Debugger for Real-Time OS: Challenges of
Multiplatform Support

13 A.N. Emelenko <emelenko@ispras.ru>
12K A. Mallachiev <mallachiev@ispras.ru>
L23 N.V. Pakulin <npak@jispras.ru>
! Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
3 Moscow Institute of Physics and Technology (State University),
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia

Abstract. In this paper, we present our work in developing a debugger for multiplatform real-
time operating system Jet OS designed for civil airborne avionics. This system is being
developed in the Institute for System Programming of the Russian Academy of Sciences, and
it is designed to work within Integrated Modular Avionics (IMA) architecture and implement
ARINC-653 API specification. Jet OS supports work on different architectures such as
PowerPC, MIPS, x86 and ARM. Debugger for a real-time OS is an important tool in software
development process, but debugger for RTOS is more than typical debugger used by desktop
developers and we must take into account all specific features of such debugger. Moreover, we
must support debugging on many platforms. However, debugger's code has to be developed
for each platform and we faced the problem of porting our debugger to different architecture
without developing it from scratch. In addition, the debugger must support work within
emulators, because it can expand developers’ capabilities and increase their efficiency. In this
paper, we present the architecture of the debugger for JetOS real-time operating system, which
provides capabilities for porting our debugger to a new platform in little to no time, and discuss
the challenges imposed by multiplatform support in the OS.

Keywords: debugger; operating systems; multiplatform
DOI: 10.15514/ISPRAS-2017-29(4)-20

For citation: Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS:
Challenges of Multiplatform Support. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 295-302. DOI: 10.15514/ISPRAS-2017-29(4)-20

295

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302

1. Introduction

Application debugger is an indispensable tool in developer’s hands. But debugger in
areal-time operating system is more than just plain debugger. In this paper we present
an on-going project on debugger development for JetOS, a real-time multiplatform
operating system that is being developed in the Institute for System Programming of
the Russian Academy of Sciences.

JetOS is a prototype operating system for civil airborne avionics. It supports
PowerPC, MIPS and x86 platforms. Also, it is designed to work within Integrated
Modular Avionics (IMA) architecture and implements ARINC-653 API
specification, the de-facto architecture for applied (functional) software.

The primary objectives of ARINC 653 are deterministic behavior and reliable
execution of the functional software. To achieve this ARINC-653 imposes strict
requirements on time and space partitioning. For instance, all memory allocations and
execution schedules are pre-defined statically.

The unit of partitioning in ARINC-653 is called partition. Every partition has its own
memory space and is executed in user mode. Partitions consist of one or more
processes, operating concurrently, that share the same address space. Processes have
data and stack areas and they resemble well-known concept of threads.

Embedded applications might be run in two different environments: in an emulator
and on the target hardware. In our project, we use QEMU system emulator. Although
QEMU has its own debugger support, its functionality proved to be insufficient for
debugging embedded applications. Therefore, we implemented a debugger not only
for the target hardware, but for the emulator as well.

2. Specific Features of Debugger for RTOS

Developing a debugger for a real-time OS is not a simple task. During developing,
we faced many features of the debugger for RTOS compared to typical debuggers
used by desktop developers.

Firstly, there are many interacting processes, which need to be debugged
simultaneously. Therefore, our debugger must support capability to switch between
them. Moreover, it needs to support work with overlapping virtual addresses space.
Secondly, it is impossible to run the debugger on the same device, where the system
runs, because of the lack of on-board resources and lack of interactive facilities.
That’s why the debugger must be remote.

Thirdly, we must support debugging not only for application developers but also for
software developers, such as drivers or kernel developers. As a consequence, the
debugger can work with a highly privileged kernel and low-privilege application
code.

In addition, the debugger must support work within emulators, because it can expand
developers’ capabilities and increase their efficiency.

Moreover, JetOS can be run on different processors, because it supports PowerPC,
x86 and MIPS architecture. Consequently, the debugger has to run on these platforms

296

Emenenko A.H., Mamnaunes K.A., ITakynua H.B. Otnaaduk Juist oneparuoHHON CUCTEMBI PEalIbHOIO BPEMEHH:
npobaems! MyneTumatGopmertoctu. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 295-302

too. Thus, the debugger must consider all features of all platforms and emulators, and
provide full functionality and correct execution of each process.

In order to meet this requirement, we choose GDB (GNU debugger) for the client part
ofthe debugger, which communicates with the client part of the debugger over a serial
port.

3. Related Works

We are not the first to consider the problem of debugging multiplatform RTOS. There
are many types of debuggers: some of them don’t have code inserted in the system,
such as CodeWarrior, others use remote debugging, for example, the debugger for
Pistachio microkernel; besides, there is RTOS debugger for VxWorks.

Here we briefly consider some debuggers for embedded OSes and their primary
features.

3.1 CodeWarrior

CodeWarrior [3] is an IDE (integrated development environment) published by
Freescale Semiconductor. It is designed to edit, compile and debug software for
several microcontrollers and microprocessors (Freescale ColdFire, ColdFire+,
Kinetis, Qorivva, PX, Freescale RS08, Freescale S08, and S12Z) and digital signal
controllers (DSC MC56F80X and MC5680XX) used in embedded systems. It uses
JTAG or BDM interface to control the target system.
CodeWarrior enables the user to debug real-time embedded applications, as well as
manipulate the source code to display and change the contents of variables, arrays,
and data structures. The developer can also use the debugger to work at the hardware
level if necessary.
Via CodeWarrior user can:

e View and change memory, registers and variables.

e Set watchpoints.

e Set breakpoints and conditional breakpoints.

e Break on exceptions.

e Track variables

3.2 VxWorks

VxWorks [5] is a real-time operating system (RTOS) developed as proprietary
software by Wind River of Alameda, California, US. It supports Intel (x86, including
the new Intel Quark SoC and x86-64), MIPS, PowerPC, SH-4, and ARM
architectures. Also, WxWorks includes Wind River Probe JTAG debugger, which
supports the latest 32-bit and 64-bit processors based on leading architectures, such
as PowerPC, ARM, Intel, and MIPS.

Wind River Probe JTAG debugger is a tool for debug application on bare metall.
Developers use JTAG for target hardware communication and USB to connect to their

297

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302

laptop. Probe provides capabilities to control hardware and software in a compact
USB JTAG emulator.

Probe debugger implements the following set of features:
e Set hardware and software breakpoints
e Run diagnostic scripts
e Single step through code with a correlated source view
e View and modify CPU core and peripheral registers
e View and modify RAM, cache, and non-volatile memory; supports MMU

3.3 L4Ka::Pistachio

L4Ka::Pistachio [4] is the latest L4 microkernel developed by the System
Architecture Group at the University of Karlsruhe. It is the first available kernel
implementation of the L4 Version 4 kernel API, which provides support for both 32-
bit and 64-bit architectures, multiprocessoring, and superfast local IPC. The current
release supports x86-x64 (AMD64/ EM64T, K9 / P4 and higher), x86-x32 (IA32,
Pentium and higher), PowerPC 32bit (IBM 440, AMCC Ebony / Blue Gene P).

Pistachio kernel uses kdbg debugger. The debugger directs its I/O via the serial line
or the keyboard/screen. It is a local debugger and does not support remote debugging
mode, therefore it has a very limited amount of functions.

Debugger for Pistachio can:

e Set breakpoints

e Single step

e Dump memory

e Read registers
Debugger for L4Ka::Pistachio supports two platforms, x86 and PowerPC. It is
realized by dividing debugger's code into platform specific and independent parts.
Architecture dependent part of the debugger includes:

e Registers printing

e Single step support

e Memory writing

e TLB printing

e Breakpoints setting

4. Debugger’s Challenges for Multiplatform Support

Our debugger consists of two parts — server and client. We use GDB for the client
part of our debugger and it has the biggest part of architecture independent code.

In general, messaging mechanism between client and server doesn't change — user
communicates with the client, the client sends a special-type packet to the server and
waits for the server's answer. The server receives this message, checks control sum,
which was sent in this packet, and if it matches the message contents, informs the

298

Emenenko A.H., Mamnaunes K.A., ITakynua H.B. Otnaaduk Juist oneparuoHHON CUCTEMBI PEalIbHOIO BPEMEHH:
npobaems! MyneTumatGopmertoctu. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 295-302

client that the message was accepted for processing. Then the server performs the
action described in the packet and sends its own packet to the client. Understanding
of what the client wants from the server is a part of architecture independent code in
OS because almost all client requests are standardized, but their execution depends
on current hardware.

We can divide our server part of the debugger into 2 parts as shown in Fig.1:

SERVER PART

Frontend

| Platform specific |

k& Architecture Independent part

\ 7

— 0 > T
A

A 4 Backend

— Z2m—r N

Fig. 1. Debugger’s architecture.
4.1 Frontend

This part parses packets, checks control sum, calls the needed function and sends a
reply.

Although almost all client-server packets are architecture independent, such requests
as registers read/write depend on the target hardware. Therefore, our parser must
know not only which architecture is used, but also know the type of packet the client
wants to receive, for example, if the client wants to read all registers, the server must
send 70 registers on PowerPC and 72 on MIPS.

4.2 Backend

This part of the debugger considers all platform capabilities and uses all available
resources.

The largest part of target specific code is responsible for setting breakpoints,
watchpoints, single step and read/write in memory. To implement this opportunity
not only do we need special code in server part, but we must also change exception
handler so that it could distinguish between debugger and regular interrupts.

299

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302

For example, the single step function is realized in PowerPC architecture via special
debug register, used only in this processor. Moreover, breakpoint function needs to
set trap instruction where the user wants: for x86 architecture, this is ‘int3” instruction,
for MIPS — ‘break’ instruction.

The possibility of debugging applications not only on bare metal but also in
emulators, such as QEMU, is also our primary goal. It adds some changes to our
realization. For example, there are no debug registers in QEMU for PowerPC
architecture, which is used for single step realization on bare metal. Consequently,
we need special server part for each realization — on bare metal and QEMU.

5. Debugger’s Capabilities

As mentioned above, all debugger's capabilities are available for all supported
platforms — x86, PowerPC and MIPS.

5.1 Setting Breakpoints in Partitions and Kernel

Control execution of partitions and kernel is a key feature of debugging. It provides
capabilities to more adapted debugger control mechanisms. Moreover, our system
supports work with overlapping virtual address spaces, which means that debugger
must correctly translate it into physical address.

5.2 Execute the Application Step-by-Step

Run application step by step is a convenient way to control system state and finding
bugs. However, next instruction in code might not be the next executable extraction,
for example, because of interrupt. Therefore, user can choose to stop on next
instruction in code via disabling interrupts or on next executable instruction via
platform capabilities.

5.3 Inspect the Application State

In each moment of time, user might want to inspect system state, i.e. memory,
registers, stack trace, and threads state.

5.4 Setting Watchpoints

Watchpoints provide a great opportunity to control system state. The developer can
use watchpoints to stop execution whenever the value of an expression changes,
without having to predict a particular place where this may happen.

6. Debugger’s Portability

As already mentioned, JetOS is being developed now, so we don’t know the final
count of platforms which our system will have to support.

To port our debugger on a new platform, we need only to change the process specific
part of the frontend and create the backend part. All other frontend parts are the same
for all processes and platforms.

It is easy to imagine the amount of work needed to port the debugger to a new platform
with the help of these values:

300

Emenenko A.H., Mamnaunes K.A., ITakynua H.B. Otnaaduk Juist oneparuoHHON CUCTEMBI PEalIbHOIO BPEMEHH:
npobaems! MyneTumatGopmertoctu. Ipyost UCIT PAH, Tom 29, Beim. 4, 2017 1., ctp. 295-302

In PowerPC server part consists of over 2000 lines of code:
e Over 1700 — frontend part
o 1600 — architecture independent part
o 100 — platform specific part
e Over 300 — backend part

This separation provides capabilities for porting our debugger to a new platform in
little to no time.

7. Conclusion

In this paper, we presented the architecture of remote debugger for JetOS, which
included architecture independent code (frontend part) and platform specific code
(backend part). This architecture provides capabilities for porting debugger to a new
architecture as soon as possible.

One of the next goals is to port our debugger to ARM platform, which support is
being developed now.

References

[1]. Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015
http://www?2 lauterbach.com/doc/rtosvxworks.pdf

[2]. Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
http://www?2 lauterbach.com/pdf/rtos_vxworks.pdf

[3]. Freescale Semiconductor, Inc. CodeWarrior Debugger, December 2, 2004
http://www.nxp.com/assets/documents/data/en/reference-manuals/Engine PPCRM.pdf

[4]. System Architecture Group University of Karlsruhe. “The L4Ka::Pistachio Microkernel”.
May 1, 2003 http://www.l4ka.org/l4ka/pistachio-whitepaper.pdf

[5]. Wind River Systems, Inc “VxWorks Product Overview”, March 2016
http://www.windriver.com/products/product-overviews/VxWorks-Product-Overview-
Update.pdf

[6]. Free Software Foundation, Inc. “Debugging with gdb: the gnu Source-Level Debugger”,
The Tenth Edition

OTtnapguuk ansa onepauyuoHHON CUCTEMbI pearibHOro
BpeMeHun: Npobnembl MynbTUNIaToOpMeHHOCTHU

L3 A.H. Emenenxo <emelenko@ispras.ru>
L2 K. A. Mannauues <mallachiev@ispras.ru>
L23 H B. Haxymun <npak@ispras.ru>
'Uncmumym cucmemmnozo npozpavmuposanus PAH,

109004, Poccus, e. Mocksa, yn. A. Conxcenuyvina, 0. 235.
2Mockosckuii zocyoapcmeennbviii yuueepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue 2opot, 0. 1.

SMockosckuil puzuxo-mexnuueckuti uHCMumym (20cy0apcmeenvlii yHusepcument),
141701, Mockosckas obracme, 2. [oneonpyouwiil, Hncmumymckuil nepeynok, 0.9.

301

Emelenko A.N., Mallachiev K.A., Pakulin N.V. Debugger for Real-Time OS: Challenges of Multiplatform Support.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 295-302

AHHoOTammsi. B 3Toi cTraTbe MBI pacckaxeM O IpPOEKTe MO pa3paboTKe OTIaguuKa s
MYJTBTHILIAT(OPMEHHON OIEepaIiMOHHOI CHCTeMBI peansHoro Bpemenn JetOS, cozmanHoM uist
Tpa’kAaHCKUX aBUAIIMOHHBIX cucTeM. OHa MpeiHa3HaueHa [l paboThl B pAMKaX apXUTEKTYpBbI
Wnrerpuposannoit Moaynashoit ABuonnku (MMA) u peannzyer ARINC 653 cnieundukarmio
API. DOra omepanuonHas cucrema paspalaTbiBaeTcss B HHCTHTYTE CHCTEMHOTO
nporpammupoBanuss PAH, M BaxHBIM IIaromMm B €€ CO3JaHMU SIBIsIETCA pa3paboTka
HHCTPYMEHTa JUIL OTJaJKH II0JIb30BAaTEJIbCKUX TIPWIOKEHUH. B aTol crartee Oymyr
paccMOTpEeHbI IPOOIeMbI 0COOCHHOCTEH OTJIaUMKa JUIs ONIEPAIMOHHON CHCTEMBI PEaIbHOTO
BPEMEHH W IIOKa3aHbl METOMBI, KOTOPBIMH JJOCTHUTAETCSI €T0 MYNBTHINIAT(GOPMEHHOCTB, a
TaroKe JIeTKast IepeHOCUMOCTh Ha HOBYIO IutatopMy. bosee Toro, G611 paccMOTpEHE! ApyTHe
OTJIQYMKY I BCTPAHBAEMBIX ONEPAIMOHHBIX cucTeM, Takne kak CodeWarrior, oTinagauku
st WxWorks i L4Ka::Pistachio, a Takxke OblT H3ydeH X GpyHKUMOHAT. B 3akimoueHue Mbl
NpeACTaBUM Hall OTJag4uK, KOTOPBII MoxeT paborath kKak B smyimirope QEMU,
UCIIONB3YEMOM [UISl SMYJSIIMU OKpyKeHHs and JetOS, Tak u Ha IeneBoil MallMHE Ha BCEX
noAJepKUBaeMbIX IIaTGopmax. IIpeacTaBneHHBII OTIAMUUK SABIAETCS YyHAI€HHBIM U
NIOCTPOCH € HCIOJb30BaHUEM CTpyKTypsl GDB, HO coumepKUT psl pacIIUpEHHH,
crerM(UIHBIX IS OTJIAJKU BCTPOCHHBIX HpmiokeHnil. Cama CTpyKTypa OTiIaguuka ObLia
pasjeneHa Ha apXUTEKTYPHO 3aBHCHMBIC M HE3aBHCHMBIC YacTH, YTO IOMOTaeT OOJIer4nuTh
NIepeHOC OTJIA[YMKa Ha HOBYIO IuatopMy. B To ke BpeMs Haml OTJIaJUUK YIOBIETBOPSCT
GONBIIMHCTBY TPeOOBaHUH, HalaraeMelX K OTIAAYMKY ONEPAIMOHHON CHCTEMBI PEalbHOTO
BPEMEHH, a TAKXKe YK€ UCIIONB3YeTCs pa3padoTYNKaMy pritokeHui s Jet OS.

KiroueBble €10Ba: 0TIaJ4UK; ONEPALUOHHBIE CUCTEMBL; OIIEPALIMOHHAS CUCTEMA PEalbHOIO
BPEMEHH; MyJIbTUILIAT)OPMEHHOCTS.

DOI: 10.15514/ISPRAS-2017-29(4)-20

Jas nutupoBanusi: Emenenko A.H., Mamnauue K.A., Ilakynmua H.B. Otnaguuk ans
OTIEPAOHHON CHCTEMBI PEATFHOTO BPEMEHH: MPOOIIEMBI MYIbTUILIATGOpMEHHOCTH. Tpyobt
HUCII PAH, tom 29, Bem. 4, 2017 r., crtp. 295-302 (ma anrmmiickom s3bike). DOI:
10.15514/ISPRAS-2017-29(4)-20

Cnucok nutepatypbl

[1]. Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015
http://www?2 lauterbach.com/doc/rtosvxworks.pdf

[2]. Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
http://www?2 lauterbach.com/pdf/rtos_vxworks.pdf

[3]. Freescale Semiconductor, Inc. CodeWarrior Debugger, December 2, 2004
http://www.nxp.com/assets/documents/data/en/reference-manuals/Engine PPCRM.pdf

[4]. System Architecture Group University of Karlsruhe. “The L4Ka::Pistachio Microkernel”.
May 1, 2003 http://www.l4ka.org/l4ka/pistachio-whitepaper.pdf

[5]. Wind River Systems, Inc “VxWorks Product Overview”, March 2016
http://www.windriver.com/products/product-overviews/VxWorks-Product-Overview-
Update.pdf

[6]. Free Software Foundation, Inc. “Debugging with gdb: the gnu Source-Level Debugger”,
The Tenth Edition

302

