Test Generation for Digital Hardware Based
on High-Level Models

' M.M. Chupilko <chupilko@jispras.ru>
123 4.S. Kamkin <kamkin@jispras.ru>
'M.S. Lebedev <lebedev@ispras.ru>

'S. 4. Smolov <smolov@jispras.ru>
! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2 Lomonosov Moscow State University (MSU),
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
3 Moscow Institute of Physics and Technology (MIPT),
9, Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract. Hardware testing is a process aimed at detecting manufacturing faults in integrated
circuits. To measure test quality, two main metrics are in use: fault detection abilities (fault
coverage) and test application time (test length). Many algorithms have been suggested for test
generation; however, no scalable solution exists. In this paper, we analyze applicability of
functional tests generated from high-level models for low-level manufacturing testing. A
particular test generation method is considered. The input information is an HDL description.
The key steps of the method are system model construction and coverage model construction.
Both models are automatically extracted from the given description. The system model is a
representation of the design in the form of high-level decision diagrams. The coverage model
is a set of LTL formulae defining reachability conditions for the transitions of the extended
finite state machine. The models are translated into the input format of a model checker. For
each coverage model formula the model checker generates a counterexample, i.e. an execution
that violates the formula (makes the corresponding transition to fire). The approach is intended
for covering of all possible execution paths of the input HDL description and detecting dead
code. Experimental comparison with the existing analogues has shown that it produces shorter
tests, but they achieve lower stuck-at fault coverage comparing with the dedicated approach.
An improvement has been proposed to overcome the issue.

Keywords: digital hardware; hardware description language; manufacturing testing; stuck-at
fault; high-level decision diagram; extended finite state machine; model checking; fault
propagation.

DOI: 10.15514/ISPRAS-2017-29(4)-16

247

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

For citation: Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for
Digital Hardware Based on High-Level Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue
4,2017, pp. 247-256. DOI: 10.15514/ISPRAS-2017-29(4)-16

1. Introduction

Functional verification and test generation are resource-consuming activities of the
hardware design process [1]. To automate these activities, models are frequently used.
Models are mathematical abstractions that describe system structure and behavior.
There is a variety of verification and test generation problems that can be solved with
the help of models: checking system behavior in simulation-based verification [2],
directed test generation [3], etc.

The essential stage of the hardware design process is register-transfer-level (RTL)
design. This stage results in code in a hardware description language (HDL), such as
VHDL and Verilog [4]. The RTL model is automatically synthesized into a gate-level
netlist represented in an HDL or a special language, such as BLIF [5]. Finally, the
place-and-route stage is applied to produce a chip layout.

Functional verification, including functional test generation, deals with RTL models,
while generation of manufacturing tests uses gate-level netlists. In this paper, we
analyze applicability of functional tests for manufacturing testing. The motivation is
clear: the simpler the model, the easier to get tests. We extract high-level models from
HDL descriptions and generate tests from them. The approach allows reaching good
code coverage with short tests [6].

This paper continues research initiated in [7], where we compared fault detection
abilities of different test generation methods. A test is said to defect a fault, if the
mutant, i.e. the design with the injected fault, and the original design return different
outputs for the test’s input sequence. Fault detection ability is measured as the amount
of faults having been detected.

The rest of the paper is organized as follows. Section 2 defines formalisms used in
the work and gives a brief overview of a fault model. Section 3 summarizes works on
applying model-based techniques to manufacturing testing. Section 4 describes the
proposed approach. Section 5 reports experimental results. Section 6 suggests a
possible approach improvement. Section 7 discusses the results of the work and
concludes the paper.

2. Preliminaries

Let V be a finite set of variables. A valuation is a function that associates each
variable with a value from the corresponding domain. Let D}, be the set of all possible
valuations of V.

A guard is a Boolean function defined on valuations: D, = {0, 1}. An action is a
transformation of valuations: Dy, — Dy,.. A pair y — §, where y is a guard and § is an
action, is called a guarded action. 1t is implied that there is a description of every

248

Kamkun A.C., JIe6ene M.C., Cmonos C.A., Yynmiko M.M. I'eHepatust TecTOB tst LppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBEIX Mojeneil. Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 1., cTp. 247-256.

function in an HDL-like language (thus, we can reason not only about semantics, but
about syntax as well).
An extended finite state machine (EFSM) is a tuple M = (Sy, Vi, Ty), Where Sy, is a
set of states, Vyy = (Iy U Oy U Ry,) is a set of variables, consisting of inputs (Iy),
outputs (Oy) and registers (Ry;), and Ty, is a set of transitions. A transition t € Ty, is
atuple (s, ¥; = O, Si), where s; and s; are respectively the initial and the final state
of t, whereas y, and &, are respectively the guard and the action of t.
A pair (s,v) € Sy X Dy,, is referred to as a configuration. A transition t is said to be
enabled in a configuration (s,v) if s, = sand y,(v) = 1.
An EFSM operates in discrete time. In the beginning, it resets the configuration:
(s,v) = (sg,vp), where (sg,Vv,) is a predefined configuration. On every tick, it
computes the set of enabled transitions:

Tp = {t € Tyl(sc = s) A (y:(v) = D}.
A single transition t € Ty (chosen nondeterministically) fires: (s, v) = (s{, 6t(v)).
A netlist is a tuple N = (Vy, Gy, Ly), where Vy is a set of variables, Gy is a set of
gates, and Ly is a set of latches. A gate g € Gy is a tuple (Ig, og,fg), where [; € Vy
and o, € Vy are respectively the inputs and the output of g, and f;: Dom,; — {0,1}
is the function of g. A latch [€ Ly is a tuple (i;, 0;), where i; € Vy and o; € V), are
respectively the input and the output of L.

A netlist operates as follows. In the beginning, it initializes the latches’ outputs with
some predefined values. On every tick, it computes the gates’ output values based on
the input values and transmits the latches’ input values to the outputs.

To compare test generation methods, the well-known stuck-at fault model is used. We
consider the following variation of the model. There is a stuck-at fault if some gate is
“corrupted” so as its function, which is not identically equal to a constant, always
returns a constant, either 0 (stuck-at-0) or 1 (stuck-at-1).

3. Related work
This section overviews the existing model-based test generation methods aimed at
covering stuck-at faults.

In [8], an approach to functional test generation for VHDL designs is proposed. The
method consists of the following stages:

1) translation of an HDL description into binary decision diagrams (BDD);
2) insertion of a stuck-at fault into the BDD;
3) generation of a distinguishing test for the original BDD and the faulty one.

For the HDL-to-BDD translation, the approach uses a method described in [9].

In [10], a combined approach is suggested. It uses two kinds of models: a high-level
decision diagram (HLDD) and an EFSM. Both models are automatically extracted
from an HDL description. HLDD is a generalization of BDD: non-terminal nodes of

249

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

a diagram are marked not only by 0 and 1 but by arbitrary expressions. First, a test is
generated that covers all branches of the diagram. Then, the test is passed to the EFSM
simulator to measure the transition coverage. To cover the uncovered EFSM
transitions, a special backjumping technique is applied.

In [6], another EFSM-based approach is proposed. It fixes several issues of the
previously mentioned method and uses a different EFSM extraction technique. The
experiments have shown that new tests are shorter, while code coverage is the same.
In [7], the method [6] is experimentally compared with another one, which uses the
ABC equivalence checker [11] to generate a distinguishing sequence for two BLIF
descriptions. The EFSM-based method demonstrates higher HDL code coverage and
shorter tests, while the ABC-based one achieves higher stuck-at fault coverage.

4. Proposed approach

In this paper, we continue our work on applying the model-checking techniques for
test generation [12]. The approach allows achieving high HDL code coverage with
very short tests. Our current goal is to evaluate how good the approach is in terms of
the stuck-at-fault coverage. The method flow is shown in Fig. 1.

System model
(HLDD)

A

A
HDL description Internal . Model checker Tests
representation
A

\

Coverage model
(EFSM)

Fig. 1. Model checking-based approach to test generation for HDL descriptions

The method uses two models extracted from an HDL description: a system model,
which is based on the HLDD formalism, and a coverage model, which utilizes the
EFSM concept (see [12] and [13] for more details). The system model represent the
system functionality, while the coverage model defines a set of conditions, so-called
coverage items, to be covered by tests.

Let us say a few words about the coverage model. For each HDL process, a separate
EFSM is extracted. The EFSM states are mutually disjoint constraints on state-like
registers (SLR). The SLR are chosen automatically with the help of dataflow-based
heuristics. The EFSM transitions are constructed from the process execution paths.
Coverage items are reachability conditions for the EFSM transitions. Let s be an
EFSM’s state, c(s) be the corresponding constraint, and t be an outgoing transition,
i.e. s = s. In terms of the linear temporal logic (LTL), the reachability condition is
as follows: F{c(s) A y;}, where F{x} means that x will eventually be true.

In accordance with [12], the system model and the coverage items in the negated form
(=F{c(s) Ay.}), are translated into the input format of a model checker. For each

250

Kamkun A.C., JIe6ene M.C., Cmonos C.A., Yynmiko M.M. I'eHepatust TecTOB tst LppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBEIX Mojeneil. Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 1., cTp. 247-256.

item, the model checker constructs a counterexample, i.e. an execution that violates
the corresponding formula. Since coverage is formulated in the negated form, the
counterexamples are executions that reach the related EFSM transitions.
Counterexamples are translated into testbenches and executed by an HDL simulator.
The method is aimed at covering EFSM transitions. However, being rather flexible,
it can be applied to various coverage models.

5. Experiments
The proposed approach has been implemented in the Retrascope 0.2.1 tool [14]. The
implementation uses the Fortress library [15] and the nuXmv model checker [16].

The method has been tested on some designs from the ITC’99 benchmark [17]. Three
test generation methods were compared:

1) the method described in this paper (nuXmv);
2) the method based on EFSM traversal (RETGA) [6];
3) the method based on equivalence checking (ABC) [7].

The third method uses the ABC tool [11] to generate distinguishing sequences for
design represented in the BLIF format.

Two metrics were used for test comparison: the length in ticks and the number of
killed mutants (detected faults).

To generate mutants, a DTESK prototype was used. Given a fault model and an HDL
description, the tool generates a number of mutants along with testbenches. Each
testbench contains the original design and the mutant; it reads input values from the
file, passes them to both designs, and compares the outputs’ values; if there is a
mismatch at some tick, then the mutant is considered to be killed.

Table 1 shows information about the ITC’99 designs: the source code size (in lines
of code), the system model size, and the number of stuck-at fault mutants.

Table 1. ITC’99 designs

Design Source code | System model Number of mutants
BO1 102 207 88

B02 70 143 48

B04 101 809 1342

B06 127 442 94

B07 92 370 784

B08 88 315 324

B09 100 263 284

Table 2 shows the test-related information: the length in ticks and the percentage of
the killed mutants.

251

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

Table 2. Test generation methods comparison

Design A{? C RE TGA m.tva ABC RETGA | nuXmy
(ticks) (ticks) (ticks) (%) (%) (%)

BO1 227 49 37 90.91 98.86 90.9

B02 86 33 28 0 0 0

B04 — 36 56 — 99.93 99.93

B06 100 76 63 100 100 100

B07 133 166 162 0 0 0

BO08 2745 52 31 98.77 79.94 44.44

B09 777 231 55 97.18 0 0

Comparison results are as follows. For some designs (B02 and B07), all methods
achieve 0% stuck-at fault coverage. Such designs are classified as untestable [18];
their outputs are calculated in such a way that the internal stuck-at faults cannot affect
their outputs. For some designs (BO1, B04, and B06), the proposed method reaches
the same or comparable stuck-at fault coverage as the leading one. Note that in such
cases model-checking-based tests are usually shorter than tests produced by other
methods. Finally, there are some designs (B08 and B09), where both nuXmv and
RETGA reach lower stuck-at fault coverage than ABC. Additional efforts are needed
to cope with this issue. A possible improvement is described below.

6. Future improvements
In our opinion, the main drawback of the proposed method and similar approaches is
a lack of fault propagation. Broadly speaking, an EFSM model contains a stuck-at
fault if some assignment (v := RHS) of some transition is “corrupted” (RHS is
substituted by 0 or 1). To activate the fault, a test should cause the transition to fire;
however, this is not enough. The erroneous values should be propagated to the model
outputs. Thus, the coverage model should be extended.
Given an EFSM model M, let us make some definitions. A variable v is defined in a
transition x (v € Def,) if §, contains an assignment to v. A variable v is used in a
transition y (v € Use,) if v appears either in y,, or in the right-hand side of §,. A
transition y depends on a transition x (y € DEP(x)) if Def, N Use,, # @. Depending
on how v is used, in y,, or in §,, they say about a control dependency (y € DEF,(x))
or a data dependency (y € DEP;(x)) respectively.
A propagation path for a transition t is a sequence of transitions {t;}7-, such that:

1) ty=t;

2) tiy1 € DEPy(t;), forall0 <i < n;
3) Def, N0y # @.

252

Kamkun A.C., JIe6ene M.C., Cmonos C.A., Yynmiko M.M. I'eHepatust TecTOB tst LppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBEIX Mojeneil. Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 1., cTp. 247-256.

Given a propagation path {(s;,¥; = &8;,5{)}/=,, the propagation condition can be
expressed as follows:

¢ = F{(c(s0) Avo) AF{(c(s0) Av2) AF(.Flc(s)) Ay} - 1}
Note that the notion of propagation path and the propagation condition can be refined
so as to avoid variable redefinitions and other undesirable effects.
If there are no propagation paths for a given transition, the original coverage item,
@0 = F{c(sy) Ay,}, is removed. If there are multiple propagation paths, two main
strategies can be applied:
1) try all of the propagation paths:
a. split the coverage item ¢, into the set of all possible fault
propagation conditions: {@, ..., @ };
2) try at least one of the propagation paths:
a. replace the coverage item ¢, with the disjunction V%, @y,.

7. Conclusion

The primary scope of this work is reusing functional tests for manufacturing testing.
The paper describes a high-level test generation approach and analyzes whether it is
effective in detecting low-level faults. The approach implements two important
facilities: automatic extraction of models from HDL descriptions and directed test
generation based on model checking. The method is extremely flexible and can be
customized by choosing a proper coverage model. The presented implementation
tends to produce short tests with mediocre stuck-at fault coverage. We think that fault
detection abilities of the approach can be increased by adding fault propagation
conditions into coverage items. This may serve as a topic for future research.

Acknowledgment

The authors would like to thank Russian Foundation for Basic Research (RFBR). The
reported study was supported by RFBR research project Ne 15-07-03834.

References

[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003, 478 p. DOI: 10.1007/978-1-4615-0302-6.

[2]. Ivannikov V.P., Kamkin A.S., Kossatchev A.S., Kuliamin V.V, Petrenko A.K. The Use
of Contract Specifications for Representing Requirements and for Functional Testing of
Hardware Models. Programming and Computer Software, 33(5), 2007, pp.47-61.
DOI: 10.1134/50361768807050039.

[3]. Mishra P., Dutt N. Specification-Driven Directed Test Generation for Validation of
Pipelined Processors. ACM Transactions on Design. Automation of Electronic Systems,
13(3), 2008, pp 1-36. DOI: 10.1145/1367045.1367051.

[4]. Botros N.M. HDL Programming Fundamentals: VHDL and Verilog. Charles River
Media, 2005, 506 p.

253

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

[5]. Berkeley Logic Interchange Format (BLIF). Berkeley, U.C., Oct Tools Distribution 2,
1992, pp. 197-247.

[6]. Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test Generation for Hardware Designs.
Proceedings of ISP RAS, 2015, 27(3), pp. 161-182. DOI: 10.15514/ispras-2015-27(3)-12.

[7]. Smolov S., Lopez J., Kushik N., Yevtushenko N., Chupilko M., Kamkin A. Testing Logic
Circuits at Different Abstraction Levels: An Experimental Evaluation. Proceedings of
IEEE East-West Design Test Symposium (EWDTS), 2016, pp.189-192.
DOI: 10.1109/ewdts.2016.7807687.

[8]. Ferrandi F., Fummi F., Gerli L., Sciuto D. Symbolic Functional Vector Generation for
VHDL Specifications. Proceedings of Design, Automation and Test in Europe Conference
and Exhibition, 1999, pp. 442-446. DOI: 10.1145/307418.307541.

[9]. Minato S. Generation of BDDs from Hardware Algorithm Descriptions. Proceedings of
the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1996, pp. 644-649. DOI: 10.1109/iccad.1996.571340.

[10]. Guglielmo G.D., Fummi F., Jenihhin M., Pravadelli G., Raik J., Ubar R. On the Combined
Use of HLDDs and EFSMs for Functional ATPG. Proceedings of IEEE East-West Design
and Test Symposium (EWDTS), 2007, pp. 503-508.

[11]. Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool.
Proceedings of the Computer Aided Verification Conference (CAV), 2010, pp. 24-40.
DOI: 10.1007/978-3-642-14295-6_5.

[12]. Kamkin A., Lebedev M., Smolov S. An EFSM-Driven and Model Checking-Based
Approach to Functional Test Generation for Hardware Designs. Proceedings of IEEE
East-West Design and Test Symposium (EWDTS), 2016, pp. 60-63.
DOI: 10.1109/ewdts.2016.7807736.

[13]. Smolov S., Kamkin A. A Method of Extended Finite State Machines Construction From
HDL Descriptions Based on Static Analysis of Source Code. St. Petersburg State
Polytechnical University Journal. Computer Science, Telecommunications, 1(212), 2015,
pp. 60-73 (in Russian). DOI: 10.5862/jcstcs.212.6.

[14]. Retrascope site. http://forge.ispras.ru/projects/retrascope

[15]. Fortress library site. http://forge.ispras.ru/projects/solver-api

16]. Cavada D., Cimatti A., Dorigatti M., Griggio A., Mariotti A., Micheli A., Mover S.,

Roveri M., Tonetta S. The nuXmv symbolic model checker. Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), LNCS, No.8559, 2014,
pp. 334-342. DOI: 10.1007/978-3-319-08867-9_22.

7]. ITC'99 benchmark site. http://www.cad.polito.it/tools/itc99.html

8]. Liu X., Hsiao M.S. On Identifying Functionally Untestable Transition Faults. Proceedings

of the Ninth IEEE International High-Level Design Validation and Test Workshop, 2004,
pp. 121-126. DOI: 10.1109/h1dvt.2004.1431252.

254

Kamkun A.C., JIe6ene M.C., Cmonos C.A., Yynmiko M.M. I'eHepatust TecTOB tst LppoBOii anmapaTypbl Ha OCHOBE
BBICOKOYPOBHEBEIX Mojeneil. Tpyowt UCII PAH, Tom 29, Bbim. 4, 2017 1., cTp. 247-256.

FeHepauusa TecToB Ans uudpoBon annapaTypbl Ha OCHOBe
BbICOKOYPOBHEBbIX MoAeNen

'M.M. Yynunxo <chupilko@ispras.ru>
123 4.C. Kamxun <kamkin@jispras.ru>
' M.C. Jlebeoes <lebedev@ispras.ru>
1'C.A. Cmonos <smolov@ispras.ru>
' Uncmumym cucmemmnoz2o npozpammuposanus PAH,
109004, Poccus, 2. Mocksa, yi. Anexcanopa Conscenuyvina, 0. 23.
2 Mockosckuii 2ocyoapcmeennviii ynueepcumem um. M.B. Jlomonocoea,
119991, Poccus, e. Mocksa, Jlenunckue 2opul, 0. 1.
3 Mockoeckuii pusuxo-mexnudeckuti unCmuntym,
141701, Poccus, Mockoeckas 06x., 2. [loneonpyonviii, Uncmumymckuii nep., 0. 9.

AnHoTamus. TecTHpoBaHHUE ammapaTypbl — 3TO INPOILECC, HALEJICHHBII Ha OOHapy>KeHHe
HEHCIIPaBHOCTEH, BHECEHHBIX B MHTETPAJIbHBIE CXEMBI B IIPOLIECCE TPOU3BOACTBA. J{/Is1 OLleHKH
KauecTBa TAaKHX TECTOB HCIOJB3YIOT JIBE OCHOBHbBIE METPUKH: CIIOCOOHOCTH OOHApPYKHUBAaTh
omnOKU (MTOKPHITHE OMIMOOK) UM BpeMsl TECTHPOBaHUS (IJIMHA TecTa). MI3BeCTHO MHOXKECTBO
METOJIOB Te€HEpalluy TECTOB, OJHAKO MacIITaOMPYeMOTO PEIIEHNUs], IPUMEHUMOTO K CIOXKHOM
mudpoBoil anmapaType, HEeT 0 CHX HOp. B naHHOH cTaThe aHAmM3MpyeTcs BO3MOXHOCTD
HCTIONBb30BaHUs (PyHKIIMOHAIBHBIX TECTOB, IOCTPOECHHBIX IO BHICOKOYPOBHEBBIM MOJIEIISIM
(mpexnae Bcero, MOAENSIM YPOBHS PETHCTPOBBIX Iiepenad), IS HHU3KOYPOBHEBOTO
MIPOU3BOJICTBEHHOI0 TECTUPOBaHUs. PaccMaTpuBaeTCsi KOHKPETHBIH METO I'eHepaluy TECTOB,
HCTIONB3YIONINH TeXHUKY INpoBepku Monenelt (model checking). Bxomnolt mudopmarmeit
BbicTynaeT HDL-onucanne. Meton coCTOMT U3 ABYX KJIIOUEBBIX I1Ar0B: OCTPOCHUE MOJENIHN
CHCTEMBI U TIOCTPOECHHE MOJENH MOKPBITHSA. YKa3aHHBIE MOJIEITH aBTOMATHYECKH H3BIEKAIOTCSI
n3 HDL-onucanus. Mozesnb CUCTEMBI NIPEACTABICHA B BUI€ BBICOKOYPOBHEBBIX PEIIAIOLINX
nuarpaMMm. Mogens MOKpBITHS — 3T0 MHOXkecTBO LTL-popmyn, ompenensronux ycaoBus
JOCTHKUMOCTU IIEPEXOJOB PACHIMPEHHOIO KOHEYHOI'O0 aBTOMATa, OHMUCHIBAIOLIEIO CUCTEMY.
ITocTpoeHHbIe MOJIENH TPAHCIUPYIOTCS BO BXOAHON (hopMaT HHCTPYMEHTA POBEPKU MOJEIICH
(model checker), koTopblif Uit KakmoH (OPMYIEI MOIEIM HOKPHITHS TI'€HEPHPYET
KOHTPIPUMEP — BEIMHCICHHE, Hapylamomee 3Ty (OpMyly, TO €CTh IPHBOJISNIEE K
cpabaTeIBAaHUIO COOTBETCTBYIOILETO IMEpexoAa aBToMara. 3HauambHO paccMaTpHBaeMBIit
METOJ NpeaHasHauvaucs Uil TOKpbITHS Bcex myred wucnonHenus HDL-onucanus u
OOHapyXeHHs HEJOCTIJKUMOIO KoJa. OKCIIEpHMEHTAalbHOE CpPaBHEHHME MeEToJa C
CYILECTBYIOIMMH aHAJIOTaMH MOKa3ajo, YTO OH CTPOUT OoJiee KOPOTKHE TECTHI, OJHAKO 3TH
TECTbI JOCTUTAIOT MEHBIIETO YPOBHS MOKPBITHS KOHCTAHTHBIX HEUCIIPABHOCTEH, 4e€M TECTHI,
TIOCTPOCHHBIE C TIOMOIIBIO CIIEIMANILHEIX CPEACTB. B crathe mpemmaraercst MoauUKAIS
METOJa AJsl IPEOJOJICHUS YKa3aHHOIO HE0CTaTKa.

KiroueBbie cjioBa: nudpoBas anmaparTypa; si3blK OIHUCAHUS allapaTyphl; IPOU3BOACTBEHHOE
TECTHPOBaHWE; KOHCTaHTHAas OIIMOKa; BBICOKOYPOBHEBas peIIaloNias JAuarpaMmma;
pacIIMpeHHBI KOHSYHBIH aBTOMAT; IPOBEPKA MOJICIIH; AEPEBO PACIPOCTPAHCHUSL.

DOI: 10.15514/ISPRAS-2017-29(4)-16

Jasa mutupoBanns: Yymmko M.M., Kamxua A.C., Jle6enes M.C., Cmonos C.A. Metox
reHepalny TeCTOB I LM(POBOI annaparypbl, OCHOBaHHBIH Ha BBICOKOYPOBHEBBIX MOJIEIIAX.

Tpyowr HUCII PAH, tTom 29, Bbim. 4, 2017 1., ctp. 247-256 (Ha anrnumiickom s3bike). DOI:
10.15514/ISPRAS-2017-29(4)-16

255

Chupilko M.M., Kamkin A.S., Lebedev M.S., Smolov S.A. Test Generation for Digital Hardware Based on High-Level
Models. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 247-256.

Cnucok nutepaTtypbl

[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Springer,
2003, 478 p. DOI: 10.1007/978-1-4615-0302-6.

[2]. UBannukoB B.I1.,, Kamkun A.C., KocaueB A.C., Kymsmun B.B., Ilerpenko A.K.
Hcnonp3oBaHue KOHTPAKTHBIX cClieHU(pUKALMI A7 TpeacTaBieHHs TPeOOBaHUN U
(bYHKIMOHATIBHOTO TECTHPOBaHMs Mojeleil ammaparypsl. IIporpammupoBatue, T. 33,
Ne 5,2007 r., ctp. 272-282.

[3]. Mishra P., Dutt N. Specification-Driven Directed Test Generation for Validation of
Pipelined Processors. ACM Transactions on Design. Automation of Electronic Systems,
13(3), 2008, pp 1-36. DOI: 10.1145/1367045.1367051.

[4]. Botros N.M. HDL Programming Fundamentals: VHDL and Verilog. Charles River
Media, 2005, 506 p.

[5]. Berkeley Logic Interchange Format (BLIF). Berkeley, U.C., Oct Tools Distribution 2,
1992, pp. 197-247.

[6]. Melnichenko 1., Kamkin A., Smolov S. An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test Generation for Hardware Designs.
Proceedings of ISP RAS, 2015, 27(3), pp. 161-182. DOI: 10.15514/ispras-2015-27(3)-12.

[7]. Smolov S., Lopez J., Kushik N., Yevtushenko N., Chupilko M., Kamkin A. Testing Logic
Circuits at Different Abstraction Levels: An Experimental Evaluation. Proceedings of
IEEE East-West Design Test Symposium (EWDTS), 2016, pp.189-192.
DOI: 10.1109/ewdts.2016.7807687.

[8]. Ferrandi F., Fummi F., Gerli L., Sciuto D. Symbolic Functional Vector Generation for
VHDL Specifications. Proceedings of Design, Automation and Test in Europe Conference
and Exhibition, 1999, pp. 442-446. DOI: 10.1145/307418.307541.

[9]. Minato S. Generation of BDDs from Hardware Algorithm Descriptions. Proceedings of
the 1996 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1996, pp. 644-649. DOI: 10.1109/iccad.1996.571340.

[10]. Guglielmo G.D., Fummi F., Jenihhin M., Pravadelli G., Raik J., Ubar R. On the Combined
Use of HLDDs and EFSMs for Functional ATPG. Proceedings of IEEE East-West Design
and Test Symposium (EWDTS), 2007, pp. 503-508.

[11]. Brayton R., Mishchenko A. ABC: An Academic Industrial-Strength Verification Tool.
Proceedings of the Computer Aided Verification Conference (CAV), 2010, pp. 24-40.
DOI: 10.1007/978-3-642-14295-6 5.

[12]. Kamkin A., Lebedev M., Smolov S. An EFSM-Driven and Model Checking-Based
Approach to Functional Test Generation for Hardware Designs. Proceedings of IEEE
East-West Design and Test Symposium (EWDTS), 2016, pp. 60-63.
DOI: 10.1109/ewdts.2016.7807736.

[13]. Cmomnos C., Kamkun A. MeToJ NOCTPOCHUS PACHIMPEHHBIX KOHEYHBIX aBTOMATOB IO
HDL-onucanuio Ha OCHOBE CTaTMYECKOro aHaiu3a koja. HaywyHo-TexHuueckue
Bepomoctr CIIOI'TTY. Mndopmaruka. TenexommyHnukanuu. Yupasnenne, 1(212), 2015,
ctp. 60-73. DOIL: 10.5862/jcstcs.212.6.

[14]. Ctpannna wuncTpymMeHTa Retrascope. http://forge.ispras.ru/projects/retrascope (mara
obpamenust: 18.07.17)

[15]. Ctpanuma Oubmmorexn Fortress. http://forge.ispras.ru/projects/solver-api (mata
obpamenust: 18.07.17)

[16]. Cavada D., Cimatti A., Dorigatti M., Griggio A., Mariotti A., Micheli A., Mover S.,
Roveri M., Tonetta S. The nuXmv symbolic model checker. Proceedings of the 16th
International Conference on Computer Aided Verification (CAV), LNCS, No.8559, 2014,
pp. 334-342. DOI: 10.1007/978-3-319-08867-9_22.

[17]. Ctpanuna Habopa tectoB ITC'99. http://www.cad.polito.it/tools/itc99.html (mata
obpamenus: 18.07.17)

[18]. Liu X., Hsiao M.S. On Identifying Functionally Untestable Transition Faults. Proceedings
of the Ninth IEEE International High-Level Design Validation and Test Workshop, 2004,
pp. 121-126. DOI: 10.1109/h1dvt.2004.1431252.

256

