

217

Static Verification of Linux Kernel
Configurations1

1 S.V. Kozin <kozyyy@yandex.ru>
2 V.S. Mutilin <mutilin@ispras.ru>

1 National Research University Higher School of Economics,
20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. The Linux kernel is often used as a real world case study to demonstrate novel
software product line engineering research methods. It is one of the most sophisticated
programs nowadays. To provide the most safe experience of building of Linux product line
variants it is necessary to analyse Kconfig file as well as source code. Ten of thousands of
variable statements and options even by the standards of modern software development.
Verification researchers offered lots of solutions for this problem. Standard procedures of code
verification are not acceptable here due to time of execution and coverage of all configurations.
We offer to check the operating system with special wrapper for tools analyzing built code and
configuration file connected with coverage metric. Such a bundle is able to provide efficient
tool for calculating all valid configurations for predetermined set of code and Kconfig. Metric
can be used for improving existing analysis tools as well as decision of choice the right
configuration. Our main goal is to contribute to a better understanding of possible defects and
offer fast and safe solution to improve the validity of evaluations based on Linux. This solution
will be described as a program with instruction for inner architecture implementation.

Keywords: Software Product Lines, Linux, Kconfig, Preprocessor

DOI: 10.15514/ISPRAS-2017-29(4)-14

For citation: Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 217-230. DOI: 10.15514/ISPRAS-
2017-29(4)-14

1. Introduction
Nowadays, software is used to solve increasingly important and complex tasks, due
to this fact the complexity of software architectures is also constantly growing. With

1 The work is supported by RFBR grant N16-01-00352

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

218

the increasing complexity of programs, the complexity of development, analysis and
maintenance arises. There are many methods that allow you to reduce the costs of
supporting the software life cycle. One such method is the creation of variable
systems (or family of systems, software product families, software product lines). The
superiority over the usual development method is that systems are manufactured with
the condition of multiple elements used for several systems with a similar set of
functions, taking into account a specific target audience of users. At the same time, a
complex and widely known representation of variable software is the Linux operating
system [1-5].
In the development of variable systems, a variability model and a variation
mechanism play a fundamental role. The variability model specifies the space of
possible variants of this family of systems. Usually it is determined by a set of features
or configuration parameters, by the sets of their possible values and constraints on
possible combinations of these values, each variant of the system corresponds to a
certain set of values of all features. The variation mechanism provides the ability to
build all possible system variants from a limited set of created and followed artifacts.
In Linux, the variability model and its relationship to the variation mechanism is built
on the basis of Kconfig files, Makefile files and additional scripts. Kconfig describes
all possible features, as well as their relationship with each other in a special language.
Then on the basis of Kconfig, the configuration file .config is defined, which
describes the version of the system. It consists of a set of configuration variables
described in Kconfig and values that satisfy the constraints of Kconfig. During kernel
assembly, the values of variables specified in .config are passed to the code as
constants for the preprocessor and to Makefiles, which will be used in the variation
mechanism. Makefiles contain information about objects in kernel: what files are
included and which mode of compilation will be used [5].
In the field of operating systems (hereinafter the operating system we mean the kernel
and the underlying OS libraries, providing the interfaces for work with computing
resources and hardware), a mechanism of conditional compilation of C / C ++
languages is widely used as a mechanism for variability of the mixed type (based on
macros #ifdef, #if, else #else). Blocks that are surrounded with variability mechanism
macros, are called variable blocks. It allows you to compose code at the build stage
that combines various variables specified by a set of characteristic values that are
conditional compilation parameters in this case (defined by the #define and #undef
macros, as well as preprocessor setup parameters). The expression after macros is
called block precondition, if configuration turns it into ‘true’, block gets compiled [5].
The complexity of variability models for modern operating systems is very high, for
example, the Linux kernel version 2.6.32 has 6319 characteristics, more than 10,000
constraints that can be used up to 22 individual characteristics, with the majority of
characteristics depending on at least 4 others, and the maximum depth of the
dependency tree is 8 [6]. This complexity causes a large number of errors, primarily
due to the difficulty of taking into account all the factors that a developer of a separate
code element should do. To identify and cope with these errors, it is necessary to use

Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4,
2017 г., стр. 217-230

219

specialized techniques of analysis and verification. Complexity of analysis that is
typical for systems with such a variability mechanism arise because of the huge size
of the possible variants space (which makes it completely unrealistic to check them
all). Due to using of conditional compilation, each fragment does not have to be a
separate component with a certain behavior that can be analyzed separately from the
rest of the code, usually such fragments are just insertions into the common code, and
can only be checked in certain combinations with each other. The need to solve these
problems imposes special requirements on the tools and analysis methods used for
complex variable operating systems and system software in general. These
requirements are specific for analysis and verification - the methods used to create
such systems, by themselves, do not facilitate their analysis [7, 8]. The main goal of
this work is to propose a method capable of coping with the verification of the Linux
OS taking into account the variability, to give acceptable accuracy of verification and
speed of execution comparable to the verification of common programs.
An errors analysis of such complex systems as Linux can be done with a lot of
different tools. The most convenient of them are static analyzers and static verifiers.
Static code analysis is the analysis of software produced (as opposed to dynamic
analysis) without real execution of the programs under investigation. Existing static
analyzers (such as Coverity [9] or Svace [10]) and static verifiers (such as BLAST,
CPAchecker [11]) are only designed to work with the code already compiled.
Accurate analysis requires pre-assembling of a specific configuration, and only after
that start of the actual analysis. As a result, the total inspection time becomes
unacceptably large. There is a class of tools that are focused on analysis of a set of
possible configurations, they do not split the phase of building configurations and
code analysis. As the example of such tools we can take a look at TypeChef and
Undertaker. These tools are designed to solve special problems in the sphere of
variability. Undertaker is looking for a "dead code" - such a problems when different
configurations give the same product, besides it has a lot of built-in helper modules
to provide main task, and one more function - assembling the minimal Linux kernels
for individual use cases. TypeChef is looking for linking and compile errors with a
variability-aware method. It is important to say, that TypeChef can not find difficult
problems in code like complex static analysers. Suggested in this paper tool should
analyze code deeply like BLAST or CPAchecker and, on the other hand, should do it
in variability-aware way without all-configuration brute forcing. For this task we
suggest to use CPAchecker due to its outstanding abilities in the error findings,
despite CPAchecker’s expenditure of time [11]. The maximum reduction in
verification time should be achieved through the optimal selection of configurations
that will be directed to the input of the static analyzer.

2. Configuration Set Selection
The problem of selecting configurations can be considered as a splitting of the
configuration space into equivalence classes. Each of the selected configurations will
belong to one of the classes. To split the configuration space into classes, it is

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

220

suggested to use the MC/DC test coverage criterion. The advantage of this choice is
that it allows you to significantly reduce the number of classes, even for large software
systems. In addition, methods of analysis/construction of configurations for
preprocessor directives are similar to methods for test data generation for coverage of
programs in programming language, where the MC/DC criterion has proven itself
well. If we take a look at standard usage of MC/DC for code coverage, we can find
out that conditionals in usual programming language has the same structure as
conditional compilation directives, the difference is in compilation (conditional
compiling directives will not compile code under the block if condition is not true,
which is the same as not giving control to code inside usual conditionals.
There are 2 basic notions in MC/DC: decision and condition. Decision is a
propositional formula which consists of conditions. If it is true, then control will be
given to block with such decision (in the case of preprocessor - code will be
compiled). Otherwise, control will not be given to this block (code will not be
compiled). Condition is a logical part of decision which connects to other conditions
with logical functions.
A set is considered to reach 100% coverage by this metric, if:

1. Each decision takes every possible outcome.

2. Each condition in a decision takes every possible outcome.

3. Each condition in a decision is shown to independently affect the outcome
of the decision.

In other words, in the full test, in accordance with the MC/DC coverage criterion, it
should be demonstrated that every condition that can influence the resulting value of
the decision that includes it actually changes its value regardless of the other
conditions.
Example:
Some module of Linux has variable block inside. For example, consider a decision:
A && B || C; where A, B, C are some boolean constraints of Kconfig.
The decision is applicable for variable block (Fig. 1).

#if (A && B || C)
 …
#endif

Fig. 1. Example of variable block

We can extract the conditions out of the decision: A, B, C.
That means that we have to build such table for this variable block (Table 1).

Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4,
2017 г., стр. 217-230

221

Table 1. Truth table for variable block in Fig. 1

A B C Decision
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Now we will find those pairs of conditions values where the change of one of them
affects on decision. For each condition we have to get only one pair, and then choose
minimal amount of them to cover all conditions. This will satisfy third MC/DC point.
Pairs will be (Table 2)

Table 2. MC/DC coverage table

A B C Decision A B C
0 0 0 0 C1
0 0 1 1 C1
0 1 0 0 A1 C2
0 1 1 1 C2
1 0 0 0 B1 C3
1 0 1 1 C3
1 1 0 1 A1 B1
1 1 1 1

According to table we will test only pairs that are marked as A1, B1 and C3 or C2;
These 2 are minimal sets for MC/DC coverage.
We can notice that from 8 possible combinations, we can use only 4 to get full
coverage according to MC/DC method (0-1-0, 0-1-1,1-0-0,1-1-0).
In general, the MC / DC metric allows 2n different situations to be used instead of n2
condition combinations.[14]

3. Kernel Check Stages
For each of the found configurations, you should run a kernel verification. The
program will scan the kernel in 6 stages: configuration, search for a "dead code",
preprocessing, compiling, linking, searching for run-time errors. It is also worth
noting that we will look for not only errors, but also configuration defects. Defects -
is a broader concept, and it includes not only system errors, but also possible errors
of the kernel without processing the interrupt.

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

222

Description of the stages:
A. Search for a “dead code”.

A "dead" code is such a code in which control is not transferred under any
circumstances. This code contributes to a common configuration error when
two different configurations produce the same product at the output. This
problem can be solved using the built-in tools of the Undertaker.

B. Configurations.
At the time of build, Linux itself checks the configuration file, but it's worth
checking it for recursive dependencies and non-existent variables in the
code, but existing in Kconfig (and vice versa).

C. Preprocessing.
Preprocessing is performed just before compilation and at this stage we will
get the code that will be compiled into the final version of the program. Most
of errors at this stage can find by a preprocessor. It remains for us to inform
the user of a possible conflict of names if we see duplicate names of
preprocessor variables and their redefinition, because they have one nominal
space and the developer may not notice the problem of overriding.

D. Compilation.
Compilation is complete on the compiler side. Here there are such errors as:
detection of an undeclared variable / function, missing punctuation in the
code, etc.

E. Linking.
As well as compilation is completely redirected to the linker. The linker finds
errors in missing libraries or files.

F. Execution Errors.
The most difficult part of the test is using the LDV and CPAchecker tools.
LDV assigns labels to the code of the program according to the preset rules,
while CPAchecker searches for them and builds accessibility graphs to them
so we can see how a label is achieved.

4. Configuration Set Selection
To solve this task we suppose the workflow for a program called OStap (Fig. 2). This
program will find all variable blocks, get all the propositional formulas for entering
each of the variable blocks. After that program will extract all conditions from those
formulas and will use MC/DC metric to get all necessary configurations that will be
checked with static verifier and dead code detector to perform verification stages A-
F.

Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4,
2017 г., стр. 217-230

223

Fig. 2. OStap workflow.

4.1 Feature model extraction
First of all, we transform Kconfig files using Kconfigdump module of Undertaker
to get feature model of Linux kernel. Feature model is splitted by architectures sets
of formulas. All dependencies implemented in Kconfig file are represented in a dump
as a set of logical formulas. So it is possible to get full precondition for each feature
just looking at line with it’s name in model file. For example: if we have to turn on
option A to turn on option B there will be …&&A addition to any decision where
config B is have to be turned on.

4.2 Block precondition extraction

4.2.1. Coarse block precondition extraction

Secondary, we need to get all variable blocks in the given code, which is a module or
a set of modules that consists of different .c files. These modules can be compiled
according to Makefiles, where modules are marked as compiled, compiled as LKM,
non-compiled. This mechanism of variability (Kbuild variability) in Linux is made
for modules and helps to organize builds. Due to the fact, that another variability
mechanism in Linux uses preprocessors we can find all #ifdef, #if, #else, #ifndef
blocks to be sure that we have found all the variable blocks in the given code. This

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

224

may be done using standard tools of most of popular operating systems or using
programming language tools for work with file system.
When we have all necessary blocks and their positions in the files we can get
propositional formulas using Undertaker[13] tool for them. As a result of the
undertaker infrastructure we can easily calculate preconditions for preprocessor
blocks in a file, just by specifying the file and line number. If a configuration model
is loaded, it will also fetch all interesting items from the model. Say you want to have
the block precondition for line 359 and line 370 in init/main.c.
Then for each block we use Undertaker’s option -blockpc to get blocks precondition
based on dumped feature model and code. This precondition is a decision in MC/DC
metric theory. It is also necessary to say that later we will use SMT-solver to work
with MC/DC metrics, so we patched Undertaker for providing output in a SMT-lib
way (Polish notation). C expressions with operands, are not able to be converted due
to architecture of undertaker, such code may be marked with special symbols to be
changed in the future.

$ undertaker –j blockpc init/main.c:359
init/main.c:370
I: Block B20 | Defect: no | Global: 0
B20
&&
(B18 <-> ! CONFIG_SMP)
&& (B20 <-> (B18) && CONFIG_X86_LOCAL_APIC)
&& (B22 <-> (B18) && (! (B20)))
&& (B25 <-> (! (B18)))

I: Block B25 | Defect: no | Global: 0
B25
&&
(B18 <-> ! CONFIG_SMP)
&& (B20 <-> (B18) && CONFIG_X86_LOCAL_APIC)
&& (B22 <-> (B18) && (! (B20)))
&& (B25 <-> (! (B18)))

Fig. 3. Example of usual Undertaker output without model.

$ undertaker -j blockpc -m
models/x86.model init/main.c:370
I: loaded rsf model for x86
I: Using x86 as primary model
I: Block B25 | Defect: no | Global: 0
B25
&&
(B18 <-> ! CONFIG_SMP)
&& (B20 <-> (B18) && CONFIG_X86_LOCAL_APIC)

Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4,
2017 г., стр. 217-230

225

&& (B22 <-> (B18) && (! (B20)))
&& (B25 <-> (! (B18)))

&&
(CONFIG_X86_32 -> ((!CONFIG_64BIT)))
&&
(CONFIG_X86_32_NON_STANDARD -> ((CONFIG_X86_32 &&
CONFIG_SMP && CONFIG_X86_EXTENDED_PLATFORM)))
&&
(CONFIG_X86_64 -> ((CONFIG_64BIT)))
&&
(CONFIG_X86_EXTENDED_PLATFORM -> ((CONFIG_X86_64)
&& (CONFIG_X86_32)))
&&
(CONFIG_X86_LOCAL_APIC -> ((CONFIG_X86_64 ||
CONFIG_SMP || CONFIG_X86_32_NON_STANDARD ||
CONFIG_X86_UP_APIC) && (CONFIG_X86_64 ||
CONFIG_SMP || CONFIG_X86_32_NON_STANDARD ||
CONFIG_X86_UP_APIC)))
&&
(CONFIG_X86_UP_APIC -> ((CONFIG_X86_32 &&
!CONFIG_SMP && !CONFIG_X86_32_NON_STANDARD)))

Fig. 4. Example of usual Undertaker output with model.

4.2.2 Detailed block precondition extraction
When we have formula by Undertaker, we have to change all the marked code to
prefix view, in other words: to represent decision in SMT-lib way. Due to the fact that
such code will be in a usual C representation, we can use any C parser that is able to
build expression tree to rebuild the string. For example we can use Pycparser [15].
Pycparser can parse C code and represent it as ast-tree. Ast-tree is an expression tree
with all operators of C language. Running through the tree, we can rewrite any C
expression from infix to prefix view. To do this thing we need to apply this algorithm:
Algorithm prefix (tree)
 if (tree not empty)
 print (tree token)
 prefix (tree left subtree)
 prefix (tree right subtree)
 end if
end prefix

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

226

4.3 MC/DC driven configuration generation
Now we have ready-to-use prefix formula that is the same as ‘decision’ term in
MC/DC metrics so it is time to start extracting conditions from a decision. To pass
this stage we need to get all the single variables inside unary operator or without unary
operator. Those variables will be the same as conditions.
When we have all conditions and decision for a variable block, we need to build a
truth table for conditions. For example, we extracted 3 conditions: a > 0, b == true, a
< 0, and out decision is (a > 0) && (b == true) || (a < 0). We look over all of their
combinations that we got from truth table like it was described in II chapter (Table
3).

Table 3. Truth table without decision for (a > 0) && (b == true) || (a < 0).

Line A > 0 B = true A < 0 decision
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1

7 1 1 0
8 1 1 1

Each line of the table reflects set of equalities related to column and value. For our
example line 1 means: a > 0 = false, b == true = false, a < 0 == false, whereas line 6
means: a > 0 = true, b == true = false, a < 0 == true;
To calculate decision column we need to put such equalities and full decision formula
into SMT-solver, so it calculates possible values of variables through equalities and
then put it into decision formula to find solution. In our example in case of a > 0 =
true and a < 0 = true SMT-solver will return error, so these sets of variables will not
be used in future (Table 4).

Table 4. Truth table with decision for (a > 0) && (b == true) || (a < 0).

Line A > 0 B = true A < 0 decision
1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 1
5 1 0 0 0
6 1 0 1 Error

7 1 1 0 1
8 1 1 1 Error

Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4,
2017 г., стр. 217-230

227

In classical MC/DC theory we have to say that this example can not be covered by
MC/DC due to the fact that 6 and 8 line gave us impossible conditions to resolve, but
in a real case adaptation we can say that we covered all of possible conditions [14].
When the table is ready, we can find influencing variables, like it was described in
chapter II (Table 5).

Table 5. MC/DC coverage table for (a > 0) && (b == true) || (a < 0).

Line A > 0 B = true A < 0 decision A > 0 B
==true

A < 0

1 0 0 0 0

 1

2 0 0 1 1 1
3 0 1 0 0 2
4 0 1 1 1 2
5 1 0 0 0 3
6 1 0 1 Error

7 1 1 0 1 3
8 1 1 1 Error

For MC/DC coverage we need A/B and C pairs to check. That means that we have to
extract a and b values related to those lines. These values form configurations that we
will check with help of verifier. Each line for each configuration.

4.4 Verification
Finally, we have got necessary configurations to get 100% coverage using MC/DC
metrics. Now we will push these configurations to static verifier (for example,
CPAchecker). Also we will check code with Undertaker tool to find dead code
blocks (Stage A of kernel check), which is also can be declared as configuration error.
Next step for pushing configurations is to create launch file for LDV-Klever tool and
launch it. Launch file is filled with modules-to-check and rules for finding unsafe
modules [16]. Before the launch, code will be compiled and stages B-E will be passed
with compiler default methods. After that LDV-Klever main activity will be invoked
to check code for a runtime defects (stage F). Output is a module with result: safe,
unsafe or unknown. If module is unsafe, verifier shows error trace for this module.
During verifier launches we push results into the dataset where the structure unite
modules, that we are checking, each module is splitted with configurations and results
of LDV-Klever, LDV-Klever results are splitted with verdict and unsafe traces.

5. Conclusion
This article describes the method, which allows you to check the Linux operating
system for errors without being depended on the configuration. This approach
provides high code coverage and an improved speed of verification comparing to

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

228

brute force method. The prototype of this program is already implemented. It will be
finished and fixed in a nearest time.
In future work MC/DC will be better adapted to current aim(Linux kernel), also
project will be tested in a real work during ISP RAN researches. There will be also
replacement in used tools, probably or rewriting them.
This software product can be used in the production of distributions, as well as for
verification of existing ones. As a result we will get linear depended amount of
configurations for full testing of Linux systems.

References
[1]. Jacobson I., Griss M., Jonsson P. Software Reuse, Architecture, Process and Organization

for Business Success. Addison-Wesley, 1997.
[2]. Bosch J. Design and Use of Software Architectures: Adopting and Evolving a Product

Line Approach. Pearson Education, 2000.
[3]. Clements P., Northrop L. Software Product Lines: Practices and Patterns. SEI Series in

Software Engineering, Addison-Wesley, 2001.
[4]. Pohl K., Böckle G., van der Linden F. J. Software Product Line Engineering: Foundations,

Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-28901-1.
[5]. Kuliamin V.V., Lavrischeva E.M., Mutilin V.S., Petrenko A.K. Verification and analysis

of variable operating systems. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 3, 2016, pp.
189-208 (in Russian). DOI: 10.15514/ISPRAS-2016-28(3)-12

[6]. Lotufo R., She S., Berger T., Czarnecki K., Wąsowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[7]. Lavrischeva E.M., Koval G.I., Slabospickaya O.O., Kolesnik A.L. Features of
management processes when creating families of software systems [Osobennosti
processov upravleniya pri sozdanii semejstv programmnyh system]. Problems of
programming [Problemy programmirovaniya], 3:40-49, 2009 (in Russian).

[8]. Lavrischeva E.M., Koval G.I., Slabospickaya O.O., Kolesnik A.L. Teoreticheskie aspekty
upravleniya variabel'nost'yu v semejstvah programmnyh sistem. Bulletin of KSU, a series
of physics and mathematics [Vesnik KNU, seriya fiz.–mat. nauk], 1:151-158, 2011 (in
Russian).

[9]. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, Dawson Engler, “A Few Billion Lines of Code Later:
Using Static Analysis to Find Bugs in the Real World”, Communications of the ACM,
Vol. 53 No. 2, pp. 66-75

[10]. Borodin A.E., Belevancev A.A, A Static Analysis Tool Svace as a Collection of Analyzers
with Various Complexity Levels, Trudy ISP RAN/Proc. ISP RAS, vol 27, issue. 6, 2015,
pp. 111-134. DOI: 10.15514/ISPRAS-2015-27(6)-8 (in Russian).

[11]. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, “The software model
checker BLAST”, Int J Softw Tools Technol Transfer (2007) 9:505–525, Springer-Verlag
2007

[12]. Andy Kenner, Christian Kastner, SteffenHaase, Thomas Leich, “TypeChef: toward type
checking #ifdef variability in C”. Proceeding FOSD ’10 Proceedings of the 2nd
Internationsal Workchop on Feature-Oriented Software Development, pp. 25-32,
Eindhoven, The Netherlands, Oct. 10, 2010.

[13]. Stephan Henglein. Vampyr configurability aware compile testing of source files. Linux
Plumber Conference, Oct 15-17, 2014, Dusseldorf, Germany. Available at:

Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4,
2017 г., стр. 217-230

229

http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2313/original/hengel
ein.pdf, accessed 12.01.2017.

[14]. Kulyamin V., Model-based testing [Testirovanie na osnove modeley]. (online
publication). Available at: http://mbt-course.narod.ru/Lecture03.pdf, accessed 12.02.2017
(in Russian).

[15]. Alber Zever. Pycparcer wiki. (Onine publication). Available at:
https://pypi.python.org/pypi/pycparser/2.14. accessed 7.05.2017.

[16]. I.S. Zaharov, M.U. Mandrykin, V.S. Mutilin, E.M. Novikov, A.K. Petrenko, A.V.
Khoroshilov. Configurable Toolset for Static Verification of Operating Systems Kernel
Modules. Trudy ISP RAN/Proc. ISP RAS, vol 26, issue 2, 2014, pp. 5-42 (in Russian).
DOI: 10.15514/ISPRAS-2014-26(2)-1.

Статическая верификация конфигураций ядра Linux2
1 С.В. Козин <kozyyy@yandex.ru>

2 В.С. Мутилин <mutilin@ispras.ru>
1 Национальный исследовательский университет Высшая Школа Экономики,

101000, Россия, г. Москва, ул. Мясницкая, д. 20.
2 Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25.

Аннотация. Ядро операционной системы Linux – это частый пример современных
инженерных решений в области создания продуктовых линеек программного
обеспечения. Сегодня это одна из наиболее сложных программных систем. Для того,
чтобы обеспечить наиболее безопасное построение вариантов продуктовой линейки,
необходимо анализировать конфигурационный файл Kconfig помимо исходного кода.
Ядро содержит десять тысяч вариабельных переменных несмотря на современную
инженерию. Исследователи в области верификации предлагают большое количество
решения проблемы анализа. Стандартные процедуры верификации здесь не могут быть
применены из-за времени проверки покрытия всех конфигураций. Мы предлагаем
инструмент, который базируется на связи уже существующих программах для проверки
кода и конфигурационного файла с метрикой покрытия. Такой пакет – это эффективный
инструмент для расчета всех допустимых конфигураций для предопределенного набора
кода и Kconfig. Предложенные методы могут быть использованы для улучшения
существующих инструментов анализа, а также для выбора правильной конфигурации.
Наша основная цель – лучше разобраться в возможных дефектах и предложить быстрое
и безопасное решение для проверки ядра Linux. Это решение будет описано как
программа с инструкцией по реализации внутренней архитектуры.

Ключевые слова: линейка программных продуктов, Linux, Kconfig, препроцессор

DOI: 10.15514/ISPRAS-2017-29(4)-14

Для цитирования: Козин С.В., Мутилин В.С. Статическая верификация конфигураций
ядра Linux. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 217-230 (на английском языке).
DOI: 10.15514/ISPRAS-2017-29(4)-14

2 Работа поддержана грантом Российского фонда фундаментальных
исследований №16-01-00352

Kozin S.V., Mutilin V.S. Static Verification of Linux Kernel Configurations. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 217-230

230

Список литературы
[1]. Jacobson I., Griss M., Jonsson P. Software Reuse, Architecture, Process and Organization

for Business Success. Addison-Wesley, 1997.
[2]. Bosch J. Design and Use of Software Architectures: Adopting and Evolving a Product

Line Approach. Pearson Education, 2000.
[3]. Clements P., Northrop L. Software Product Lines: Practices and Patterns. SEI Series in

Software Engineering, Addison-Wesley, 2001.
[4]. Pohl K., Böckle G., van der Linden F. J. Software Product Line Engineering: Foundations,

Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-28901-1.
[5]. В.В. Кулямин, Е.М. Лаврищева, В.С. Мутилин, А.К. Петренко. “Верификация и

анализ вариабельных операционных систем” Труды ИСП РАН, том 28, вып. 3, 2016,
стр. 189-208. DOI: 10.15514/ISPRAS-2016-28(3)-12

[6]. Lotufo R., She S., Berger T., Czarnecki K., Wąsowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[7]. Лаврищева К.М., Коваль Г.И., Слабоспицкая О.O., Колесник А.Л. Особенности
процессов управления при создании семейств программных систем. Проблемы
программирования, 3:40-49, 2009.

[8]. Лаврищева К.М., Слабоспицкий А.А., Коваль Г.И., Колесник А.А. Теоретические
аспекты управления вариабельностью в семействах программных систем. Вестник
КНУ, серия физ.–мат. наук, 1:151-158, 2011.

[9]. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, Dawson Engler, “A Few Billion Lines of Code Later:
Using Static Analysis to Find Bugs in the Real World”, Communications of the ACM,
Vol. 53 No. 2, pp. 66-75

[10]. Бородин А.Е., Белеванцев А.А., “Статический анализатор Svace как коллекция
анализаторов разных уровней сложности” Труды ИСП РАН, том 27, вып. 6, 2015,
стр. 111-134. DOI: 10.15514/ISPRAS-2015-27(6)-8

[11]. Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, “The software model
checker BLAST”, Int J Softw Tools Technol Transfer (2007) 9:505–525, Springer-Verlag
2007

[12]. Andy Kenner, Christian Kastner, SteffenHaase, Thomas Leich, “TypeChef: toward type
checking #ifdef variability in C”. Proceeding FOSD ’10 Proceedings of the 2nd
Internationsal Workchop on Feature-Oriented Software Development, pp. 25-32,
Eindhoven, The Netherlands, Oct. 10, 2010.

[13]. Stephan Henglein. Vampyr configurability aware compile testing of source files. Linux
Plumber Conference, Oct 15-17, 2014, Dusseldorf, Germany. Available at:
http://www.linuxplumbersconf.net/2014/ocw//system/presentations/2313/original/hengel
ein.pdf, дата обращения 12.01.2017.

[14]. Кулямин В., Тестирование на основе моделей. (online publication). http://mbt-
course.narod.ru/Lecture03.pdf, дата обращения 12.02.2017.

[15]. Alber Zever. Pycparcer wiki. (Onine publication). Available at:
https://pypi.python.org/pypi/pycparser/2.14. дата обращения 7.05.2017.

[16]. И.С. Захаров, М.У. Мандрыкин, В.С. Мутилин, Е.М. Новиков, А.К. Петренко, А.В.
Хорошилов. Конфигурируемая система статической верификации модулей ядра
операционных систем. Труды ИСП РАН, том 26, вып. 2, 2014, стр. 5-42. DOI:
10.15514/ISPRAS-2014-26(2)-1.

