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Abstract. This paper introduces a technique for scalable functional verification of cache 
coherence protocols that is based on the verification method, which was previously developed 
by the author. Scalability means that verification efforts do not depend on the model size (that 
is, the number of processors in the system under verification). The article presents an approach 
to the development of formal Promela models of cache coherence protocols and shows 
examples taken from the Elbrus-4C protocol model. The resulting formal models consist of 
language constructs that directly reflect the way protocol designers describe their 
developments. The paper describes the development of the tool, which is written in the C++ 
language with the Boost.Spirit library as parser generator. The tool automatically performs the 
syntactical transformations of Promela models. These transformations are part of the 
verification method. The procedure for refinement of the transformed models is presented. The 
refinement procedure is supposed to be used to eliminate spurious error messages. Finally, the 
overall verification technique is described. The technique has been successfully applied to 
verification of the MOSI protocol implemented in the Elbrus computer systems. Experimental 
results show that computer memory requirements for parameterized verification are negligible 
and the amount of manual work needed is acceptable. 
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1. Introduction 
Shared memory multiprocessors constitute one of the most common classes of high-
performance computer systems. In particular, multicore microprocessors, which 
combine several processors (cores) on a chip, are widely used [1]. The number of 
cores is constantly increasing. The presence of cache memories that are local to each 
core determines the need for ensuring coherent memory state. To satisfy the need, 
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microprocessor developers design and implement in hardware cache coherence 
protocols [2]. 
Cache coherence mechanisms are extremely complex. Therefore, both the design and 
their implementation are error-prone. Being especially critical, protocol bugs should 
be revealed before implementing the hardware. The widely recognized method for 
protocol verification is model checking [3]. It is fully automated, but suffers from a 
principal drawback – it is not scalable due to the state space explosion problem. 
Verification of a cache coherence protocol for five or more processors is impossible 
(at least, highly problematic) with the traditional methods [4]. 
To overcome the problem and develop scalable verification technologies, researchers 
focus mostly on verification of parameterized designs [3]. Previous articles of the 
author [5–8] presented a method for parameterized verification of cache coherence 
protocols. The author successfully applied the method to verification of the cache 
coherence protocol of the Elbrus-4C computing system. This paper presents an 
approach to the development of formal Promela models that can be analyzed by the 
verification method, describes the development of the tool that performs 
transformations of Promela models according to the method and presents the overall 
verification technique. 
The paper is structured as follows. Section 2 takes a brief look at related work and 
provide the necessary links. Section 3 considers the question development of Promela 
models of cache coherence protocols. In Section 4, we describe how to perform 
parameterized verification of the Promela models in a semi-automatic way. We 
examine the development of the tool that automates parts of the verification method 
used. We present a technique for cache coherence protocols verification. Section 5 
provides experimental results on using the technique for verifying the Elbrus-4C 
protocol. Section 6 summarizes the work and defines further research directions. 

2. Related Work 
This work extends the previous works [5–8] by dealing with the question of practical 
application of the method for parameterized verification of cache coherence protocols 
presented in those works. 
Article [5] presents a review of related work and gives the motivation for development 
of a new method. The developed method is based upon works [9–13] that present a 
method of compositional model checking, which is based on syntactical 
transformations of models written in the Mur𝜑 language and counterexample-guided 
abstraction refinement. 
The method [5–8] is used in the context of the following verification process: 

1) Development of formal models of cache coherence protocols. 

2) Parameterized verification by means of the method. 
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3. Development of Formal Models 
It is highly desirable to have a modeling language that allows us to conveniently 
describe cache coherence protocols. To choose or develop such a language, we need 
to define a mathematical model of cache coherence protocols. 
In accordance with the microprocessor system model that is used in work [2] for 
representation and analysis of cache coherence protocols, I chose to model cache 
coherence protocols as a set of communicating finite-state machines. 
An element of this set may be either a cache controller or the system commutator. Let 
us define these notions. Each memory device of the microprocessor is operated by a 
coherence controller, which is a finite-state machine. Coherence controllers are 
coordinated by a special device – the system commutator – that is also a finite-state 
machine. A set of these machines constitutes a distributed system, in which the 
machines communicate by message passing in order to maintain cache coherence. 
Each coherence controller connected with cache memory logically implements a set 
of independent and identical finite-state machines, one for each cache line. These 
machines are called cache controllers. Due to the independence and identity of cache 
controllers, it is customary to reflect only one cache line in the models of cache 
coherence protocols. 
The states of cache controllers are divided into two classes: Stable states and transient 
states. Stable states of cache controllers are often the subset of the common set 
Modified, Owned, Exclusive, Shared, Invalid [2]. Transitions between these states 
are not atomic and occur through transient states. Transient states are specific to each 
microprocessor and their presence is one of the factors that determine high 
verification complexity. 
Conditions that define correctness of cache coherence protocols are formulated as 
statements about stable states, for example: “Cache line can never be in Modified 
state in two caches simultaneously” [5]. Such statements belong to the class of 
invariant properties [14]. 
Usage of a set of communicating finite-state machines as the model of cache 
coherence protocols and invariant properties for specification defined the choice of 
the Promela language for modeling cache coherence protocols: 

 In contrast to other languages (for example, Mur𝜑 and NuSMV), Promela 
provides process types and the means of synchronous and asynchronous 
interprocess communication (channels). 

 Promela provides convenient specification language, which is Linear 
Temporal Logic (LTL). 

 Spin – the system that implements Promela – provides different verification 
algorithms and optimizations, and is a modern and constantly developing 
tool. 

The question of development of formal models of cache coherence protocols is 
insufficiently covered in the literature. Here, I present an approach to the construction 
of such models. According to the approach, a formal model of a cache coherence 
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protocol of a system with 𝑛 cores consists of 𝑛 Promela processes for cache 
controllers and one Promela process for the system commutator. 
For the considered cache coherence protocols, the following property holds: Only one 
initial request may be in process at a given point in time. System commutator 
performs a sequence of steps during the request processing, for example, the reception 
of the initial request and its analysis, sending of snoop- and other requests according 
to the results of the analysis, reception of the answers to these requests. Initial requests 
correspond to the memory access instructions that the processor core is executing. 
Reception of messages from other devices can only occur at particular steps. Thus, it 
is convenient to represent the system commutator as a Promela process whose body 
simply consists of operators that follow each other (Fig. 1). 

proctype system_commutator() {

again:

<receive initial request>

<analyze the initial request>

<send coherent requests>

 <receive answers to coherent requests or the 

request completion message>

<finalize the request processing>

goto again }  

Fig. 1. Structure of the System Commutator Process. 

Cache controllers operate differently. On the one hand, we still may identify a number 
of steps, for example, sending an initial request, changing state from stable to 
transient, receiving snoop-requests. On the other hand, the relative order of these steps 
is often unspecified, and the same messages from other devices may be processed in 
different states of a cache controller. Thus, it is convenient to represent processes of 
this kind as infinite do-cycles consisting of the guarded commands (Fig. 2). 

proctype cache_controller() {

do

:: <send initial request from main states>

:: <receive and process snoop-requests>

:: <receive answers to coherent requests>

:: <send the completion message>

od }
 

Fig. 2. Structure of Cache Controller Processes. 
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See papers [5, 6, 8] for more details on how to organize processes and their 
communication. 
For example, modeling of a situation in which cache controller sends an initial request 
and the system commutator receives it, may be performed as follows: 

mtype cache[N] = I; // states of cache line 
proctype cache_controller(byte i) { 
do  
:: atomic {cache[i] == I –> 
// send initial request and change state 
if :: ini_req_chan ! R, i; cache[i] = WR; 
   :: ini_req_chan ! RI, i; cache[i] = WRI; 

... 
fi } 
... 
od } 
 
 
proctype system_commutator(byte i) { 
message_t message; 
again: 
// receive initial request 
atomic {ini_req_chan ? message; 

    curr_command = message.opcode; 
    curr_client = message.requester; 

} 
if :: atomic { 
// send snoop-request as a response 
// to the initial request 
curr_command == R –> 

coh_req_chan[0] ! snR, curr_client; ... 
} 
... 
// receive acknowledgement 
final_ack_chan ? message; 
goto again; } 

As another example, reception of a snoop-request by cache controller and generation 
of the response can be modeled as follows: 
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proctype cache_controller(byte i) { 
do 
... 
:: atomic {nempty(coh_req_chan[i]) -> 
 // receive snoop-request 

coh_req_chan[i] ? message; 
if ... 
   // analyze state... 
:: cache[i] == WI_O 
  // ... and the snoop-request type 
  && message.opcode == snI -> 
 // send corresponding answer 

coh_ans_chan ! ack, i; 
cache[i] = WRI; 

... fi } 

... od 
} 

Developers of cache coherence protocols describe and reason about their protocols in 
terms of message passing, and, as these examples show, their reasoning can be 
directly expressed in Promela. Moreover, the proposed organization of Promela 
processes allows verification engineers to perform quick changes that are needed to 
reflect the modifications of the cache coherence protocol under verification that occur 
in the course of its development. 

4. Parameterized Verification of Cache Coherence Protocols 
The method for parameterized verification of cache coherence protocols presented in 
works [5, 6, 8] consists of two stages: 

1. Performing the syntactical transformations of Promela models. 

2. Refining the obtained model in accordance with the proposed procedure. 

Model transformations have the following effect: 
1. Reduction of the number of processes from n+1 (n cache controller 

processes and one system commutator process) to 4: two fully functioning 
cache controller processes, one abstract cache controller process that models 
the environment of the two processes, and the system commutator process. 
This transformation is possible due to the symmetry inherent in models of 
cache coherent protocols (all cache controller processes are identical and 
interchangeable, they do not have behaviors that depend on a particular 
process index value) and because the specification of cache coherence 
protocols only contains properties that regard the state of cache line in two 
caches. 

2. Syntactical transformations of Promela operators constituting the model. 
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These transformations preserve invariant properties. This means that if such a 
property is true for the reduced model, then it is true for the initial model. A 
mathematical proof of the corresponding theorem is presented in articles [5, 6, 8]. 

4.1 Performing the Syntactical Transformations 
The syntactical transformations presented in [5, 6, 8] may be performed manually. 
However, manual model modification is a very tedious, laborious and error-prone 
process. Moreover, some of the errors made may go undetected, as they will only lead 
to incorrect state space reduction and not to counterexamples. Therefore, it is highly 
desirable to perform the transformations automatically. To achieve that, I have 
developed a dedicated tool. With this tool, the verification engineer simply provides 
their Promela model as input to the tool, and the tool generates the transformed 
Promela model. 
To automate the syntactical transformations, I have used a widespread approach to 
this kind of problems, according to which a tool builds the abstract syntax tree that 
represents the syntactical structure of the source code and then performs the 
transformations upon the tree traversal (Fig. 3). 

Internal 
representation

Concrete 
Promela model

Modified 
internal 

representation

Abstract 
Promela model

Promela translator and model 
transformations subsystem

 

Fig. 3. Scheme of Automated Model Transformation. 

Abstract syntax trees are usually constructed by parsers. There are two ways of parser 
implementation: manual and by means of a parser generator tool (for example, Bison, 
ANTLR, Boost.Spirit). Due to the unnecessary complexity of the first approach, I 
have chosen the second one. 
The Boost.Spirit library was chosen as the parser generator, because: 

 Boost.Spirit promotes modern usage of the C++ language that allows us to 
work with abstractions, which are suitable for a given domain, without 
performance loss. 

 Boost.Spirit eliminates the need for additional tools like Bison or ANTLR: 
The only tools needed are a C++ compiler and the Boost library. 

 The grammars that Boost.Spirit accepts are attributed, which results in a very 
convenient way of abstract syntax tree generation. 
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 Boost.Spirit contains a number of built-in parsers. 
 The generated parsers are very efficient [15]. 

The mechanism of synthesized and inherited attributes allows us to simplify the task 
of abstract syntax tree generation by dividing it into two sequentially performed 
subtasks: 

1. Development of the grammar, testing and debugging of the grammar. During 
this step, we only need to focus on the question of whether the grammar can 
correctly determine the syntactical correctness of a Promela model. 

2. Development of data structures for the nodes of the abstract syntax tree and 
definition of the types of attributes of the grammar rules. The attribute 
mechanism allows Boost.Spirit to generate abstract syntax trees 
automatically, without any need for the addition of node construction 
operators to the grammar. 

Usage of the abstract syntax tree generated by Boost.Spirit as an intermediate 
representation of Promela models allowed us to divide the task of performing the 
syntactical transformations automatically into three subtasks: 

1. Development of Promela grammar in the C++ language by means of 
Boost.Spirit. 

2. Development of data structures for abstract syntax tree representation. 

3. Development of algorithms for abstract syntax tree traversal and abstract 
model generation. 

Promela grammar is presented in [16]. Its implementation in C++ using Boost.Spirit 
looks similarly to that description. However, as Boost.Spirit generates recursive 
descent parsers, I have eliminated left recursion from the grammar.  
Data structures for the nodes of abstract syntax tree are developed according to the 
information that we want the nodes to represent and attribute propagation rules 
defined in Boost.Spirit’s documentation. In the developed tool, data structures that 
correspond to the synthesized attributes of the Promela grammar rules, contain 
information about nonterminals that are part of the rules. This is a very 
straightforward and convenient way of implementation of these data structures. For 
example, the following rule that describes the nonterminal “module” of the Promela 
grammar 

qi::rule<Iter, module(), Skipper> module; 
module = 

proctype 
| init 
| ltl 
| utype 
| mtype 
| decl_lst 
| ';' ; 
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has a synthesized attribute of type module, which is implemented as follows: 
using module = boost::variant< 

proctype, 
init, 
ltl, 
utype, 
mtype, 
decl_lst 
>; 

All the other nonterminals mentioned in this example have synthesized attributes of 
types implemented in a similar way. 
The abstract syntax tree, which is generated automatically by Boost.Spirit based on 
the grammar and the attribute mechanism, consists of nodes of different types. 
Traversal of such tree is performed uniformly by means of visitors, as advocated by 
the Boost.Spirit documentation. 
The syntactical transformations are performed during the abstract syntax tree 
traversal. I classified the transformations, most of which turned out to be in one of the 
three categories (transformations of assignments, transformations of expressions, 
transformations of communication actions), and precisely described them. To 
automatically carry them out, I have developed a number of abstract syntax tree 
modification algorithms and implemented them as part of the visitation mechanism. 
Printing out the modified syntax tree gives us the abstract Promela model. 
For example, when generating the code for the abstract process, the following piece 
of Promela code 

proctype cache_controller(byte i) { 
do 
... 
:: (cache[i] == M_MAU || cache[i] == M_MAU_I) 
&& (message.opcode == wb_ready) -> 

final_ack_chan ! data, i; 
cache[i] = I 

is transformed into 
proctype cache_controller_abs(byte i) { 
do 
... 
:: true -> 

final_ack_chan ! data, i; 

This example demonstrates the transformations of expressions and the assignment 
operator. 

4.2 Abstraction Refinement 
Execution of each type of initial requests consists of a particular sequence of events 
presented in the cache coherence protocol documentation. Considerations about the 
ordering of the events inspired the following refinement procedure: 
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1. For each type of initial requests define (according to the documentation) a 
partially ordered set (𝐴, ≺) of events (≺ is a strict partial order): 

∀𝑎ଵ, 𝑎ଶ ∈ 𝐴: 𝑎ଵ ≺ 𝑎ଶ, if action 𝑎ଵ occurs earlier than action 𝑎ଶ. 

2. While there are false counterexamples: 

2.1. Find action 𝑎 that lead to the appearance of the counterexample. Find set 𝐴 
that contains action 𝑎: 𝑎 ∈ 𝐴. In set 𝐴 find action 𝑏 such that 𝑏 ≺ 𝑎. 

2.2. Introduce a logical variable 𝑎𝑢𝑥௕  with the initial value 𝑓𝑎𝑙𝑠𝑒. In the model, 
replace 𝑏 with the atomic sequence 𝑏; 𝑎𝑢𝑥௕ ≔ 𝑡𝑟𝑢𝑒. 

3. By means of the logical AND, add 𝑎𝑢𝑥௕  to the guard of the command that 
contains action 𝑎. Replace 𝑎 with the atomic sequence 𝑎; 𝑎𝑢𝑥௕ ≔ 𝑓𝑎𝑙𝑠𝑒. 

For example, for one type of initial requests defined for the Elbrus-4C 
microprocessor, the set (𝐴, ≺) is as follows. Here, 𝑐𝑐௜ denotes the 𝑖th cache controller. 

{𝑎଴ = processing of the previous request from process 𝑐𝑐௜ , 1 ≤ 𝑖 ≤ 𝑛 is finished, 
𝑎ଵ = requester 𝑐𝑐௜ sends an initial request, 
𝑎ଶ = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 receives the initial request, 
𝑎ଷ = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 sends snoop-requests to all 𝑐𝑐௝ , 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖, 
𝑎ସ = 𝑐𝑐௝ receives a snoop-request, 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑖, 
𝑎ହ = 𝑐𝑐௝ sends an answer to the snoop-request to the requester, 
𝑎଺ = the requester receives the coherent answer from 𝑐𝑐௝, 
𝑎଻ = the requester sends the operation completion message to 

𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟, 
𝑎଼ = 𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 receives the operation completion message}. 

The relation ≺ is defined as follows: ∀𝑖, 𝑗 = 0, … , |𝐴| − 1: 𝑖 < 𝑗 ⇒ 𝑎௜ ≺ 𝑎௝. We 
identify the auxiliary variables with the elements of the set 𝐴. 
Refinement of the abstract model of the Elbrus-4C cache coherence protocol required 
us to introduce two auxiliary variables, because there were two spurious 
counterexamples. Let us examine the introduction of the first variable. 
The analysis of the first counterexample showed that the abstract process had sent the 
operation completion message to 𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 before 
𝑠𝑦𝑠𝑡𝑒𝑚_𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑜𝑟 received a coherent answer. Examination of the set 𝐴 allows 
us to conclude that action 𝑎଻ happening at the wrong time led to the counterexample. 
According to the refinement procedure, in the set 𝐴 we find action 𝑎଺ and introduce 
an auxiliary variable ack_received with the initial value 𝑓𝑎𝑙𝑠𝑒. Then we replace 
the operator that corresponds to 𝑎଺ with the atomic sequence consisting of this 
operator and the operator that assigns 𝑡𝑟𝑢𝑒 to ack_received. After this, we add 
ack_received to the guard of the command of the abstract process that contains 𝑎଻ 
and replace the operator that corresponds to 𝑎଻ with the atomic sequence consisting 
of this operator and the operator that assigns 𝑓𝑎𝑙𝑠𝑒 to ack_received. Thus, we 
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guarantee that the behavior of the abstract process that led the false counterexample 
will no longer be exhibited. 

4.3 Verification Technique 
According to the results obtained by the author in this and the previous works, the 
proposed verification technique consists of the following steps (Fig. 4): 
1. Development of a concrete Promela model of the cache coherence protocol under 

verification. Using the proposed approach to model description, verification 
engineer develops Promela processes that model cache controllers and the system 
commutator and the necessary infrastructure elements (channel definitions, 
process creation). Specific actions performed by the processes correspond to the 
cache coherence protocol documentation. 

2. Development of the abstract Promela model of the cache coherence protocol 
under verification. This step is performed automatically by the developed tool. 

3. Verification of the abstract model. This step is the usual verification process of 
Promela models using the Spin model checker [17]. 

4. Analysis of the verification report generated by Spin. If there are no errors, then 
the verification process is finished with the conclusion that the cache coherence 
protocol is correct. If the report states the presence of an error, then the 
verification engineer should analyze the corresponding counterexample. If the 
engineer concludes that the counterexample is spurious because the 
corresponding sequence of steps is impossible in a real system, then the engineer 
refines the model in accordance with the proposed procedure and goes to step 3. 
Otherwise, if the counterexample represents an actual error in the cache 
coherence protocol, then the error is reported. When the protocol developers fix 
the error, the verification engineer incorporates the changes into the model and 
starts the verification process again (goes to step 1). 

This sequence of steps is repeated until there are no counterexamples. 
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Fig. 4 Scheme of the Verification Process. 

5. Experimental Results 
The proposed method was used to verify the MOSI family cache coherence protocol 
implemented in the Elbrus-4C computer system. The abstraction refinement step was 
completed after the introduction of two auxiliary variables. 
Table 1 and Table 2 show resources consumed for checking the property 

𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑀)}, 
respectively, on the original and the refined abstract model. Spin’s optimization 
COLLAPSE was used. The experiments were performed on an Intel Xeon E5-2697 
machine with a clock rate of 2.6 GHz and 264 Gb of RAM. 

Table 1. Required resources — initial model 

Number of 
cores 

State space 
size 

Memory 
consumption 

Verification 
time 

3 5.1  106 328 Mb 15 s 
4 1.3  109 81 Gb 1.5 h 

Table 2. Required resources — abstract model 

Number of 
cores 

State space 
size 

Memory 
consumption 

Verification 
time 

any > 2 2.2  106 108 Mb 6.2 s 

Tables 1 and 2 show that even for 𝑛 = 3 there is a gain in state space size and memory 
consumption. The needed amount of manual work is acceptable. Meanwhile, 
verification of the constructed abstract model means verification of the protocol for 
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any 𝑛 ≥ 3. The task has been reduced to checking of ~10଺ states, which consumes 
~100 Mb of memory. 

6. Conclusion 
Many high-performance computers and most multicore microprocessors use shared 
memory and utilize complicated caching mechanisms. To ensure that multiple copies 
of data are kept up-to-date, cache coherence protocols are employed. Errors in the 
protocols and their implementations may cause serious consequences such as data 
corruption and system hanging. This explains the urgency of the corresponding 
verification methods. 
The main problem when verifying cache coherence protocols (and other systems with 
a large number of components) by a fully automated method of model checking is 
state explosion. The article proposes a technique to overcome the problem for cache 
coherence protocols and make verification scalable. The price paid for scalability is 
acceptable, because the main ingredient – the verification method – is highly 
automated by the developed tool. Part of the method that requires manual work, 
namely, model refinement, can be done with a reasonable amount of effort, as shown 
by means of the Elbrus-4C protocol verification example. An approach to describing 
protocol models in Promela, a widely spread language in the verification community, 
is proposed. This approach lets us reflect the way protocol designers talk about 
protocols by representing protocols as a set of communicating finite-state machines. 
The technique was successfully applied to the verification of the MOSI family cache 
coherence protocols implemented in the Elbrus-4C computer system. 
Directions for future research include: 
1. Development of methods and tools for verification of cache coherence protocols 

that are implemented by multiple levels of cache. The newest microprocessors 
(for example, Elbrus-8C, which employs the second- and third-level caches to 
implement cache coherence) define the need for such methods and tools. 

2. Development of methods and tools for verification of hardware implementations 
of cache coherence protocols. In this direction, I have developed a tool that 
generates assembly code based on Promela models of cache coherence protocols. 
With this tool, I have found several dozen errors in the implementation of cache 
coherence in Elbrus microprocessors. Still, further research is needed to increase 
the level of confidence in design correctness. 
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Аннотация. В статье представлена методика масштабируемой функциональной 
верификации протоколов когерентности памяти, которая основана на методе 
верификации, который ранее был разработан автором статьи. Масштабируемость при 
верификации означает независимость работ по верификации от размера модели, то есть 
от количества процессоров верифицируемой системы.  В статье предложен подход к 
разработке формальных моделей протоколов когерентности памяти на языке Promela. 
Приведены примеры описаний, взятые из модели протокола когерентности памяти 
системы Эльбрус-4С. Результирующие формальные модели отражают представление 
протоколов когерентности памяти, используемое разработчиками таких протоколов – в 
виде множества взаимодействующих конечных автоматов. Описана разработка 
программного инструмента, написанного на языке С++ с использованием библиотеки 
Boost.Spirit в качестве генератора синтаксических анализаторов. Программный 
инструмент позволяет автоматизировать выполнение синтаксических преобразований 
Promela-моделей. Выполнение данных синтаксических преобразований происходит в 
соответствии с методом верификации. В статье представлена процедура уточнения 
модифицированных моделей, основанная на введении в модель вспомогательных 
переменных. Использовать эту процедуру предлагается в том случае, когда при 
верификации возникают ложные сообщения об ошибках, для устранения таких 
сообщений. Представлена методика верификации, которая состоит из следующих 
шагов: разработка исходной модели протокола когерентности памяти на языке Promela, 
автоматизированное преобразование данной модели согласно методу верификации, 
верификация модифицированной модели с помощью инструментального средства Spin, 
анализ отчета о верификации, сгенерированного инструментом Spin. Изложенная 
методика была успешно применена для верификации протокола когерентности памяти 
семейства MOSI, реализованного в микропроцессорной системе Эльбрус-4С. 
Экспериментальные результаты показали, что затраты процессорного времени и памяти 
на проведение параметризованной верификации незначительны, а требуемый объем 
ручной работы приемлем. Для уточнения модифицированной модели протокола 
системы Эльбрус-4С понадобилось ввести лишь две вспомогательные переменные.  

Ключевые слова: многоядерные микропроцессоры; мультипроцессоры с разделяемой 
памятью; протоколы когерентности памяти; проверка моделей; Spin; Promela. 

DOI: 10.15514/ISPRAS-2017-29(4)-15 

Для цитирования: Буренков В.С. Методика параметризованной верификации 
протоколов когерентности памяти. Труды ИСП РАН, том 29, вып. 4, 2017 г., стр. 231-246 
(на английском языке). DOI: 10.15514/ISPRAS-2017-29(4)-15 

Burenkov V.S. A Technique for Parameterized Verification of Cache Coherence Protocols. Trudy ISP RAN/Proc. ISP 
RAS, vol. 29, issue 4, 2017, pp. 231-246. 

246 

Список литературы 
[1]. Patterson D.A., Hennessy J.L. Computer Organization and Design: The 

Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p. 
[2]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache 

Coherence. Morgan and Claypool, 2011. 195 p. 
[3]. Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999. 314 p. 
[4]. Буренков В.С. Анализ применимости инструмента Spin к верификации протоколов 

когерентности памяти. Вопросы радиоэлектроники. Сер. ЭВТ. 2014. Вып. 3. 
стр. 126-134. 

[5]. Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache 
Coherence Protocols. Trudy ISP RAN/Proc. ISP RAS. vol. 28, issue 4, 2016, pp. 57-76. 
DOI: 10.15514/ISPRAS-2016-28(4)-4 

[6]. Буренков В.С., Камкин А.С. Метод масштабируемой верификации PROMELA-
моделей протоколов когерентности кэш-памяти. Сб. трудов VII Всероссийской 
научно-технической конференции «Проблемы разработки перспективных микро- и 
наноэлектронных систем». 2016. Часть II. стр. 54-60. 

[7]. Burenkov V.S., Kamkin A.S. Applying Parameterized Model Checking to Real-Life 
Cache Coherence Protocols. Proc. of IEEE East-West Design & Test Symposium. 2016. 
pp. 1-4. 

[8]. Буренков В.С., Иванов С.Р. Метод построения абстрактных моделей, используемых 
для верификации протоколов когерентности кэш-памяти. Вестник МГТУ им. Н.Э. 
Баумана. 2017, вып. 1, стр. 49-66. 

[9]. McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by 
Compositional Model Checking. Conference on Correct Hardware Design and 
Verification Methods, 2001. pp. 179-195. 

[10]. Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of 
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS, 
Vol. 3312, pp. 382-398. 

[11]. Krstic S. Parameterized System Verification with Guard Strengthening and Parameter 
Abstraction. International Workshop on Automated Verification of Infinite-State Systems, 
2005. 

[12]. Talupur M., Tuttle M.R. Going with the Flow: Parameterized Verification Using Message 
Flows. Formal Methods in Computer-Aided Design, 2008. pp. 1-8. 

[13]. O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial 
Experience. Formal Methods in Computer-Aided Design, 2009. pp. 172-179. 

[14]. Baier C., Katoen J.-P. Principles of Model Checking. The MIT Press. 2008. 984 p. 
[15]. de Guzman, J. Fastest numeric parsers in the world! http://boost-

spirit.com/home/2014/09/03/fastest-numeric-parsers-in-the-world/. 
[16]. Spin Version 6 – Promela Grammar. http://spinroot.com/spin/Man/grammar.html. 
[17]. Holzmann, G. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley. 

2004. 608 p. 

 


