Predicate Abstractions Memory Modeling
Method with Separation into Disjoint
Regions

YA. Volkov <arvolkov@inbox.ru>
2 M. Mandrykin <mandrykin@jispras.ru>
' Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. Software verification is a type of activity focused on software quality control and
detection of errors in software. Static verification is verification without the execution of
software source code. Special software — tools for static verification — often work with
program's source code. One of the tools that can be used for static verification is a tool called
CPAchecker. The problem of the current memory model used by the tool is that if a function
returning a pointer to program's memory lacks a body, arbitrary assumptions can be made about
this function return value in the process of verification. Although possible, the assumptions are
often also practically very improbable. Their usage may lead to a false alarm. In this paper we
give an overview of the approach capable of resolving this issue and its formal specification in
terms of path formulas based on the uninterpreted functions used by the tool for memory
modeling. We also present results of benchmarking the corresponding implementation against
existing memory model.
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1. Introduction

Software verification is a type of activity focused on software quality control and
detection of errors in software [1]. Static verification is a verification without the
execution of software source code.
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Special software — tools for static verification — often work with program’s source
code. Depending on the tools used for static verification it is possible to conduct
analysis of the source code to search for errors in program’s behavior.

One of the tools that can be used for static verification is a tool called CPAchecker.
It takes program’s source code as an input, creates a CFA (control-flow automaton)
and uses it to run the analysis. One of the analyses the instrument is capable of is a
reachability analysis. In this paper we consider reachability properties that can be
expressed as checking if the call to an error function is reachable. Its strong side is
that the CPA (configurable program analysis) [2] concept allows to use a composition
of several analyses for program verification. The tandem of Value Analysis and
Predicate Analysis produces good results in terms of verification precision /
verification time ratio.

2. Definitions and notations

We will call a model of program’s memory or just a memory model a strategy of
organization and representation of program’s memory. By region we will refer to the
set of Ivalues with the following restriction: if two Ivalues are taken from two different
regions they necessarily reference disjoint memory locations [3]. For example,
different regions may be safely assigned to the lvalues referring distinct structure
fields under the following conditions:

e the fields do not occur as an argument to the address taking operator (&);

e the fields do not become targets of some pointers by the usage of pointer
type conversion or address arithmetic.
The situation when a program’s error state is reachable due to the imprecisions of
abstraction employed in the analysis is called a false alarm.

3. CPAchecker’s memory model

Existing memory model employed by Predicate Analysis of the CPAchecker tool uses
uninterpreted functions. Each of those functions has only a name and a number of
arguments. If f (x) is an uninterpreted function, @ and b are any of its arguments for
which a = b is true then f'(a) = f (b)[4]. Uninterpreted functions in the CPAchecker
tool are used to establish a correspondence between a memory location and the value
stored at this memory location. Depending on the type of the expression different
uninterpreted functions should be used.

Existing memory model of the CPAchecker tool uses typed regions. This means that
all lvalues of the same type exist in the same region. However, a large number of
lvalues of the same type is present in any big enough program written in the C
programming language. This leads to the addition of a big number of logical
constraints for each event of a pointer’s memory update. The constraints express
checks for potential equality of the updated Ivalue to each memory location in the
region. Those checks allow to determine precisely what memory should also be
updated but noticeably increase the length of path formulas.
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The problem of the current memory model used by the tool is that if a function
returning a pointer to program’s memory lacks a body, arbitrary assumptions can be
made about its return value in the process of verification. In other words, it is
considered possible for this pointer to point at any lvalue in the region. Although
possible, this situation is also practically very improbable. In those cases it is hard to
determine if a path leading to an error label really does or doesn’t exist. One of the
approaches capable of resolving this issue suggests the introduction of smaller regions
that divide a bigger typed region.

4. B&B memory model

4.1 Memory model overview

B&B memory model was proposed by Richard Bornat and had been based on the
work of Rod Burstall [5], [6]. It is used in Frama-C verification tool in Jessie plugin
which is capable of performing verification of the C programs. In its foundation are
assumptions that can introduce regions of smaller sizes instead of having very big one
for a type. These assumptions state that if struct data type fields never occur as
arguments to the address taking operator (&) in program’s source code then those
fields can be placed to separate regions. Otherwise they must belong to the same
region as the normal pointers of the same type.

This memory model has some flaws. It does not take into account that the struct fields
can be accessed through address arithmetic and pointer conversions. It also needs
mentioning that some overhead costs are required for region support. Taking into
account the pros and cons of the model it is possible to say that the B&B memory
model looks promising.

4.2 Formal specification
For ease of specification we will assume the following:

e variables can only be of struct s * types;

e struct s fields can only be of int type;

e struct s has z fields: struct s { int 1, f2, ..., fn; };
Program’s memory location can be represented by an lvalue expression like pointer
dereference. To model changes to the program’s state when assignments to lvalues
arise the CPAchecker tool uses uninterpreted functions [4].
We assume absence of pointer arithmetic and restrict pointer dereferences to the
applications of the arrow operator (p = f;), where p is a pointer to the struct type and
fi 1s one of the struct fields).
Let Y be a set of uninterpreted functions. It consists of the uninterpreted function G
that is used for accessing a memory location in global region, a finite number of
uninterpreted functions F;, where each function F; represents the state of the memory
region corresponding to lvalues of the form b — f;,i = 1,n and the uninterpreted
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function undef ptr with zero arity that models the usage of the program’s functions
returning an unknown pointer.

Let B(e) be an uninterpreted function used for global memory location modeling and

Bi(e), i = 1,n — a finite set of uninterpreted functions used for memory location
modeling in regions corresponding to F; uninterpreted functions. For address
representation it is suggested to use expressions like a, where a is a variable. The
axioms of the memory model (positivity of addresses and their non-intersection
within one region) can be represented as follows:

e a>0;

e B(a) =k, where k is a unique number for each such variable.
The tool uses SSA representation to model the varying state of program variables and
memory regions. In this representation usage of a name splits into usages of its
versions. Each time an assignment happens to a program variable or a memory region
represented by the corresponding variable or uninterpreted function in the path
formula, the version number (index) of that variable or an uninterpreted function
increases.
Let Index : Y — N be a mapping of a set of uninterpreted functions Y to a numerical
set of their indices.
Let A/loc: Y — Addrs be a mapping of a set of uninterpreted functions Y to the set
of subsets of memory locations Addr: Addrs = 24947
We will use a supplementary function mem_upd:

mem_upd(p,f,m'm)= N\ ((p=a)V (@)= fn(a)))

a€Alloc(f)
that defines a check for address equality for all of the lvalues in the same region as
pointer p (locations in the A/loc(f) region are modeled by the uninterpreted function
f, m=Index(f) is a current version of fand m '=m + 1 is a new version).
We define w(s, f;) as a constant offset of a field f; from the base address of struct
type variable s. Because we assume that there is only one structure type struct s in
our programs, w (s, f;) can be made just w(f;).
In B&B memory model implemented on top of CPAchecker’s existing memory
model the operator of a strongest post-condition is defined as SP(op(¢)) = ¢ A
I'(op), where ¢ is a symbolic abstract state and constraints I'(op) are defined by table
1.

4.3 Example

The following program will be considered correct if we use either of the memory
models. I" constraints in terms of B&B memory model for the program are shown in
table 2. Path formula can be made as a conjunction of all formulas in I" column of the
table 2. It is unsat in terms of either of the memory models. This means that the tool
cannot go by this path (i.e. won’t consider it as a potential error trace candidate).
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struct s { int f1, f2; };

struct s * pl;
struct s * p2;
pl = alloc();
p2 = alloc();
pl -> f1 = 6;
p2 -> f2 = 5;

assume(pl -> fl == p2 -> f2);

Table 1. T’ constraints creation rules
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Alloc(FY),i =
1,n

Operation  |Index Alloc Base [ constraints
(op) address
index
kl
[Variable [No changes 4’ - new k' - p=A'NA’>0NBA’) =k’
allocation on variable, new
stack 4lloc’(G) = [index
struct s * p; 4’ U
Alloc(G)
Heap variable|l’ - new index for)A’, A; - new [k’ ki - |Gy (p) =A"AA">0AB(A")
allocation G, variables, ew |=k’
p=alloc() |/ =Index(G), |Alloc’(G) = [indices,|n mem_upd(p,G,11")
Index’ = Index \ (4 U Alloc(Q)li = LA\ __((Gy(p)+w(f;)) =A; A
{G-I}U{G~1"} HUlloc’(F') = 41> OA Bi(A) =k} )
A} U

p=undef ptr()

I - new index for
G,

| = Index(G),

m' - new index
for undef ptr,

i =
Index(undef ptr),
Index’ = Index \
({G - 1}u

{undef ptr
—m})U

[No changes

(G-

No
changes

G, (p) = undef _ptry, A
mem_upd(p,G,L1l")
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{undef ptr -
m'}

pofi=e |m'- new index [No changes |No F;I(Gz(P) + w(f)) =T(e)
for F*, ”i’: changes|, mem_upd (G,(p) +
Index(F"), w(f;), F, m',m), where
ndex [ = Index(G) and T'(e) can be
= I ndex \ computed using the
{F' ->m}uU following rules:
{Ft > m'} [(const) : const;
F(p2 - f)) : F(G(p2) +
w(f})), where k=Index(F’), |
= Index(G);
F(el op eZ): op € {‘+’5 ‘_,9
G*,’ 6\’}:
['(e1) op I'(e,).
assume(p)  [No changes [No changes [No ['(p) for predicate p can be
changesfcomputed as following:

[(const) : const,

['(s) : G,(s), where [ =
ndex(G);

[(s > f;) : FL(Gy(s) +
w(f;)), where

m = Index(F'), | = Index(G);
['(pl ==p2) : T(pl) =T(p2),
['(pl <p2):T(pl)<T(p2);
['(pl <=p2):T(pl) < T(p2);
[(p! || p2): T(p1) v T(p2);
['(pl && p2) : T(pl) AT(p2);

r(1p) : =[(p).
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Table 2. Example build of path formula for the correct program

Path Index |Alloc k' |T
instruction
struct s * pl; [(G-1, [Alloc(G)={A,} 1 [pl=4,AA>0AB(A4,)=1
Fl -1,
F2 -1}
struct s * p2;  [{Go1, [Alloc(G)={A,, Ay} 2 |p2=4,ANA,>0AB(A,)=2
F1 -1,
F2 -1}
pl =alloc(); [{G-2, [Alloc(G)={A,, Ay, A3}[3.4,5 G, (p1) = A5 A As> 0 A B(As)
Fi =1, [Alloc(FY) = {A} =3
F* =1} dlloc(F?) = {Ag) A (G (pHo(fy) = Ay A A,
>0 A B(A,) =4
A (G (pDtw(fz)) = As A As
>0AB(Ag) =5
p2 =alloc(); [{G—3, [Alloc(G)={A;, Ay,  16,7.8 G3(p2) = Ag A Ag> 0 A B(Ag)
F1 51, |45,44) = 6
F2 =1} Alloc(F*) = {A,, Ay} A (Gs(p2)+w(fy)) = A; A A,
Alloc(F?) = {As,Ag} >0 AB(A;) =7
A (G3(P2)tw(fz)) = Ag A Ag
>0 A B(Ag) = 8
pl-fl=6; [{G—3, [Alloc(G)={A;, As, 8 |F; (Gs(p)+w(f1)) =6
F1 —2,143,46} A mem_upd(Gs(pl)y+w(fy),
F2 =1} Alloc(FY) = {A,, A;} F1.2.1)
Alloc(F?) = {As,Ag}
p2—-f2=35; [{G—-3, [Alloc(G)={A;, A;, 8 |F3(G:(p2)tw(fy)) =6
F1 -2, 43,46} A mem_upd(Gs(p2)tw(f2),
F2 =2} Alloc(F') = {A,, A;} F22.1)
Alloc(F?) = {As,Ag}
1G-3, | Alloc(G)={A4, Ay, 8 |Fr(Gs(pDtw(f1) =
assume(p1-f1F! =2, 43,44} F7 (G3(p2)tw(f2))

—p2om) [P 2 dlloctF) = 14,0 45}
Alloc(F?) = {As,Ag}

Why the conjunction is unsat?

1) In the existing memory model memory allocated for pointers p1 and p2 cannot
intersect because it was allocated using the known alloc() function (the
corresponding path formula is not given).

2) Inthe given I' constraints for this path (using the B&B model) the following
209

contradicting elements are present:
o F(G:(p1) + 0(f1) = F{(G3(p2) + w(f2));
o F(Gs(pD) + 0(f1) =5;
o F7(G:(p2) + w(f2)) =6.
Let’s take a look at the example program below. In the program’s source code there
are calls to the function undef ptr() that returns an unknown pointer. The pointer p2
is initialized using this function. I" constraints in terms of B&B memory model for

the program are shown in table 3. Path formula can be made as conjunction of all
formulas in I" column of the table 3.

void * undef ptr();
struct s { int f1, f2; };
struct s * pl;

struct s * p2;

pl = alloc();
p2 = undef ptr();
pl -> f1 = 6;
p2 -> f2 = 5;

assume(pl -> fl == p2 -> f2);

In B&B memory model p1 — f1 and p2 — f2 exist in the separate memory regions.
In T" constraints for this path the same contradicting elements as for the previous
example are present. Thus, the update of one of them wouldn’t affect the other one.
Because of that the result of verification would be that the error state is unreachable
(path formula is still unsat).

However, in the existing memory model fields f1 and f2 of struct s exist in the same
memory region and it uses only one uninterpreted function for them (see table 2 in
[4]). Memory for their base pointers pl and p2 was allocated using known alloc()
function and function undef ptr() returning unknown pointer respectively. It cannot
be confirmed that an update to a field f2 of the p2 wouldn’t affect the access to the
f1 struct field of p1. In the formula the location for field f2 of the p2 is (G3(p2) +
w(f2)) which is undef_ptr; + w(f2). Locations (G3(pl) + w(f1)) and
(G3(p2) + w(f2)) exist in the same region and may be equal. Thus the formula is
satisfiable. It means that the result of verification with existing memory model will
be a reachable path to the program’s error state.

Usually such situations in practice are false alarms because different fields of different
structures do not normally intersect. Thus, the assumptions related to this behavior in
the existing memory model aren’t really incorrect but they are quite improbable in
practice. Usage of the B&B memory model will be able to reduce the number of false
alarms caused by these assumptions (continued in section 6).

210



Boakos A.P., Manzapsikua M.Y. MeToj MOIeIMPOBAaHHUS ITAMSATH B IPEIUKAThl A0CTPAKIMAX € pa3/ie]IeHUeM Ha
Herepecekatonmecs oonactu. Tpyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 203-216.

Table 3. Example build of path formula for the program with unknown memory function

Path instruction|/ndex Alloc k' |T
structs * pl;  [{G-1, Alloc(G) ={A,} 1 |[pl=A; ANA;>0AB(4y)
Fl -1, =1
F2 -1,
undef ptr—1}
struct s * p2;  [{G—1, Alloc(G) ={A,, A} | 2 |p2=4, A A,>0 A B(4,)
F1 o1, )
F2 -1,
undef ptr—1}
pl =alloc(); |[{G-2, Alloc(G) ={A4, 4,, [3.45[G,(p1)=A3 A A3>0 A
F1 S, 4, B(A;) =3
2 -l Alloc(F") = {A4} A (G (Pt w(fy)) = Ay
Alloc(F?) = {Ag} NAy>0AB(Ay) =4
undef_ptr—1} A (G2 (p1)tw(f2)) = As
p2=undef ptr();|{G—3, Alloc(G) ={A,, A5, | 5 |G5(p2)=undef_ptr,
F! -1, A3} A mem_upd(p2,G.,3,2)
F? -1, Alloc(FY) = {A,}
Alloc(F?) = {Ag}
undef ptr—2}
pl-fl=6; [{G-3, Alloc(G) ={Ay, Az, | 5 |F3(Gs(pD+w(f1) =6
Fl _>23 A3} A
F? -1, Alloc(FY) = {A,} mem_upd(G;(pl)y+w(fy),
Alloc(F?) = {As} F1.2,1)
undef ptr—2}
p2-f2=5;  [{G=3, Alloc(G) ={Ay, Ay, | 5 |FF(Gz(p2)tw(f2)) =6
Fl _>27 A3} A
F? -2, Alloc(FY) = {A,} mem_upd(Gs(p2)+w(fs),
Alloc(F?) = {As)} F?,2,1)
undef ptr—2}
assume(pl-11 [{G-3, Alloc(G) ={A;, A5, | 5 |FHGs3(p)+w(f)) =
=p2-f2) |F' -2, A3} F3 (Gs(p2)+o(f2)
F? -2, Alloc(FY) = {A,}
Alloc(F?) = {Ag)
undef ptr—2}
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5. Implementation notes

The creation of memory regions is an automated process. In CPAchecker verification
tool CFA (control-flow automaton) is used as an inner representation of the program.
It is sufficient to go through it and find in it all of the struct field accesses. This allows
to distinguish those fields that don’t have their address taken somewhere in the
program.

In the implementation we do not take into consideration the possibility of field
accesses through pointer arithmetic and through the usage of pointer conversions
because of the high improbability of such field accesses in program’s source code.

6. Experiments

To determine the efficiency of B&B memory model implementation in comparison
to existing memory model of the CPAchecker tool a number of launches were
performed on the predefined sets of Linux kernel modules. To use the implemented
memory model one must have:

e CPAchecker verification tool with revision number 23271 or higher from
the branch trunk;

e option cpa.predicate.useMemoryRegions should be set to ’true’.

e The following experiments were made using the revision trunk:23271 of the
tool.

6.1 False alarm set

The review of error traces obtained during the verification of Linux kernel 3.14
allowed to determine situations when reachability of error state was present due to
updates to same-typed pointers’ memory. This set consists of those 26 kernel modules
that caused false alarms due to the updates to pointer’s memory. The goal of this
experiment was to find out what effect the usage of B&B memory model will have
on the tools precision. Tables 4 and 5 hold information about changes of the tool’s
verdicts.

Table 4. B&B applicability

B&B could help B&B could not help
B&B helped 10 0
[B&B did not help 0 16

Table 5. Verdict changes

False alarm — Safe False alarm — Unsafe False alarm — False alarm*

3 5 2

* - different error trace and cause of Unsafe
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6.2 Linux 4.2-rc1 kernel modules

A set of Linux kernel drives (version 4.2-rc1) was selected to study the efficiency of
B&B memory model implementation in comparison to the existing memory model of
the CPAchecker tool.
The launch was performed for rule that checks correctness of functions working with
usb get *andusb put * functions of usb-system. Launch results can be found
in tables 6, 7.
Launch configuration:

e time limit — 15 minutes;

e memory limit— 15 Gb;

e number of CPU cores — 4;
The differences in the regions the models have led to the difference in program’s
paths that are covered by the tool. This explains Unsafe — Unknown, Unknown —
Safe and Unknown — Unsafe transitions, where Safe means that program’s error state
is unreachable, Unsafe — error state is reachable, Unknown — timeout or runtime error.
This experiment’s results show that the improvement to the tool’s precision is present
while the verification speed remains competitive.

Table 6. Linux 4.2-rcl statistics

Existing model B&B
Verification time 35.8 hours 35.3 hours
Safe 4245 4241
Unsafe 69 68
[Unknown 161 166
Table 7. Transitions
[Existing model \ B&B model [Safe [Unsafe [Unknown
Safe 4240 0 5
Unsafe 0 67 2
[Unknown 1 1 159

6.3 SV-COMP’17 DeviceDrivers64

This set contains files from the DeviceDrivers64 set of the international competition
on software verification SV-COMP’17. It consists of 2795 modules of different Linux
kernel versions. Launch results can be found in tables 8, 9, 10.

Launch configuration:

e time limit — 15 minutes;
e memory limit— 15 Gb;
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e number of CPU cores — 4;
Several of the transitions from the incorrect results can be explained by the difference
in models’ choice of pointer’s may-aliases. The same modules were present in the
earlier mentioned False alarm set. Several transitions to Unknown can be explained
by the additional overhead costs required for B&B usage to the verification tasks on
the verge of timeout.

Table 8. DeviceDrivers64 statistics

[Memory models Existing B&B
Total number of files 2795 2795
Correct results 1791 1780
Error state unreachable 1524 1522
Error state reachable 267 258
Incorrect results 7 5
Missed errors 4 4
False alarms 3 1
Unknown 097 1010
Table 9. Time for DeviceDrivers64 set
[Memory models Existing B&B
Total time 143.6 hours 143.1 hours
Time for correct results 14.9 hours 14.1 hours
SMT solver time 10500 sec (2.9 hours) [12400 sec (3.4 hours)
SMT solver time for correct results 660 sec 605 sec

Table 10. Transitions

[Existing model \ B&B model |[Correct results  |Incorrect results [Unknown

Correct results 1775 0 16
Incorrect results 2 5 0
[Unknown 3 0 994

7. Conclusion

This paper proposes the specification of B&B memory model and its region-based
reasoning in terms of uninterpreted functions. Its implementation on top of existing
memory model of the CPAchecker verification tool provides better verification
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precision while the verification speed remains competitive. The implementation was
included in the official repository of the CPAchecker static verification tool.
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AnHoTamms. Bepuduxamus mnporpamMMmHOTO oOecmedeHHss — BHI AESTENIHHOCTH,
HalpapJCHHBII Ha KOHTPOJIb KayecTBa IPOTPaMMHOT0 00ecriedeHus] 1 0OHAPYKEHUs OLIMOOK
B HeMm. Craruyeckas Bepu(HKauuss - 3TO OJIMH M3 CHOCOOOB BepU(UKALMU, KOTOPBIH
HPOM3BOJMTCSA 0€3 BBINOJIHEHHS HCXOJHOTO Koja Tporpammsbl. Jlnst  craTtudeckon
BepUUKALUH HCHOJB3YETCA CIELMATIbHOE INPOrpaMMHOE OOECIEUCHHE: HHCTPYMEHTBI
CTaTHYECKO BepH(UKanuy, KOTOpPHIE YacTo padOTalOT ¢ HCXOAHBIM KOIOM IIPOTPaMMEL
OmHuM W3 TakuX HHCTPYMEHTOB SBIsIeTcs MHCTpyMeHT mon HasBanmeMm CPAchecker.
IIpoGrnema ero Texymed MoAenu MaMsATH 3aKII0YAeTCSl B TOM, YTO IPH BCTpede (YHKIUH,
BO3BpAIIAIOIeH yKa3aTeldb Ha 00JacTh NMaMATH, Y KOTOPOH OTCYTCTBYET TeJo, B IIpolecce
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BepU(UKAIIMK O €€ BO3BPAIAeMOM 3HAYCHHH MOTYT OBITH CIENaHbl IIPOM3BOJIBHEIE
npeanonoxkenus. HecMoTpst Ha TO, YTO OHH TEOPETHYECKH IOIYCTHMBI, BEPOSITHOCTb HX
BEINIOJIHEHNSI Ha MPAKTUKE OYeHb HU3Ka. Vcronb3oBaHHWE A3THX MPEIIIOJIONKEHHH MOXKET
HPHUBECTH K JIOKHOMY INPEAYNPEKICHHUIO B Ka4ecTBE pe3yibTaTa Bepuukauuu. B nanuon
CTaThe MBI [eslaeM 0030p Ha OJUH U3 MOIXO0J0B, O1aroaapst KOTOPOMY MOXKHO N30aBUTHCA OT
TaKoM NmpoOJIeMsl, a TaKkke npeiaraeM GopMaIbHOE OMMCAHUE JaHHOTO I0JIX0/1a B TEPMHUHAX
dopMmyn myTeil, copepKallMX HEHMHTEpNpeTHpyeMble (YHKINHM, KOTOpbIE HHCTPYMEHT
HCTIONB3YET IS MOAENMPOBAHMS IAaMSTH NPOrpaMMBL. Taroke MBI IPHBOJUM PE3yIbTaThl
CPaBHUTEJIBHOTO aHanmm3a dS(QQEKTHBHOCTH MPEATIOKCHHON peal3aliiil OTHOCUTEIHHO
CYLLECTBYIOLIEH MOJICIIH aMATH.
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