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Abstract. The verification of many practical systems – in particular, embedded systems – 
involves processes executing over time, for which it is common to use models based on 
temporal logic, in either its linear (LTL) or branching (CTL). Some of today’s most advanced 
automatic program verifiers, however, rely on non-temporal theories, particularly Hoare-style 
logic. Can we still take advantage of this sophisticated verification technology for more 
challenging systems? As a step towards a positive answer, we have defined a translation 
scheme from temporal specifications to contract-equipped object-oriented programs, expressed 
in Eiffel and hence open for processing by the AutoProof program prover. We have applied 
this scheme to a published CTL model of a widely used realistic example, the “landing gear” 
system which has been the subject of numerous competing specifications. An attempt to verify 
the result in AutoProof failed to prove one temporal property, which on further inspection 
seemed to be wrong in the original published model, even though the published work claimed 
to have verified an Abstract State Machine implementation of that model. Correcting the CTL 
specification to reflect the apparent informal attempt, re-translating again to contracted Eiffel 
and re-running the verification leads to success. The LTL-to-contracted-Eiffel process is still 
ad hoc, and tailored to generate the kind of scheme that the target verification tool (AutoProof) 
can handle best, rather than the simplest or most elegant scheme. Even with this limitation, the 
results highlight the need for rigor in the verification process, and (on the positive side) 
demonstrate that the highly advanced mechanized proof technology developed over several 
decades for the verification of traditional programs also has the potential of handling the 
demanding needs of embedded systems and other demanding contemporary developments. 
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1. Overview and main results 
The present article describes a technique for specification and verification of 
stimulus-response requirements using a general-purpose programming language 
(Eiffel) and a program prover (AutoProof [1]) based on the principles of Design by 
Contract [2]. 
Real-time, or reactive, systems are often run by a software controller that repeatedly 
executes one and the same routine and it is specified to take actions at specific time 
intervals or according to external stimuli [3]. This architecture is reasonable when the 
software has to react timely to non-deterministic changes in the environment. In this 
case the program should react to the external stimuli in small steps, so that in the event 
of a new change it responds timely. 
Computation tree logics (CTL) [4] represent a frequent choice when it comes to 
capturing stimulus-response requirements. Although it may be easier to reason about 
requirements using declarative logic like CTL, the reasoning may be of little value 
for the software developer who will implement the requirements. Mainstream 
programming languages are all imperative, and the translation between declarative 
requirements and imperative programs is semi-formal. 
Requirements have to be of imperative nature from the beginning. This would bridge 
the gap in how customers and developers understand them. For a software developer 
it is preferable to reason about the future program without switching to an additional 
formalism, notation and tools not connected to the original programming language 
and the IDE. 
The present article describes a technique to achieve this goal, in particular: 

 Introduces the Landing Gear System (LGS) case study and the LGS baseline 
requirements (Section 2). 

 Generalizes the LGS baseline requirements, maps them to a well-established 
taxonomy, and complements the taxonomy (Section 3). 

 Provides a general scheme for capturing semantics of the stimulus-response 
requirements in the form of imperative program routines with assertions 
(Section 4). 

 Exercises utility of the approach by applying it to an Abstract State Machine 
(ASM) specification of the Landing Gear System case study (Section 5). 

 Concludes the possibility of statically checking a sequential imperative 
program directly against a stimulus-response requirement whose semantics 
is expressed in the same programming language through conditionals, loops, 
and assertions (Section 7). 
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Application of the technique leads to discovery of an error in the published model of 
the LGS ASM [5]. The error is not present in the specification the authors have 
actually used for proving the properties, but the error has found its way into the 
publication. 

2. The landing gear system 
Landing Gear System was proposed as a benchmark for techniques and tools 
dedicated to the verification of behavioral properties of systems [6]. It physically 
consists of the landing set, a gear box that stores the gear in the retracted position, and 
a door attached to the box (Figure 1). The door and the gear are actuated 
independently by a digital controller. The controller reacts to changes in position of a 
handle in the cockpit by initiating either gear extension or retraction process. The task 
is to program the controller so that it correctly aligns in time the events of changing 
the handle’s position and sending commands to the door and the gear actuators. 

3. Stimulus-response requirements 
The LGS case study defines a number of requirements, including several for the 
normal mode of operation (Figure 2). The requirements communicate a common 
meaning of the form: If stimulus holds, then response will eventually hold in the 
future. For requirement R11bis, 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 ⇔
"𝑇ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝑡ℎ𝑒 ℎ𝑎𝑛𝑑𝑙𝑒 𝑖𝑠 𝐷𝑂𝑊𝑁" and 
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ⇔ (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 ⇒ "𝑇ℎ𝑒 𝑔𝑒𝑎𝑟 𝑖𝑠 𝑑𝑜𝑤𝑛 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑜𝑜𝑟 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑"). 
The implication in the definition of response reflects the “and stays DOWN” part of 
the original requirement. In addition to that, requirements R21 and R22 communicate 
something else: 

 Once response holds in the presence of stimulus, and stimulus holds forever, 
response will hold forever. 

3.1 Temporal interpretation of the requirements 
The authors of the LGS ASM specification start with a ground model that satisfies a 
subset of requirements, and then refine the model to satisfy more requirements. The 
present article focuses on their ground model and the corresponding baseline 
requirements it covers (Figure 2). The work expresses the baseline requirements as 
CTL properties. The CTL interpretation assigns precise meanings to the requirements 
by assuming small-step execution semantics of ASM’s. In particular, for requirements 
R11bis and R12bis “the future” means “after a finite number of execution steps”, while 
for R21 and R22 “the future” means “after one execution step”. 
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Fig. 1. Landing set (source: [6]). 

 

(R11bis) When the command line is working (normal mode), if the landing gear 
command handle has been pushed DOWN and stays DOWN, then 
eventually the gears will be locked down and the doors will be seen 
closed. 

(R12bis) When the command line is working (normal mode), if the landing gear 
command handle has been pushed UP and stays UP, then eventually 
the gears will be locked retracted and the doors will be seen closed. 

(R21) When the command line is working (normal mode), if the landing gear 
command handle remains in the DOWN position, then retraction 
sequence is not observed. 

(R22) When the command line is working (normal mode), if the landing gear 
command handle remains in the UP position, then outgoing sequence 
is not observed. 

Fig. 2. Baseline LGS requirements. 

The finite number of steps in R11bis and R12bis may be unacceptably large though for 
a system like an LGS of an aircraft. In particular, flights have some expected 
durations, and the gears have to react to commands in some limited time frame as 
well. The following two major categories of stimulus-response requirements stem 
from the speculations above: 

 If stimulus holds, then response will hold in not more than k execution 
steps. 
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Requirements of this form are also called maximal distance requirements 
[7]. 

 If stimulus holds, then response will hold in exactly k execution steps. 
Requirements of this form are also called exact distance, or delay 
requirements. 

These two categories are not enough though for capturing stimulus-response 
requirements. For example, if according to R11bis the gears are locked down and the 
doors seen closed as the result of the handle staying down, we want this state to be 
stable if the handle stays down. This leads us to stimulusresponse requirements of the 
following form: 

 If response holds under stimulus, it will still hold after one execution step 
in the presence of that stimulus. 
Let us call such requirements response stability requirements. 

It makes sense to complement requirements (R11bis) and (R12bis) with the 
corresponding response stability requirements (Figure 3): not only do we want the 
LGS to respond to a change in the handle’s position, but we also want it to maintain 
the response if the position does not change. 
 

(R11rs) If the gears are locked extended and the doors are closed when the 
landing gear command handle is DOWN, this state will still hold if the 
handle stays DOWN. 

(R12rs) If the gears are locked retracted and the doors are closed when the 
landing gear command handle is UP, this state will
still hold if the handle stays UP. 

Fig. 3. LGS response stability requirements. 

4. Translation of stimulus-response requirements 
Assuming the presence of an infinite loop from until False loop main end that runs a 
reactive system, a temporal stimulus-response requirement (Section 3.1) takes the 
form of a routine with an assertion (check end construct in Eiffel). The authors draw 
this idea from the notion of a specification driver [8] - a contracted routine that forms 
a proof obligation in Hoare logic. AutoProof is a prover of Eiffel programs that makes 
it possible to statically check the assertions. 
 

response_holds_within_k_steps 
-- If stimulus holds, response will hold within k steps. 
  local 
    steps: NATURAL 
  do 
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    if (stimulus) then 
      from 
        steps := 0 
      until 
        response or (steps = k) 
      loop 
        main 
        steps := steps + 1 
      end 
      check response end 
    end 
  end 

Fig. 4. Representation of a maximal distance requirement. Regardless of the actual reason 
for the loop to terminate, the response has to hold if the stimulus held at the entry to the loop. 

 
 
response_holds_in_k_steps 
-- If stimulus holds, response will hold in k steps. 
  local 
    steps: NATURAL 
  do 
    if (stimulus) then 
      from 
        steps := 0 
      until 
        response or (steps=k) 
      loop 
        main 
        steps := steps + 1 
      end 
      check (response and (steps = k)) end 
    end 
  end 

Fig. 5. Representation of an exact distance requirement. Both of the loop exit conditions have 
to hold for the first time simultaneously if the stimulus held at the entry to the loop. 
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4.1 Maximal distance 
In the representation of a maximal distance requirement (Figure 4) the “if stimulus 
then” clause captures the presence of the stimulus before the up-to-k-length execution 
fragment, and the “check response end” assertion expresses the need for the response 
upon completion of the subexecution. The sub-execution may complete for two 
possible reasons: either occurrence of the response or consumption of all of the 
available k steps. In the both cases the response has to hold. 

4.2 Exact distance 
Representation of an exact distance requirement (Figure 5) is very similar to that one 
of a maximal distance, with the “check (response and (steps = k)) end” assertion that 
makes the difference. Regardless of whether the loop terminates because of  
“response or steps = k”, the both have to hold upon the termination. 

4.3 Response stability 
Representation of a response stability requirement (Figure 6) says: whenever response 
holds under stimulus in a state, it will still hold in the presence of the same stimulus 
in the next state. 
 

response_is_stable_under_stimulus 
-- response keeps holding under stimulus. 
  do 
    if (stimulus and response) then 
      main 
      check (stimulus implies response) end 
    end 
  end 

Fig. 6. Representation of a response stability requirement. If response holds under stimulus 
in some state, the response should hold in the next state in the presence of the same stimulus. 

5. Applying the translation scheme to the landing gear example 
The article exercises the approach on the LGS ASM specification, which is 
operational by the definition and thus is a subject for translation into an imperative 
program. For this reason the present section starts with explanation of the rules 
according to which the authors converted the original specification into an Eiffel 
program. 

5.1 Translation of ASM specifications 
An ASM specification is a collection of rules taking one of the following three forms 
[9]: assignment (Section V-A1), do-in-parallel (Section V-A2), and conditional 
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(Section V-A3). If we have general rules for translating these operators into Eiffel 
then we will be able to translate an arbitrary ASM into an Eiffel program. 
An ASM assignment looks as follows: 

𝑓 ൫𝑡ଵ, … , 𝑡൯ ∶= 𝑡 (1) 

 
The semantics is: update the current content of location λ = (f,(a1,..,aj)), where ai are 
values referenced by ti, with the value referenced by t0. 
In Eiffel locations are represented with class attributes, so an ASM’s location update 
corresponds in Eiffel to an attribute assignment. 
An ASM do-in-parallel operation can apply several rules simultaneously in one 
step: 
 

𝑅ଵ|| … || 𝑅 (2) 
 

In order to emulate a parallel assignment in a synchronous setting, one needs to 
assign first to fresh variables and then assign their values to the original ones. For 
example, an ASM do-in-parallel statement 

𝑎, 𝑏 ∶= max(𝑎 − 𝑏, 𝑏) , min (𝑎 − 𝑏, 𝑏) (3) 
 
in Eiffel would look like: 
 

local 
  a_intermediate, b_intermediate: INTEGER 
do 
  a_intermediate := max (a−b, b) 
  b_intermediate := min (a−b, b) 
  a := a_intermediate 
  b := b_intermediate 
end 

 
An attempt to update in parallel identical locations in an ASM corresponds 
semantically to a crash. The translation scheme not only preserves but strengthens 
this semantics: an Eiffel program with two local variables declared with identical 
names will not compile. 
Conditional: An ASM conditional if t then R1 else R2 carries the same meaning as 
in Eiffel, so the translation is straightforward. 
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5.2 An error in the ground model 
Translation of the original LGS ASM specification into Eiffel is publicly available in 
a GitHub repository [10] The error is not handling the situation when the door is 
closing and the handle is pushed down, in which case the ground model will not meet 
requirement (R11bis). To catch this error with the SVR method one needs first to 
introduce it back by commenting out two lines in the “open_door” routine of the Eiffel 
translation: 

open_door 
  do 
    inspect door_status 
    when closed_position then 
      door_status := opening_state 
    -- when closing_state then 
    --   door_status := opening_state 

and then submit routine r11_bis to verification with AutoProof; the verification will 
fail. We have contacted an author of the article that contains the erroneous ASM 
specification, and he admitted the presence of the error. 

5.3 Requirements 
The two classes include the translations of the baseline requirements plus the response 
stability requirements introduced in the present article. We do not discuss all of them 
here: requirements (R11bis) and (R12bis), (R21) and (R22), (R11rs) and (R12rs) are 
pairwise similar, which is why we prefer to pick one from each pair. 
Translation of requirement r11_bis (Figure 7) is an application of the 
response_holds_within_k_steps pattern (Figure 4), where: 

 stimulus equates to: 
is_normal_mode and (handle_status = is_handle_down) 

 response equates to: 
(not (is_normal_mode and (handle_status = is_handle_down))) or 
((gear_status = is_gear_extended) and (door_status = is_door_closed)) 

The idea behind the response is that there may be two reasons for the gear not to 
extend and the door not to close: 

 An abnormal situation that leads to quitting the normal mode. 

 The crew changes their mind and pushes the handle up. 
 

r11_bis 
-- If (is_normal_mode and (handle_status = is_handle_down)) hold and 
remain, 
-- ((gear_status = is_gear_extended) and (door_status = 
is_door_closed)) will hold within 10 steps. 
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  local 
    steps: NATURAL 
  do 
    if (is_normal_mode and (handle_status = is_handle_down)) then 
      from 
        steps := 0 
      until 
        (not (is_normal_mode and (handle_status = is_handle_down))) 
or ((gear_status = is_gear_extended) and 
        (door_status = is_door_closed)) or (steps = 10) 
      loop 
        main 
        steps := steps + 1 
      end 
      check (not (is_normal_mode and (handle_status = 
is_handle_down))) or 
        ((gear_status = is_gear_extended) and (door_status = 
is_door_closed)) end 
     end 
  end 

Fig. 7. Translation of the “r11 bis” requirement. 

r21 
-- If (is_normal_mode and (handle_status = is_handle_up)) holds and 
remains, 
-- (gear_status= is_gear_extending) will hold within 1 step. 
  local 
    steps: NATURAL 
  do 
    if (is_normal_mode and (handle_status = is_handle_up)) then 
      from 
        steps := 0 
      until 
        (not (is_normal_mode and (handle_status = is_handle_up))) or 
        (gear_status = is_gear_extending) or 
        (steps = 1) 
      loop 
        main 
        steps := steps + 1 
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      end 
      check (not (is_normal_mode and (handle_status = is_handle_up))) 
or 
        (gear_status = is_gear_extending) end 
    end 
  end 

Fig. 8. Translation of the “r21” requirement. 

r11_rs 
-- ((gear_status = is_gear_extended) and (door_status = 
is_door_closed)) keeps holding under 
-- (is_normal_mode and (handle_status = is_handle_down)) 
  do 
    if ((is_normal_mode and (handle_status = is_handle_down)) and 
        ((gear_status = is_gear_extended) and (door_status = 
is_door_closed))) then 
      main 
      check ((is_normal_mode and (handle_status = is_handle_down)) 
implies 
        ((gear_status = is_gear_extended) and (door_status = 
is_door_closed))) end 
    end 
  end 

Fig. 9. Translation of the “r11 rs” requirement. 

6. Related work 
Modeling of real-time computation and related requirements is a well-investigated 
matter [12]. Representation of real-time requirements, expressed in general or specific 
form, is a challenging task that has been attacked by the use of several formalisms 
both in sequential and concurrent settings, and in a broad set of application domains. 
The difficulty (or impossibility) to fully represents general real-time requirements 
other than in natural language, or making use of excessively complicated formalisms 
(unsuitable for software developers), has been recognized. 
In [13] the domain of real-time reconfiguration of system is discussed, emphasizing 
the necessity of adequate formalisms. The problem of modeling real time in the 
context of services orchestration in Business Process, and in presence of abnormal 
behavior has been examined in [14] and [15] by means, respectively, of process 
algebra and temporal logic. Modeling of protocols also requires real-time aspects to 
be represented [16]. Event-B has also been used as a vector for real-time extension 
[17] in order to handle embedded systems requirements. 
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In all these studies, the necessity emerged of focusing on specific typology of 
requirements using ad-hoc formalisms and techniques, and making use of 
abstractions. The notion of “real-time” is often abstracted as number of steps, a metric 
commonly used. In this paper we follow the same approach, inheriting both strength 
(simplicity of the model and effectiveness for applicative purposes) and limitations 
(temporal logic and time automata themselves miss to capture a precise notion of real-
time). 

7. Conclusions and future work 
Software developers reason in an imperative/operational manner. This claim is 
supported both by anecdotal experience and by empirical evidence [18]. 
Requirements expressed in imperative/operational fashion would therefore results of 
easier comprehensions for developers and would simplify the process of negotiation 
behind requirements elicitation. In the method described in this paper, requirements 
are expressed in a formalism (or language) that seamlessly stay the same along the 
whole process, without the need of switching between different instruments or mental 
paradigms. At the same time, the linguistic tool used to define them also allows for 
automatic verification of correctness. 
The meaning of correctness here remains subject to the assumption that requirements 
engineers and stakeholders agree on a list of desiderata that is indeed the intended 
one. Assuming a non-faulty process of intention transferring (and this assumption is 
common to any other approach too), requirements are now more easily manageable 
by software engineerings all the way from elicitation to verification. 
The result of elicitation process is a set of requirements in natural language. The full 
realization of the presented method would imply an automatic (or semi-automatic) 
translation from natural language into a structured representation that, although 
completely intuitive for software developers, it is possibly not easy to manage for 
average stakeholders. The first part of this process, i.e., the translation from natural 
language into the current representation (and back) is under development. A tool 
automatically translates semi-structured natural language into the Hoare-triple-based 
representation [19], allowing also the opposite direction, i.e. back to natural language 
[20], so that software engineers would be able to negotiate back requirements with 
stakeholders using a format they would comprehend. The role of the requirement 
engineers would then consist in concluding the elicitation phase with a set of 
requirements in semi-structured natural language, which the tool would be able to 
process in an entirely automatic manner. 
This paper supports the idea of seamless development describing a method supported 
by a formalism that stay the same along the whole process, from requirements to 
deployment. Alternative approaches have also been experimented which make use of 
formalism-based toolkits, where ad hoc notations are adopted for each development 
phase [21]. 
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Аннотация. Верификация многих прикладных систем – в частности, встроенных, - 
включает в себя процессы, исполняющиеся во времени, для моделирования которых 
обычно используется временная логика, линейная (LTL) или ветвящаяся (CTL). 
Наиболее развитые автоматические доказатели программ, однако, основаны на 
невременных теориях: например, на логике Хоара. Возможно ли все же применение этой 
развитой технологии верификации к более сложным системам? В качестве шага на пути 
к положительному ответу, мы разработали схему перевода подмножества LTL 
спецификаций в объектно-ориентированные программы с контрактами на языке Eiffel, 
которые являются естественными целями для доказателя программ AutoProof. Мы 
применили эту схему к опубликованной временной модели широко используемого 
реалистичного примера, авиационной системы контроля шасси, являющейся своего рода 
эталонной задачей для сравнения применимости различных методов спецификации. 
Верификация переведенной спецификации с помощью AutoProof обнаружила ошибку в 
одном из временных свойств. Углубленное изучение данной ошибки привело к 
обнаружению ошибки в опубликованной абстрактной машине состояний (ASM), 
которая реализует переведенную модель; авторы публикации, в свою очередь, заявили 
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об успешной верификации. Корректировка исходной спецификации и перевод 
результата в Eiffel с контрактами с последующей верификацией привели к успешному 
результату. Процесс перевода из LTL в Eiffel все еще находится в зачаточном состоянии 
и оптимизирован для используемого инструмента верификации (AutoProof), поэтому 
схема перевода не выглядит простой и элегантной. Даже с учетом указанных 
ограничений полученные результаты демонстрируют потенциал технологии 
автоматического доказательства традиционных программ в части ее применимости к 
специфичным проблемам встроенных систем. 
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