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Abstract. This paper introduces a technique for scalable functional verification of cache
coherence protocols that is based on the verification method, which was previously developed
by the author. Scalability means that verification efforts do not depend on the model size (that
is, the number of processors in the system under verification). The article presents an approach
to the development of formal Promela models of cache coherence protocols and shows
examples taken from the Elbrus-4C protocol model. The resulting formal models consist of
language constructs that directly reflect the way protocol designers describe their
developments. The paper describes the development of the tool, which is written in the C++
language with the Boost.Spirit library as parser generator. The tool automatically performs the
syntactical transformations of Promela models. These transformations are part of the
verification method. The procedure for refinement of the transformed models is presented. The
refinement procedure is supposed to be used to eliminate spurious error messages. Finally, the
overall verification technique is described. The technique has been successfully applied to
verification of the MOSI protocol implemented in the Elbrus computer systems. Experimental
results show that computer memory requirements for parameterized verification are negligible
and the amount of manual work needed is acceptable.
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1. Introduction

Shared memory multiprocessors constitute one of the most common classes of high-
performance computer systems. In particular, multicore microprocessors, which
combine several processors (cores) on a chip, are widely used [1]. The number of
cores is constantly increasing. The presence of cache memories that are local to each
core determines the need for ensuring coherent memory state. To satisfy the need,
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microprocessor developers design and implement in hardware cache coherence
protocols [2].

Cache coherence mechanisms are extremely complex. Therefore, both the design and
their implementation are error-prone. Being especially critical, protocol bugs should
be revealed before implementing the hardware. The widely recognized method for
protocol verification is model checking [3]. It is fully automated, but suffers from a
principal drawback — it is not scalable due to the state space explosion problem.
Verification of a cache coherence protocol for five or more processors is impossible
(at least, highly problematic) with the traditional methods [4].

To overcome the problem and develop scalable verification technologies, researchers
focus mostly on verification of parameterized designs [3]. Previous articles of the
author [5-8] presented a method for parameterized verification of cache coherence
protocols. The author successfully applied the method to verification of the cache
coherence protocol of the Elbrus-4C computing system. This paper presents an
approach to the development of formal Promela models that can be analyzed by the
verification method, describes the development of the tool that performs
transformations of Promela models according to the method and presents the overall
verification technique.

The paper is structured as follows. Section 2 takes a brief look at related work and
provide the necessary links. Section 3 considers the question development of Promela
models of cache coherence protocols. In Section 4, we describe how to perform
parameterized verification of the Promela models in a semi-automatic way. We
examine the development of the tool that automates parts of the verification method
used. We present a technique for cache coherence protocols verification. Section 5
provides experimental results on using the technique for verifying the Elbrus-4C
protocol. Section 6 summarizes the work and defines further research directions.

2. Related Work

This work extends the previous works [5-8] by dealing with the question of practical
application of the method for parameterized verification of cache coherence protocols
presented in those works.
Article [5] presents a review of related work and gives the motivation for development
of a new method. The developed method is based upon works [9—13] that present a
method of compositional model checking, which is based on syntactical
transformations of models written in the Mur¢g language and counterexample-guided
abstraction refinement.
The method [5—8] is used in the context of the following verification process:

1) Development of formal models of cache coherence protocols.

2) Parameterized verification by means of the method.
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3. Development of Formal Models

It is highly desirable to have a modeling language that allows us to conveniently
describe cache coherence protocols. To choose or develop such a language, we need
to define a mathematical model of cache coherence protocols.

In accordance with the microprocessor system model that is used in work [2] for
representation and analysis of cache coherence protocols, I chose to model cache
coherence protocols as a set of communicating finite-state machines.

An element of this set may be either a cache controller or the system commutator. Let
us define these notions. Each memory device of the microprocessor is operated by a
coherence controller, which is a finite-state machine. Coherence controllers are
coordinated by a special device — the system commutator — that is also a finite-state
machine. A set of these machines constitutes a distributed system, in which the
machines communicate by message passing in order to maintain cache coherence.
Each coherence controller connected with cache memory logically implements a set
of independent and identical finite-state machines, one for each cache line. These
machines are called cache controllers. Due to the independence and identity of cache
controllers, it is customary to reflect only one cache line in the models of cache
coherence protocols.

The states of cache controllers are divided into two classes: Stable states and transient
states. Stable states of cache controllers are often the subset of the common set
Modified, Owned, Exclusive, Shared, Invalid [2]. Transitions between these states
are not atomic and occur through transient states. Transient states are specific to each
microprocessor and their presence is one of the factors that determine high
verification complexity.

Conditions that define correctness of cache coherence protocols are formulated as
statements about stable states, for example: “Cache line can never be in Modified
state in two caches simultaneously” [5]. Such statements belong to the class of
invariant properties [14].

Usage of a set of communicating finite-state machines as the model of cache
coherence protocols and invariant properties for specification defined the choice of
the Promela language for modeling cache coherence protocols:

e In contrast to other languages (for example, Murg and NuSMV), Promela
provides process types and the means of synchronous and asynchronous
interprocess communication (channels).

e Promela provides convenient specification language, which is Linear
Temporal Logic (LTL).

e Spin — the system that implements Promela — provides different verification
algorithms and optimizations, and is a modern and constantly developing
tool.

The question of development of formal models of cache coherence protocols is
insufficiently covered in the literature. Here, I present an approach to the construction
of such models. According to the approach, a formal model of a cache coherence
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protocol of a system with n cores consists of n Promela processes for cache
controllers and one Promela process for the system commutator.

For the considered cache coherence protocols, the following property holds: Only one
initial request may be in process at a given point in time. System commutator
performs a sequence of steps during the request processing, for example, the reception
of the initial request and its analysis, sending of snoop- and other requests according
to the results of the analysis, reception of the answers to these requests. Initial requests
correspond to the memory access instructions that the processor core is executing.
Reception of messages from other devices can only occur at particular steps. Thus, it
is convenient to represent the system commutator as a Promela process whose body
simply consists of operators that follow each other (Fig. 1).

proctype system_commutator() {

again:

<receive initial request>

<analyze the initial request>

<send coherent requests>

<receive answers to coherent requests or the
request completion message>

<finalize the request processing>

goto again }

Fig. 1. Structure of the System Commutator Process.

Cache controllers operate differently. On the one hand, we still may identify a number
of steps, for example, sending an initial request, changing state from stable to
transient, receiving snoop-requests. On the other hand, the relative order of these steps
is often unspecified, and the same messages from other devices may be processed in
different states of a cache controller. Thus, it is convenient to represent processes of
this kind as infinite do-cycles consisting of the guarded commands (Fig. 2).

proctype cache_controller() {

do

:: <send initial request from main states>
:: <receive and process snoop-requests>
:: <receive answers to coherent requests>
:: <send the completion message>

od }

Fig. 2. Structure of Cache Controller Processes.
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See papers [5, 6, 8] for more details on how to organize processes and their
communication.

For example, modeling of a situation in which cache controller sends an initial request
and the system commutator receives it, may be performed as follows:

mtype cache[N] = I; // states of cache line
proctype cache controller (byte i) {

do
atomic {cache[i] == I —>
// send initial request and change state
if :: ini req chan ! R, 1i; cache[i] = WR;
ini req chan ! RI, i; cache[i] = WRI;
fi }
od }

proctype system commutator (byte 1) {

message_t message;

again:

// receive initial request

atomic {ini req chan ? message;
curr command = message.opcode;
curr _client = message.requester;

}

if :: atomic {

// send snoop-request as a response

// to the initial request

curr_command == R —>

coh req chan[0] ! snR, curr client;

}

// receive acknowledgement

final ack chan ? message;

goto again; }
As another example, reception of a snoop-request by cache controller and generation
of the response can be modeled as follows:
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proctype cache controller (byte i) {
do

atomic {nempty(coh req chan[i]) ->
// receive snoop-request
coh req chan[i] ? message;
if ...
// analyze state...
cache[i] == WI O
// ... and the snoop-request type
&& message.opcode == snl ->
// send corresponding answer
coh ans chan ! ack, i;
cache[i] = WRI;
fi }
... od
}
Developers of cache coherence protocols describe and reason about their protocols in
terms of message passing, and, as these examples show, their reasoning can be
directly expressed in Promela. Moreover, the proposed organization of Promela
processes allows verification engineers to perform quick changes that are needed to
reflect the modifications of the cache coherence protocol under verification that occur
in the course of its development.

4. Parameterized Verification of Cache Coherence Protocols

The method for parameterized verification of cache coherence protocols presented in
works [5, 6, 8] consists of two stages:
1. Performing the syntactical transformations of Promela models.

2. Refining the obtained model in accordance with the proposed procedure.

Model transformations have the following effect:

1. Reduction of the number of processes from n+l1 (n cache controller
processes and one system commutator process) to 4: two fully functioning
cache controller processes, one abstract cache controller process that models
the environment of the two processes, and the system commutator process.
This transformation is possible due to the symmetry inherent in models of
cache coherent protocols (all cache controller processes are identical and
interchangeable, they do not have behaviors that depend on a particular
process index value) and because the specification of cache coherence
protocols only contains properties that regard the state of cache line in two
caches.

2. Syntactical transformations of Promela operators constituting the model.

236



Bypenkos B.C. MeTtonyka napaMeTpu30BaHHON BepU(UKALUH IPOTOKOIOB KOrepeHTHOCTH namst. Tpyost UCIT PAH,
oM 29, BbIm. 4, 2017 1., cTp. 231-246.

These transformations preserve invariant properties. This means that if such a
property is true for the reduced model, then it is true for the initial model. A
mathematical proof of the corresponding theorem is presented in articles [5, 6, 8].

4.1 Performing the Syntactical Transformations

The syntactical transformations presented in [5, 6, 8] may be performed manually.
However, manual model modification is a very tedious, laborious and error-prone
process. Moreover, some of the errors made may go undetected, as they will only lead
to incorrect state space reduction and not to counterexamples. Therefore, it is highly
desirable to perform the transformations automatically. To achieve that, I have
developed a dedicated tool. With this tool, the verification engineer simply provides
their Promela model as input to the tool, and the tool generates the transformed
Promela model.

To automate the syntactical transformations, I have used a widespread approach to
this kind of problems, according to which a tool builds the abstract syntax tree that
represents the syntactical structure of the source code and then performs the
transformations upon the tree traversal (Fig. 3).

Promela translator and model
transformations subsystem

Modified
Concrete Internal. ::> internal Abstract
Promela model representation representation Promela model

Fig. 3. Scheme of Automated Model Transformation.

Abstract syntax trees are usually constructed by parsers. There are two ways of parser
implementation: manual and by means of a parser generator tool (for example, Bison,
ANTLR, Boost.Spirit). Due to the unnecessary complexity of the first approach, I
have chosen the second one.

The Boost.Spirit library was chosen as the parser generator, because:

e  Boost.Spirit promotes modern usage of the C++ language that allows us to
work with abstractions, which are suitable for a given domain, without
performance loss.

e  Boost.Spirit eliminates the need for additional tools like Bison or ANTLR:
The only tools needed are a C++ compiler and the Boost library.

e  The grammars that Boost.Spirit accepts are attributed, which results in a very
convenient way of abstract syntax tree generation.
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e  Boost.Spirit contains a number of built-in parsers.
e The generated parsers are very efficient [15].
The mechanism of synthesized and inherited attributes allows us to simplify the task
of abstract syntax tree generation by dividing it into two sequentially performed
subtasks:
1. Development of the grammar, testing and debugging of the grammar. During
this step, we only need to focus on the question of whether the grammar can
correctly determine the syntactical correctness of a Promela model.

2. Development of data structures for the nodes of the abstract syntax tree and
definition of the types of attributes of the grammar rules. The attribute
mechanism allows Boost.Spirit to generate abstract syntax trees
automatically, without any need for the addition of node construction
operators to the grammar.

Usage of the abstract syntax tree generated by Boost.Spirit as an intermediate
representation of Promela models allowed us to divide the task of performing the
syntactical transformations automatically into three subtasks:

1. Development of Promela grammar in the C++ language by means of
Boost.Spirit.

2. Development of data structures for abstract syntax tree representation.

3. Development of algorithms for abstract syntax tree traversal and abstract
model generation.

Promela grammar is presented in [16]. Its implementation in C++ using Boost.Spirit
looks similarly to that description. However, as Boost.Spirit generates recursive
descent parsers, I have eliminated left recursion from the grammar.

Data structures for the nodes of abstract syntax tree are developed according to the
information that we want the nodes to represent and attribute propagation rules
defined in Boost.Spirit’s documentation. In the developed tool, data structures that
correspond to the synthesized attributes of the Promela grammar rules, contain
information about nonterminals that are part of the rules. This is a very
straightforward and convenient way of implementation of these data structures. For
example, the following rule that describes the nonterminal “module” of the Promela
grammar
gi::rule<Iter, module (), Skipper> module;
module =
proctype
| init
[ 1tl
| utype
| mtype
| decl 1st
|

LI |
’ ’
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has a synthesized attribute of type module, which is implemented as follows:
using module = boost::variant<

proctype,

init,

1t1,

utype,

mtype,

decl 1st

>;
All the other nonterminals mentioned in this example have synthesized attributes of
types implemented in a similar way.
The abstract syntax tree, which is generated automatically by Boost.Spirit based on
the grammar and the attribute mechanism, consists of nodes of different types.
Traversal of such tree is performed uniformly by means of visitors, as advocated by
the Boost.Spirit documentation.
The syntactical transformations are performed during the abstract syntax tree
traversal. I classified the transformations, most of which turned out to be in one of the
three categories (transformations of assignments, transformations of expressions,
transformations of communication actions), and precisely described them. To
automatically carry them out, I have developed a number of abstract syntax tree
modification algorithms and implemented them as part of the visitation mechanism.
Printing out the modified syntax tree gives us the abstract Promela model.
For example, when generating the code for the abstract process, the following piece
of Promela code

proctype cache controller (byte i) {

do
(cache[i] == M MAU || cache[i] == M MAU I)
&& (message.opcode == wb ready) ->
final ack chan ! data, 1i;
cache[i] = I

is transformed into
proctype cache controller abs(byte i) {
do

true ->
final ack chan ! data, i;

This example demonstrates the transformations of expressions and the assignment
operator.

4.2 Abstraction Refinement

Execution of each type of initial requests consists of a particular sequence of events
presented in the cache coherence protocol documentation. Considerations about the
ordering of the events inspired the following refinement procedure:
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1. For each type of initial requests define (according to the documentation) a
partially ordered set (4, <) of events (< is a strict partial order):

Va,,a, € A:a; < a,, if action a, occurs earlier than action a,.
2. While there are false counterexamples:

2.1. Find action a that lead to the appearance of the counterexample. Find set A
that contains action a: a € A. In set 4 find action b such that b < a.

2.2. Introduce a logical variable aux; with the initial value false. In the model,
replace b with the atomic sequence b; aux, = true.

3. By means of the logical AND, add aux,; to the guard of the command that
contains action a. Replace a with the atomic sequence a; aux, = false.

For example, for one type of initial requests defined for the Elbrus-4C
microprocessor, the set (4, <) is as follows. Here, cc; denotes the ith cache controller.

{a, = processing of the previous request from process cc;, 1 < i < n is finished,

a; = requester cc; sends an initial request,

a, = system_commutator receives the initial request,

az = system_commutator sends snoop-requests to all cc;, 1 < j < n,j # i,

a, = cc;j receives a snoop-request, 1 < j <n,j # I,

as = cc; sends an answer to the snoop-request to the requester,

ae = the requester receives the coherent answer from c;,

a; = the requester sends the operation completion message to
system_commutator,

ag = system_commutator receives the operation completion message}.
The relation < is defined as follows: Vi,j =0,..,|A| - 1:i <j = a; < a;. We
identify the auxiliary variables with the elements of the set A.
Refinement of the abstract model of the Elbrus-4C cache coherence protocol required
us to introduce two auxiliary variables, because there were two spurious
counterexamples. Let us examine the introduction of the first variable.
The analysis of the first counterexample showed that the abstract process had sent the
operation completion message to system_commutator before
system_commutator received a coherent answer. Examination of the set A allows
us to conclude that action a, happening at the wrong time led to the counterexample.
According to the refinement procedure, in the set A we find action a4 and introduce
an auxiliary variable ack received with the initial value false. Then we replace
the operator that corresponds to ag with the atomic sequence consisting of this
operator and the operator that assigns true to ack received. After this, we add
ack received to the guard of the command of the abstract process that contains a,
and replace the operator that corresponds to a, with the atomic sequence consisting
of this operator and the operator that assigns false to ack _received. Thus, we
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guarantee that the behavior of the abstract process that led the false counterexample
will no longer be exhibited.

4.3 Verification Technique

According to the results obtained by the author in this and the previous works, the

proposed verification technique consists of the following steps (Fig. 4):

1. Development of a concrete Promela model of the cache coherence protocol under
verification. Using the proposed approach to model description, verification
engineer develops Promela processes that model cache controllers and the system
commutator and the necessary infrastructure elements (channel definitions,
process creation). Specific actions performed by the processes correspond to the
cache coherence protocol documentation.

2. Development of the abstract Promela model of the cache coherence protocol
under verification. This step is performed automatically by the developed tool.

3. Verification of the abstract model. This step is the usual verification process of
Promela models using the Spin model checker [17].

4. Analysis of the verification report generated by Spin. If there are no errors, then
the verification process is finished with the conclusion that the cache coherence
protocol is correct. If the report states the presence of an error, then the
verification engineer should analyze the corresponding counterexample. If the
engineer concludes that the counterexample is spurious because the
corresponding sequence of steps is impossible in a real system, then the engineer
refines the model in accordance with the proposed procedure and goes to step 3.
Otherwise, if the counterexample represents an actual error in the cache
coherence protocol, then the error is reported. When the protocol developers fix
the error, the verification engineer incorporates the changes into the model and
starts the verification process again (goes to step 1).

This sequence of steps is repeated until there are no counterexamples.
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System for the
abstract model
construction

Spin

Initial Promela| ;
niernal Promela model model checker
model representation - AST romela mode
Transformed AST @

Verification
report

Abstract

I‘:

False
counterexample:
Error in the protocol: Refine the @ No errors:
1. Report it to the abstract model Verification

developers Complete
2. Fix the initial model

Human verifier

Fig. 4 Scheme of the Verification Process.

5. Experimental Results

The proposed method was used to verify the MOSI family cache coherence protocol
implemented in the Elbrus-4C computer system. The abstraction refinement step was
completed after the introduction of two auxiliary variables.

Table 1 and Table 2 show resources consumed for checking the property

G{—(cache[1] = M A cache[2] = M)},

respectively, on the original and the refined abstract model. Spin’s optimization
COLLAPSE was used. The experiments were performed on an Intel Xeon E5-2697
machine with a clock rate of 2.6 GHz and 264 Gb of RAM.

Table 1. Required resources — initial model

Number of State space Memory Verification
cores size consumption time

3 5.1 x 108 328 Mb 15s

4 1.3 x10° 81 Gb 1.5h

Table 2. Required resources — abstract model

Number of State space Memory Verification
cores size consumption time

any > 2 2.2 x10° 108 Mb 6.2s

Tables 1 and 2 show that even for n = 3 there is a gain in state space size and memory
consumption. The needed amount of manual work is acceptable. Meanwhile,
verification of the constructed abstract model means verification of the protocol for
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any n > 3. The task has been reduced to checking of ~10° states, which consumes
~100 Mb of memory.

6. Conclusion

Many high-performance computers and most multicore microprocessors use shared
memory and utilize complicated caching mechanisms. To ensure that multiple copies
of data are kept up-to-date, cache coherence protocols are employed. Errors in the
protocols and their implementations may cause serious consequences such as data
corruption and system hanging. This explains the urgency of the corresponding
verification methods.

The main problem when verifying cache coherence protocols (and other systems with
a large number of components) by a fully automated method of model checking is
state explosion. The article proposes a technique to overcome the problem for cache
coherence protocols and make verification scalable. The price paid for scalability is
acceptable, because the main ingredient — the verification method — is highly
automated by the developed tool. Part of the method that requires manual work,
namely, model refinement, can be done with a reasonable amount of effort, as shown
by means of the Elbrus-4C protocol verification example. An approach to describing
protocol models in Promela, a widely spread language in the verification community,
is proposed. This approach lets us reflect the way protocol designers talk about
protocols by representing protocols as a set of communicating finite-state machines.
The technique was successfully applied to the verification of the MOSI family cache
coherence protocols implemented in the Elbrus-4C computer system.

Directions for future research include:

1. Development of methods and tools for verification of cache coherence protocols
that are implemented by multiple levels of cache. The newest microprocessors
(for example, Elbrus-8C, which employs the second- and third-level caches to
implement cache coherence) define the need for such methods and tools.

2. Development of methods and tools for verification of hardware implementations
of cache coherence protocols. In this direction, I have developed a tool that
generates assembly code based on Promela models of cache coherence protocols.
With this tool, I have found several dozen errors in the implementation of cache
coherence in Elbrus microprocessors. Still, further research is needed to increase
the level of confidence in design correctness.
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MeToaunka napameTpusoBaHHOM Bepucukaumm
NPOTOKONOB KOrepeHTHOCTU NaMATU

B.C. Bypenxos <burenkov_v@mcst.ru>,
AO «MLCT», 119334, Poccus, e. Mockea, yn. Basunosa, 24

AHHOTamMsi. B cratee mpencraBieHa METOIUKA MaclITabUpyeMoil (yHKIMOHAIBHOM
BepU(UKAIIMY MPOTOKOJIOB KOTEPEHTHOCTH IIaMSTH, KOTOpas OCHOBaHAa HAa METOJE
BepU(UKaINYU, KOTOPBIH paHee ObUI pa3paboTaH aBTOPOM CTaTbu. MacmTabupyeMocTs IpH
BepU(UKAINI 03HAYAECT HE3aBUCUMOCTH PAabOT 110 BepU(PHUKAINK OT pa3Mepa MOJIENH, TO €CTh
OT KOJIMYECTBA IPOIECCOPOB BepUpUIMpyeMoil cucteMbl. B crathe mpeuroxkeH moaxon K
pa3padoTke (opMaNbHBIX MOZENEH MPOTOKOJIOB KOTEPEHTHOCTH NMaMATH Ha si3bike Promela.
IIpuBeneHsl NMpUMEpBl ONMUCAHWM, B3SATbIE U3 MOJEIM INPOTOKOJIA KOT€PEHTHOCTH MaMSTH
cuctembl ip0pyc-4C. Pesynprupyromme (popMaibHbie MOACITH OTPAXAIOT IPEICTaBICHHE
MPOTOKOJIOB KOT€PEHTHOCTH MaMSTH, HCIIOJIb3yeMOE pPa3paboTYNKaMU TaKHX MPOTOKOJIOB — B
BH/IE MHOXECTBAa B3aMMOJACHCTBYIOIIMX KOHEYHBIX aBToMaToB. OmmcaHa pa3paboTka
NIPOTrPaMMHOTO MHCTPYMEHTA, HalMCAaHHOTO HA s3bIke C++ ¢ MCHONb30BaHHEM OMOIMOTEKH
Boost.Spirit B kadecTBe TreHepaTopa CHHTaKCHUECKMX aHAINM3aToOpoB. I[IporpamMMHEIH
HHCTPYMEHT ITI03BOJISICT aBTOMAaTH3MPOBATH BBHINOJIHEHHE CHHTAKCHYECKHX IPeoOpa3oBaHMUi
Promela-moneneii. BrinonHeHHe NaHHBIX CHHTaKCHUECKHX MPEOOpPa30BaHUI IMPOUCXOIHUT B
COOTBETCTBUH C METOJIOM BepHukanuu. B cTaThe mpeacTaBieHa mpouexypa yTOYHEHHS
MOANGUIMPOBAHHBIX MOJEJeH, OCHOBaHHAs Ha BBEICHUHM B MOJENb BCIOMOTaTENbHBIX
nepeMeHHbIX. Mcmonb3oBaTh 3Ty MHpoLexypy Mpeanaraetcss B TOM Cilydae, KOrAa Ipu
Bepu(UKauy BO3HHUKAIOT JIOXKHBIE COOOLICHUs 00 omudOKkax, A YCTPaHCHHsS TaKUX
coobmenuil. IlpencraBiena MeToguka BepU(HKAINH, KOTOpAsk COCTOHUT M3 CJIEIYIOIINX
I1aroB: pa3paboTKa HCXOIHON MOJIETH IIPOTOKOJIA KOTePEeHTHOCTH NaMsTH Ha s3bIke Promela,
aBTOMAaTU3UPOBAHHOE IPeoOpa3oBaHNE JAaHHONH MOJEIH COTJIACHO METOXy BepHU(UKaLUH,
Bepu(UKaINI MOJU(GUINPOBAHHONW MOJIEIH C MOMOIIBIO MHCTPYMEHTAIBEHOTO CPeCTBa Spin,
aHaJIM3 OT4YeTa O BepU(HMKALUM, CTeHEPUPOBAHHOTO MHCTPYMEHTOM Spin. M3noxenHas
MeTO/MKa OblIa YCHELIHO IIPUMEHEHa Ul Bepu(HUKaLUH NPOTOKOIA KOT€PEHTHOCTH NaMATH
cemeiictrea MOSI, peann3oBaHHOTO B MHKpONpOLECCOpHOil cucteme Dnpbpyc-4C.
OKcnepuMeHTalbHbIE PE3YNIbTAThI IOKAa3alH, 4TO 3aTPaThl IPOIIECCOPHOTO BPEMEHH U ITAMSITH
Ha TNIPOBEIEHHE IapaMeTpU30BAaHHON BepH(UKAMN HE3HAYWTEIbHBI, a TpeOyeMbld 00beM
pydHOil paborel mpuemieM. [ yTouHeHHs MOIMGHIUPOBAHHOW MOJIENM IPOTOKOJA
cuctembl Dnb0pyc-4C MoHagoOMUIoCh BBECTH JIUILB JIBE BCIIOMOTaTeIbHbIEC TIEPEMEHHBIE.

KioueBbie ¢10Ba: MHOTOS/IEPHbIE MUKPOIIPOLIECCOPBI; MyJIbTHIIPOLIECCOPBI € pa3ziensieMon
MaMSATBIO; TIPOTOKOJIBI KOTEPEHTHOCTH TTaMsITH; POBepKa Mozenei; Spin; Promela.
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