEventSet.getProbability()) 
  watchedStates.clear() 
 end for 
In the above algorithm, the state of the system is considered stable if we have already 
reached it before. This correctly handles the case when the state of the system has not 
changed – we have reached the same state as in the previous step. However, in theory, 
in a self-recovering systems, cycling may occur if an event with a failure and an event 
with component recovery occur simultaneously. With this condition, the loop stops, 
but this situation is not handled correctly. One of the main opportunities for further 
improvement of the algorithm is to improve the condition for achieving a stable state 
of the system. 

4.2 Calculation of new states 
In the previous paragraph, a general algorithm for constructing a chain was described, 
omitting the details of calculating new states of the system. To find out exactly how 
the system has changed, it is enough to go through all its components, and see what 
transitions between states are triggered for a given set of events and the current state 
of the system. The triggered transition is immediately applied to the system, and the 
algorithm step is completed. 



Карнов А.А., Зеленов С.В. Стохастические методы анализа комплексных программно-аппаратных систем. 
Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 191-202. 

197 

 for each componentState in systemState do 
  for each compositeState in comp.getCompositeStates() do 
   if checkStateExpression(compositeState.getExpression()) 
   then 
    systemState.applyTransition(compositeState) 
    return 
   end if 
  end for 
  for each transition in comp.getTransitions() do 
   if transition.getSource() == compState 
   and checkErrorCondition(transition.getCondition()) 
   then 
    systemState.applyTransition(transition) 
    return 
   end if 
  end for 
 end for 
The checkStateExpression and checkErrorCondition functions check whether the 
transition condition is met. Such conditions can be interpreted as a logical formula, 
where variables corresponding to components behavior states, error events, and 
propagated errors, have value of true or false, depending on whether the system is in 
this state, whether an error event has occurred or whether an error of the specified 
type has propagated. 
As soon as some component of the system changes its state, it means that we obtain 
a new state of the system, and the step of the algorithm is completed. If none of the 
transitions is triggered, then the system state has not changed, which is noticed by the 
algorithm described in the previous section. 

4.3 Construction and solution of the Cauchy problem 
After construction of a Markov chain, the final stage of the Markov analysis of the 
system is to construct a system of equations and solve the Cauchy problem. As 
mentioned earlier, each node of the Markov chain generates a differential equation 
(4) (or similar difference equation (5)). To save memory, it is not necessary to store 
the system of equations – the equation for any node can be easily constructed 
dynamically, passing through all transitions entering into this node and outgoing from 
it. 
The resulting Cauchy problem can be solved by a numerical method from the Runge-
Kutta [8] family of methods. In the analyzer, two methods are implemented: the Euler 
method, for discrete-time Markov chains, and the fourth-order Runge-Kutta method, 
for continuous-time Markov chains. The type of the chain is determined in advance, 
according to probability distributions of error events. An algorithm for calculating the 
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variation of the function 𝑃௜(𝑡)on each time interval delta t, taking into account the 
dynamic construction of the equation (Euler’s method): 
 for each node in markovChain.getNodes() do 
  i = indexOf(node) 
  res = 0 
  for each transition in node.getInTransitions() do 
   k = indexOf(transition.getNode()) 
   res += transition.getProbability() * pPrev[k] 
  end for 
  for each transition in node.getOurTransitions() do 
   res -= transition.getProbability() * pPrev[i] 
  end for 
  pCur[i] = pPrev[i] + delta t * res 
 end for 
Also, the value of the vector of probability functions P (t) is saved at every time point 
defined by user. As soon as values at each necessary time point are calculated, the 
algorithm is completed. 

4.4 Getting Analysis Results 
Since number of system states in Markov chain can be very large, the result of 
analysis in the form of probabilities of being the system in each of them is practically 
impossible for reading. Considering that each system has its root component, we 
group all system states according to the states of the root component. 
In this case, all the probability functions within the same group are summed up: 
 for each node in chainNodes do 
  i = indexOf(node) 
  state = node.getSystemState().get(rootComp) 
  analysisResult.get(state) += p[i] 
 end for 
After this, for each state of the root component, the probability of being the system in 
a this state at given time points is obtained. This is the desired result of the Markov 
analysis of the system. 

4.5 Algorithm acceleration 
Despite a partial solution of the problem of exponential growth of Markov chain size, 
the running time of full version of the algorithm still grows exponentially — due to a 
thorough search of all possible combinations of error events. Thus, we use some 
heuristics in the final program, accelerating the algorithm. 
First, we limit the search of combinations of events. Since the probability of 
occurrence of one event is usually extremely small, the situation in which several 
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events occur simultaneously is practically impossible. Therefore, a very small 
numerical parameter, limiting the probability of the combination of events under 
consideration, was added to the program. If the probability of occurrence of the set of 
events is less than this parameter, then the effect of the set of events on the system is 
not considered. This solution significantly reduced the running time of the program, 
without much loss of accuracy of the result. 
The second solution relates to system’s ability to self-recovery. In practice, there are 
few examples of self-recovering systems, and, in most cases, even a short-term failure 
of the system itself means fatal consequences. Accordingly, if the analyzed system 
has come to failed state, its further changes are not interesting to us — no matter what 
else can fail in the already failed system. Therefore, we introduce a set of states of the 
root component, that are considered as «absolutely» failed. If some node of Markov 
chain has failed state of the root component, then we do not analyze transitions from 
it. If analyzed system is not self-recovering, the result of the program remains the 
same, but is obtained in much shorter time. 
Both modifications of the program are optional, as they may change final result in 
some cases, but their application reduces the operating time by several orders of 
magnitude. For example, a complete analysis of a system containing 24 components 
revealed 919 states of the Markov chain and took 1 hour. Limiting the frequency of 
the events considered by the number 10ିଷ଴gave a significant gain — the same set of 
states of the Markov chain and the same result of the analysis were obtained in 7 
minutes. Since the system under test was not self-recovering system, the analysis with 
the stop-on-failed option was correct, and got the same result in 10 seconds. Setting 
relevant parameters allows to significantly accelerate work of the analyzer. One of 
the further options for improving the tool can be automatic detection and selection of 
optimizing parameters. 

5. Related works 
Markov analysis of AADL and Error Model Annex models is usually applied to 
systems consisting of only one component. Such algorithms doesnt consider error 
propagation mechanism and composite states, and limited by root component. 
The tool from OSATE [9] framework, created for export AADL model into Markov 
chain model for PRISM [10] toolset, which provide further steps of Markov analysis, 
supports only the first nesting level of the component hierarchyand does not support 
different types of propagated errors. In addition, there were some problems associated 
with the syntactic correctness of the final PRISM model. 

6. Conclusion 
In this paper we present a new Markov analysis tool, and in particular, an algorithm 
for translating AADL and Error Model Annex models into Markov chains. In 
addition, there were added some improvement for accelerating the algorithm, which 
make it possible to effectively use the tool in practice. 
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The presented tool can be further improved in various ways: adding support for time-
inhomogeneous Markov chains, accelerating the work of the algorithm, changing 
some details of algorithm. 
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Аннотация. В данной работе рассматривается марковский анализ моделей комплексных 
программно-аппаратных систем. Инструмент марковского анализа может быть 
использован, в частности, для верификации моделей систем интегральной модульной 
авионики. Во введении перечисляются основные достоинства и недостатки марковского 
анализа. К примеру, марковский анализ, в отличие от других подходов — анализа дерева 
неисправности и анализ алогической схемы, позволяет анализировать модели систем, 
способных к восстановлению. Основным недостатком данного подхода является 
экспоненциальный рост размера моделей в зависимости от числа компонентов в 
анализируемой системе. Это существенно ограничивает возможность применения 
марковского анализа на практике. Другой важной проблемой является создание нового 
алгоритма трансляции исходной модели системы в модель, пригодную  для марковского 
анализа (марковскую цепь), так как существующие решения накладывают 
существенные ограничения на архитектуру анализируемой системы. Далее идет краткое 
описание контекста, в котором инструмент должен работать — язык моделирования 
AADL с библиотекой Error Model Annex, набор инструментов MASIW, а также 
описывается сам метод марковского анализа. В основной части предлагается алгоритм 
трансляции модели системы в марковскую цепь, частично решающий проблему 
экспоненциального роста марковской цепи. Затем следует описание дальнейших шагов, 
а также предлагаются эвристики, позволяющие значительно сократить время работы 
итоговой программы. В работе также рассматриваются существующие инструменты 
марковского анализа и их недостатки. В качестве результата данной работы 
предлагается новый инструмент марковского анализа, который может быть эффективно 
использован на практике. 

Ключевые слова: Марковский анализ; оценка безопасности системы; моделирование 
неисправностей; комплексные программно-аппаратные системы. 
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