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Abstract. The Linux kernel is often used as a real world case study to demonstrate novel 
software product line engineering research methods. It is one of the most sophisticated 
programs nowadays.  To provide the most safe experience of building of Linux product line 
variants it is necessary to analyse Kconfig file as well as source code. Ten of thousands of 
variable statements and options even by the standards of modern software development. 
Verification researchers offered lots of solutions for this problem. Standard procedures of code 
verification are not acceptable here due to time of execution and coverage of all configurations. 
We offer to check the operating system with special wrapper for tools analyzing built code and 
configuration file connected with coverage metric. Such a bundle is able to provide efficient 
tool for calculating all valid configurations for predetermined set of code and Kconfig. Metric 
can be used for improving existing analysis tools as well as decision of choice the right 
configuration. Our main goal is to contribute to a better understanding of possible defects and 
offer fast and safe solution to improve the validity of evaluations based on Linux. This solution 
will be described as a program with instruction for inner architecture implementation. 
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1. Introduction 
Nowadays, software is used to solve increasingly important and complex tasks, due 
to this fact the complexity of software architectures is also constantly growing. With 
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the increasing complexity of programs, the complexity of development, analysis and 
maintenance arises. There are many methods that allow you to reduce the costs of 
supporting the software life cycle. One such method is the creation of variable 
systems (or family of systems, software product families, software product lines). The 
superiority over the usual development method is that systems are manufactured with 
the condition of multiple elements used for several systems with a similar set of 
functions, taking into account a specific target audience of users. At the same time, a 
complex and widely known representation of variable software is the Linux operating 
system [1-5]. 
In the development of variable systems, a variability model and a variation 
mechanism  play a fundamental role. The variability model specifies the space of 
possible variants of this family of systems. Usually it is determined by a set of features 
or configuration parameters, by the sets of their possible values and constraints on 
possible combinations of these values, each variant of the system corresponds to a 
certain set of values of all features. The variation mechanism provides the ability to 
build all possible system variants from a limited set of created and followed artifacts. 
In Linux, the variability model and its relationship to the variation mechanism is built 
on the basis of Kconfig files, Makefile files and additional scripts. Kconfig describes 
all possible features, as well as their relationship with each other in a special language. 
Then on the basis of Kconfig, the configuration file .config is defined, which 
describes the version of the system. It consists of a set of configuration variables 
described in Kconfig and values that satisfy the constraints of Kconfig. During kernel 
assembly, the values of variables specified in .config are passed to the code as 
constants for the preprocessor and to Makefiles, which will be used in the variation 
mechanism. Makefiles contain information about objects in kernel: what files are 
included and which mode of compilation will be used [5]. 
In the field of operating systems (hereinafter the operating system we mean the kernel 
and the underlying OS libraries, providing the interfaces for work with computing 
resources and hardware), a mechanism of conditional compilation of C / C ++ 
languages is widely used as a mechanism for variability of the mixed type (based on 
macros #ifdef, #if, else #else). Blocks that are surrounded with variability mechanism 
macros, are called variable blocks. It allows you to compose code at the build stage 
that combines various variables specified by a set of characteristic values that are 
conditional compilation parameters  in this case (defined by the #define and #undef 
macros, as well as preprocessor setup parameters). The expression after macros is 
called block precondition, if configuration turns it into ‘true’, block gets compiled [5]. 
The complexity of variability models for modern operating systems is very high, for 
example, the Linux kernel version 2.6.32 has 6319 characteristics, more than 10,000 
constraints that can be used up to 22 individual characteristics, with the majority of 
characteristics depending on at least 4 others, and the maximum depth of the 
dependency tree is 8 [6]. This complexity causes a large number of errors, primarily 
due to the difficulty of taking into account all the factors that a developer of a separate 
code element should do. To identify and cope with these errors, it is necessary to use 



Козин С.В., Мутилин В.С. Статическая верификация конфигураций ядра Linux. Труды ИСП РАН, том 29, вып. 4, 
2017 г., стр. 217-230 

219 

specialized techniques of analysis and verification. Complexity of analysis that is 
typical for systems with such a variability mechanism arise because of the huge size 
of the possible variants space (which makes it completely unrealistic to check them 
all). Due to using of conditional compilation, each fragment does not have to be a 
separate component with a certain behavior that can be analyzed separately from the 
rest of the code, usually such fragments are just insertions into the common code, and 
can only be checked in certain combinations with each other. The need to solve these 
problems imposes special requirements on the tools and analysis methods used for 
complex variable operating systems and system software in general. These 
requirements are specific for analysis and verification - the methods used to create 
such systems, by themselves, do not facilitate their analysis [7, 8]. The main goal of 
this work is to propose a method capable of coping with the verification of the Linux 
OS taking into account the variability, to give acceptable accuracy of verification and 
speed of execution comparable to the verification of common programs. 
An errors analysis of such complex systems as Linux can be done with a lot of 
different tools. The most convenient of them are static analyzers and static verifiers. 
Static code analysis is the analysis of software produced (as opposed to dynamic 
analysis) without real execution of the programs under investigation. Existing static 
analyzers (such as Coverity [9] or Svace [10]) and static verifiers (such as BLAST, 
CPAchecker [11]) are only designed to work with the code already compiled. 
Accurate analysis requires pre-assembling of a specific configuration, and only after 
that start of the actual analysis. As a result, the total inspection time becomes 
unacceptably large. There is a class of tools that are focused on analysis of a set of 
possible configurations, they do not split the phase of building configurations and 
code analysis. As the example of such tools we can take a look at TypeChef and 
Undertaker. These tools are designed to solve special problems in the sphere of 
variability. Undertaker is looking for a "dead code" - such a problems when different 
configurations give the same product, besides it has a lot of built-in helper modules 
to provide main task, and one more function - assembling the minimal Linux kernels 
for individual use cases. TypeChef is looking for linking and compile errors with a 
variability-aware method. It is important to say, that TypeChef can not find difficult 
problems in code like complex static analysers. Suggested in this paper tool should 
analyze code deeply like BLAST or CPAchecker and, on the other hand, should do it 
in variability-aware way without all-configuration brute forcing. For this task we 
suggest to use CPAchecker due to its outstanding abilities in the error findings, 
despite CPAchecker’s expenditure of time [11]. The maximum reduction in 
verification time should be achieved through the optimal selection of configurations 
that will be directed to the input of the static analyzer. 

2. Configuration Set Selection 
The problem of selecting configurations can be considered as a splitting of the 
configuration space into equivalence classes. Each of the selected configurations will 
belong to one of the classes. To split the configuration space into classes, it is 
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suggested to use the MC/DC test coverage criterion. The advantage of this choice is 
that it allows you to significantly reduce the number of classes, even for large software 
systems. In addition, methods of analysis/construction of configurations for 
preprocessor directives are similar to methods for test data generation for coverage of 
programs in programming language, where the MC/DC criterion has proven itself 
well. If we take a look at standard usage of MC/DC for code coverage, we can find 
out that conditionals in usual programming language has the same structure as 
conditional compilation directives, the difference is in compilation (conditional 
compiling directives will not compile code under the block if condition is not true, 
which is the same as not giving control to code inside usual conditionals. 
There are 2 basic notions in MC/DC: decision and condition. Decision is a 
propositional formula which consists of conditions. If it is true, then control will be 
given to block with such decision (in the case of preprocessor - code will be 
compiled). Otherwise, control will not be given to this block (code will not be 
compiled). Condition is a logical part of decision which connects to other conditions 
with logical functions. 
A set is considered to reach 100% coverage by this metric, if: 

1. Each decision takes every possible outcome.  

2. Each condition in a decision takes every possible outcome.  

3. Each condition in a decision is shown to independently affect the outcome 
of the decision. 

In other words, in the full test, in accordance with the MC/DC coverage criterion, it 
should be demonstrated that every condition that can influence the resulting value of 
the decision that includes it actually changes its value regardless of the other 
conditions.  
Example: 
Some module of Linux has variable block inside. For example, consider a decision: 
A && B || C; where A, B, C are some boolean constraints of Kconfig.  
The decision is applicable for variable block (Fig. 1). 
 

#if (A && B || C) 
 … 
#endif 

Fig. 1. Example of variable block 

We can extract the conditions out of the decision: A, B, C.  
That means that we have to build such table for this variable block (Table 1). 
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Table 1. Truth table for variable block in Fig. 1 

A B C Decision 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Now we will find those pairs of conditions values where the change of one of them 
affects on decision. For each condition we have to get only one pair, and then choose 
minimal amount of them to cover all conditions. This will satisfy third MC/DC point. 
Pairs will be (Table 2) 

Table 2. MC/DC coverage table 

A B C Decision A B C 
0 0 0 0   C1 
0 0 1 1   C1 
0 1 0 0 A1  C2 
0 1 1 1   C2 
1 0 0 0  B1 C3 
1 0 1 1   C3 
1 1 0 1 A1 B1  
1 1 1 1    

According to table we will test only pairs that are marked as A1, B1 and C3 or C2; 
These 2 are minimal sets for MC/DC coverage. 
We can notice that from 8 possible combinations, we can use only 4 to get full 
coverage according to MC/DC method (0-1-0, 0-1-1,1-0-0,1-1-0). 
In general, the MC / DC metric allows 2n different situations to be used instead of n2 
condition combinations.[14] 

3. Kernel Check Stages 
For each of the found configurations, you should run a kernel verification. The 
program will scan the kernel in 6 stages: configuration, search for a "dead code", 
preprocessing, compiling, linking, searching for run-time errors. It is also worth 
noting that we will look for not only errors, but also configuration defects. Defects - 
is a broader concept, and it includes not only system errors, but also possible errors 
of the kernel without processing the interrupt. 
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Description of the stages: 
A. Search for a “dead code”.  

A "dead" code is such a code in which control is not transferred under any 
circumstances. This code contributes to a common configuration error when 
two different configurations produce the same product at the output. This 
problem can be solved using the built-in tools of the Undertaker. 

B. Configurations. 
At the time of build, Linux itself checks the configuration file, but it's worth 
checking it for recursive dependencies and non-existent variables in the 
code, but existing in Kconfig (and vice versa). 

C. Preprocessing. 
Preprocessing is performed just before compilation and at this stage we will 
get the code that will be compiled into the final version of the program. Most 
of errors at this stage can find by a preprocessor. It remains for us to inform 
the user of a possible conflict of names if we see duplicate names of 
preprocessor variables and their redefinition, because they have one nominal 
space and the developer may not notice the problem of overriding. 

D. Compilation. 
Compilation is complete on the compiler side. Here there are such errors as: 
detection of an undeclared variable / function, missing punctuation in the 
code, etc. 

E. Linking. 
As well as compilation is completely redirected to the linker. The linker finds 
errors in missing libraries or files. 

F. Execution Errors.  
The most difficult part of the test is using the LDV and CPAchecker tools. 
LDV assigns labels to the code of the program according to the preset rules, 
while CPAchecker searches for them and builds accessibility graphs to them 
so we can see how a label is achieved. 

4. Configuration Set Selection 
To solve this task we suppose the workflow for a program called OStap (Fig. 2). This 
program will find all variable blocks, get all the propositional formulas for entering 
each of the variable blocks. After that program will extract all conditions from those 
formulas and will use MC/DC metric to get all necessary configurations that will be 
checked with static verifier and dead code detector to perform verification stages A-
F. 
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Fig. 2. OStap workflow. 

4.1 Feature model extraction 
First of all, we transform Kconfig files using Kconfigdump module of Undertaker 
to get feature model of Linux kernel. Feature model is splitted by architectures sets 
of formulas. All dependencies implemented in Kconfig file are represented in a dump 
as a set of logical formulas. So it is possible to get full precondition for each feature 
just looking at line with it’s name in model file. For example: if we have to turn on 
option A to turn on option B there will be …&&A addition to any decision where 
config B is have to be turned on. 

4.2 Block precondition extraction 

4.2.1. Coarse block precondition extraction 

Secondary, we need to get all variable blocks in the given code, which is a module or 
a set of modules that consists of different .c files. These modules can be compiled 
according to Makefiles, where modules are marked as compiled, compiled as LKM, 
non-compiled. This mechanism of variability (Kbuild variability) in Linux is made 
for modules and helps to organize builds.  Due to the fact, that another variability 
mechanism in Linux uses preprocessors we can find all #ifdef, #if, #else, #ifndef 
blocks to be sure that we have found all the variable blocks in the given code. This 
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may be done using standard tools of most of popular operating systems or using 
programming language tools for work with file system. 
When we have all necessary blocks and their positions in the files we can get 
propositional formulas using Undertaker[13] tool for them. As a result of the 
undertaker infrastructure we can easily calculate preconditions for preprocessor 
blocks in a file, just by specifying the file and line number. If a configuration model 
is loaded, it will also fetch all interesting items from the model. Say you want to have 
the block precondition for line 359 and line 370 in init/main.c. 
Then for each block we use Undertaker’s option -blockpc to get blocks precondition 
based on dumped feature model and code. This precondition is a decision in MC/DC 
metric theory. It is also necessary to say that later we will use SMT-solver to work 
with MC/DC metrics, so we patched Undertaker for providing output in a SMT-lib 
way (Polish notation). C expressions with operands, are not able to be converted due 
to architecture of undertaker, such code may be marked with special symbols to be 
changed in the future.  

$ undertaker –j blockpc init/main.c:359 
init/main.c:370 
I: Block B20 | Defect: no | Global: 0 
B20 
&& 
( B18 <->  ! CONFIG_SMP ) 
&& ( B20 <->  ( B18 )  && CONFIG_X86_LOCAL_APIC ) 
&& ( B22 <->  ( B18 )  && ( ! (B20) )  ) 
&& ( B25 <-> ( ! (B18) )  ) 
 
I: Block B25 | Defect: no | Global: 0 
B25 
&& 
( B18 <->  ! CONFIG_SMP ) 
&& ( B20 <->  ( B18 )  && CONFIG_X86_LOCAL_APIC ) 
&& ( B22 <->  ( B18 )  && ( ! (B20) )  ) 
&& ( B25 <-> ( ! (B18) )  ) 

Fig. 3. Example of usual Undertaker output without model. 

$ undertaker -j blockpc -m 
models/x86.model  init/main.c:370 
I: loaded rsf model for x86 
I: Using x86 as primary model 
I: Block B25 | Defect: no | Global: 0 
B25 
&& 
( B18 <->  ! CONFIG_SMP ) 
&& ( B20 <->  ( B18 )  && CONFIG_X86_LOCAL_APIC ) 
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&& ( B22 <->  ( B18 )  && ( ! (B20) )  ) 
&& ( B25 <-> ( ! (B18) )  ) 
 
&& 
(CONFIG_X86_32 -> ((!CONFIG_64BIT))) 
&& 
(CONFIG_X86_32_NON_STANDARD -> ((CONFIG_X86_32 && 
CONFIG_SMP && CONFIG_X86_EXTENDED_PLATFORM))) 
&& 
(CONFIG_X86_64 -> ((CONFIG_64BIT))) 
&& 
(CONFIG_X86_EXTENDED_PLATFORM -> ((CONFIG_X86_64) 
&& (CONFIG_X86_32))) 
&& 
(CONFIG_X86_LOCAL_APIC -> ((CONFIG_X86_64 || 
CONFIG_SMP || CONFIG_X86_32_NON_STANDARD || 
CONFIG_X86_UP_APIC) && (CONFIG_X86_64 || 
CONFIG_SMP || CONFIG_X86_32_NON_STANDARD || 
CONFIG_X86_UP_APIC))) 
&& 
(CONFIG_X86_UP_APIC -> ((CONFIG_X86_32 && 
!CONFIG_SMP && !CONFIG_X86_32_NON_STANDARD))) 

Fig. 4. Example of usual Undertaker output with model. 

4.2.2 Detailed block precondition extraction 
When we have formula by Undertaker, we have to change all the marked code to 
prefix view, in other words: to represent decision in SMT-lib way. Due to the fact that 
such code will be in a usual C representation, we can use any C parser that is able to 
build expression tree to rebuild the string. For example we can use Pycparser [15]. 
Pycparser can parse C code and represent it as ast-tree. Ast-tree is an expression tree 
with all operators of C language. Running through the tree, we can rewrite any C 
expression from infix to prefix view. To do this thing we need to apply this algorithm: 
Algorithm prefix (tree) 
 if (tree not empty) 
     print (tree token) 
     prefix (tree left subtree) 
     prefix (tree right subtree) 
 end if 
end prefix 
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4.3 MC/DC driven configuration generation 
Now we have ready-to-use prefix formula that is the same as ‘decision’ term in 
MC/DC metrics  so it is time to start extracting conditions from a decision. To pass 
this stage we need to get all the single variables inside unary operator or without unary 
operator. Those variables will be the same as conditions. 
When we have all conditions and decision for a variable block, we need to build a 
truth table for conditions. For example, we extracted 3 conditions: a > 0, b == true, a 
< 0, and out decision is (a > 0) && (b == true) || (a < 0). We look over all of their 
combinations that we got from truth table like it was described in II chapter (Table 
3). 

Table 3. Truth table without decision for (a > 0) && (b == true) || (a < 0). 

Line A > 0 B = true A < 0 decision 
1 0 0 0  
2 0 0 1  
3 0 1 0  
4 0 1 1  
5 1 0 0  
6 1 0 1  

7 1 1 0  
8 1 1 1  

Each line of the table reflects set of equalities related to column and value. For our 
example line 1 means: a > 0 = false, b == true = false, a < 0 == false, whereas line  6 
means: a > 0 = true, b == true = false, a < 0 == true; 
To calculate decision column we need to put such equalities and full decision formula 
into SMT-solver, so it calculates possible values of variables through equalities and 
then put it into decision formula to find solution. In our example in case of  a > 0 = 
true and a < 0 = true SMT-solver will return error, so these sets of variables will not 
be used in future (Table 4). 

Table 4. Truth table with decision for (a > 0) && (b == true) || (a < 0). 

Line A > 0 B = true A < 0 decision 
1 0 0 0 0 
2 0 0 1 1 
3 0 1 0 0 
4 0 1 1 1 
5 1 0 0 0 
6 1 0 1 Error 

7 1 1 0 1 
8 1 1 1 Error 
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In classical MC/DC theory we have to say that this example can not be covered by 
MC/DC due to the fact that 6 and 8 line gave us impossible conditions to resolve, but 
in a real case adaptation we can say that we covered all of possible conditions [14]. 
When the table is ready, we can find influencing variables, like it was described in 
chapter II (Table 5). 

Table 5. MC/DC coverage table for (a > 0) && (b == true) || (a < 0). 

Line A > 0 B = true A < 0 decision A > 0 B 
==true 

A < 0 

1 0 0 0  0
  

  1 

2 0 0 1 1   1 
3 0 1 0 0   2 
4 0 1 1 1   2 
5 1 0 0 0  3  
6 1 0 1 Error    

7 1 1 0 1  3  
8 1 1 1 Error    

For MC/DC coverage we need A/B and C pairs to check. That means that we have to 
extract a and b values related to those lines. These values form configurations that we 
will check with help of verifier. Each line for each configuration.  

4.4 Verification 
Finally, we have got necessary configurations to get 100% coverage using MC/DC 
metrics. Now we will push these configurations to static verifier (for example, 
CPAchecker). Also we will check code with Undertaker tool to find dead code 
blocks (Stage A of kernel check), which is also can be declared as configuration error. 
Next step for pushing configurations is to create launch file for LDV-Klever tool and 
launch it. Launch file is filled with modules-to-check and rules for finding unsafe 
modules [16]. Before the launch, code will be compiled and stages B-E will be passed 
with compiler default methods. After that LDV-Klever main activity will be invoked 
to check code for a runtime defects (stage F). Output is a module with result: safe, 
unsafe or unknown. If module is unsafe, verifier shows error trace for this module.  
During verifier launches we push results into the dataset where the structure unite 
modules, that we are checking, each module is splitted with configurations and results 
of LDV-Klever, LDV-Klever results are splitted with verdict and unsafe traces. 

5. Conclusion 
This article describes the method, which allows you to check the Linux operating 
system for errors without being depended on the configuration. This approach 
provides high code coverage and an improved speed of verification comparing to 
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brute force method. The prototype of this program is already implemented. It will be 
finished and fixed in a nearest time.  
In future work MC/DC will be better adapted to current aim(Linux kernel), also 
project will be tested in a real work during ISP RAN researches. There will be also 
replacement in used tools, probably or rewriting them. 
This software product can be used in the production of distributions, as well as for 
verification of existing ones. As a result we will get linear  depended amount of 
configurations for full testing of Linux systems. 
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Аннотация. Ядро операционной системы Linux – это частый пример современных 
инженерных решений в области создания продуктовых линеек программного 
обеспечения.  Сегодня это одна из наиболее сложных программных систем. Для того, 
чтобы обеспечить наиболее безопасное построение вариантов продуктовой линейки, 
необходимо анализировать конфигурационный файл Kconfig помимо исходного кода. 
Ядро содержит десять тысяч вариабельных переменных несмотря на современную 
инженерию. Исследователи в области верификации предлагают большое количество 
решения проблемы анализа. Стандартные процедуры верификации здесь не могут быть 
применены из-за времени проверки покрытия всех конфигураций. Мы предлагаем 
инструмент, который базируется на связи уже существующих программах для проверки 
кода и конфигурационного файла с метрикой покрытия. Такой пакет – это эффективный 
инструмент для расчета всех допустимых конфигураций для предопределенного набора 
кода и Kconfig. Предложенные методы могут быть использованы для улучшения 
существующих инструментов анализа, а также для выбора правильной конфигурации. 
Наша основная цель – лучше разобраться в возможных дефектах и предложить быстрое 
и безопасное решение для проверки ядра Linux. Это решение будет описано как 
программа с инструкцией по реализации внутренней архитектуры. 
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