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Abstract. Gaussian convolution and its discrete analogue, Gauss transform, have many science
and engineering applications, such as mathematical statistics, thermodynamics and machine
learning, and are widely applied to computer vision and image processing tasks. Due to its
computational expense (quadratic and exponential complexities with respect to the number of
points and dimensionality, respectively) and rapid spreading of high quality data (bit
depth/dynamic range), accurate approximation has become important in practice compared
with conventional fast methods, such as recursive or box kernel methods. In this paper, we
propose a novel approximation method for fast Gaussian convolution of two-dimensional
uniform point sets, such as 2D images. Our method employs L1 distance metric for Gaussian
function and domain splitting approach to achieve fast computation (linear computational
complexity) while preserving high accuracy. Our numerical experiments show the advantages
over conventional methods in terms of speed and precision. We also introduce a novel and
effective joint image filtering approach based on the proposed method, and demonstrate its
capability on edge-aware smoothing and detail enhancement. The experiments show that filters
based on the proposed L1 Gauss transform give higher quality of the result and are faster than
the original filters that use box kernel for Gaussian convolution approximation.
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1. Introduction

Gaussian convolution is a core tool in mathematics and many related research areas,
such as probability theory, physics, and signal processing. Gauss transform is a
discrete analogue to the Gaussian convolution, and has been widely used for many
applications including kernel density estimation [1] and image filtering [2]. Despite
its reliable performance and solid theoretical foundations, Gauss transform in its exact
form along with other kernel-based methods has a drawback — it is very
computationally expensive (has quadratic computational complexity w.r.t. the
number of points) and hard to scale to higher dimensions. Which is why there have
been many attempts to overcome these problems by creating approximation
algorithms, such as fast Gauss transform [3], dualtree fast Gauss transforms [4], fast
KDE [5], and Gaussian kd-trees [6]. Also, box kernel averaging [7] and recursive
filtering [8] have been popular in computer graphics and image processing because
of their simplicity, see the surveys [9], [10] for numerical comparisons of these
approximation methods.

Since high bit depth (also dynamic range) images have become popular in both digital
entertainment and scientific/engineering applications, it is very important to acquire
high approximation precision and to reduce artefacts caused by drastic truncation
employed in many conventional methods focused on computational speed. One of the
highly accurate methods is called fast L' Gauss transform approximation [11] based
on using L' distance instead of conventional L?> Euclidean metric. This L' metric
preserves most of the properties of the L? Gaussian, and is separable, hence it allows
to perform computations along each dimension separately, which is very beneficial
in terms of computational complexity. Also, L' Gaussian has only one peak in Fourier
domain at the coordinate origin, and therefore its convolution does not have some
undesirable artefacts that box kernels and truncation methods usually have. However,
this algorithm works only on one-dimensional (1D) point sets, although it can be
extended to uniformly distributed points in higher dimensions by performing it
separately in each dimension. In order to be able to acquire Gauss transform for non-
uniformly distributed two-dimensional points and to further generalize it to higher
dimensional cases, we need to extend existing method [11] to the 2D uniform case.
In this paper we propose a novel approximation method for fast Gauss two-
dimensional (2D) image transform. Our method is based on extending the fast L'
Gauss transform approximation on uniformly distributed 2D points that allows to
perform Gaussian convolution quickly while preserving high accuracy. We
demonstrate that efficiency of the proposed method in terms of computational
complexity, numerical timing, and approximation precision.

We also successfully applied our method in the novel filtering approach based on
combining the approximated L' Gauss transformations into the so-called guided filter
[12] (joint image filtering via ridge regression). Our approach reduces computational
costs while providing higher quality results compared to the conventional one. We
show the application to edge-aware smoothing and image detail enhancement.
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2. Fast L' Gauss Transform

In this section, we briefly describe the 1D domain splitting algorithm [11] employed
for fast L! Gauss transforms.

Consider the ordered point set X = {x;}¥ |, z; € R, x; >, ,, Vi = 2, N. Each
point x; has a corresponding value I; € R, e.g. pixel intensity in case of images. The
L' Gauss transform for each point in set X is given by

ZG ] -737 12 G('T) = exp(—

where G(x), x € R, is a L1 Gaussian function (also called Laplace distribution in
statistics) with its standard deviation o. It is convenient to decompose L' norm by
splitting its domain by using the point x; such that

—— lgs—&n| — [ —2a] M =2 < @y
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Thus, Gauss transform (1) using the equation (2) becomes
-1

I;
J(z;) = I+ Glz; — 4
(.'L']) ( a1 ;G —331)
+ Z G —.L1
i=j+1 (3)

Such representation (3) allows to reduce the amount of computational operations,
since values G(z; — 1), E(I;_—TJ and the sums ;1 LG(xi — 1) and
El 1 m can be precomputed in linear time. However, using the equation (3)
may imply some numerical issues, such as overflow, if the distance between 1 and
x;, | € {i,j} isrelatively large. To avoid such issues, this algorithm introduced
certain representative points (poles) {@k € R} instead of using the single point 1,
where the distance between «y and x; is smaller than the length that causes the
numerical instability. Hence the equation (3) becomes more complex form, a highly
accurate truncation can be applied where G(ay, — ;) is numerically equal to zero, see
[11] for further technical details.

Although this algorithm can be used in case of multidimensional images by applying
it separately in each dimension, this separable implementation approach is not
applicable to nonuniformly distributed high-dimensional point sets. Therefore, we
present a novel and natural extension of the domain splitting concept on 2D cases
(images) in the following sections.
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3. Two-Dimensional Algorithm

For a given 2D point set X = {x;}¥. |, x; = (v, ;) € R?, L' distance between two
points in R is given by |X; —x;| = [z —i[+[y; —vil, thus the Gauss transform (1)
is represented by the formula:

N
_ lz; — 2i| + y; — vil I
X)—ZCXP(— pe )i

Domain splitting (2) for 2D points is given by

lzj — x| = l2s — 21|+ |y; — | = lvi —wnl  if x; € Dy
|zi — @] = |vj —wr| + |y, =l = v =] ifx; € Dy
lzj —@1| = |wi = 21| + |y — ] = |ys — ] if xi € Dy
|-Ti_$1|_|mj_$l|+|yi_y1|_‘yj_yl‘ if x; € Dy,

lzj — xi| + |y — il =

see Fig. 1a for geometric illustration of the domains.

X1 i
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! i 22 Dy
D3
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(a) Single pole x, case (b) Multipole {o;} case

Fig. 1. lllustration of 2D domain splliting.

Using the above decomposition, Gauss transform is represented similar to (3):
1

o) = 106) +F@F ) 3 et
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where F(x;) = G(xj; — 1) and F(y,) = G(yj — J1)
Precomputation and storage of values F(7, and

& ) o) require O(4N) operations

and O(4N) space, and all the subsequent sums F(z;)F(y;), %Uj; can be iteratively
computed in O(N) operations. Gauss transform for all points using the formula (4)
requires O(10N) as opposed to employing the separable implementation of equation
58



Baukuposa JI.P., Mouruazaga I11., Jlatsimos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca mist CriakuBaHms
n300paxeHunit ¢ coxpanenueM rpanutl. Ipyosr UCIT PAH, Tom 29, Beim. 4, 2017 1., cTp. 55-72.

(3) for O(6N) operations. Since computing the Gauss transform using the equation (4)
is numerically troublesome, it is reasonable to divide the space into smaller groups
and perform computations separately, as it was proposed in [11]. Let us introduce a
novel 2D multipole approach for solving this problem.

Consider a set of poles {ax} ., ar = (ak,br) € R? The distance between
points using poles ax is given by

|#i — ak| — |zj — ax| + |yi — be] — |ly; — bi| if xi € Dy

|2 —ak| = |z —ag] + |yi — bi| — |ly; — bk] if x; € Dy

|v; — ak| + |z; — ap| + [yi — bi| = |y; — bi| if x; € Dy

|wi — ak| — |z; — ak| + |y; — be| — |yi — be| if x; € Dy

Xi — Xj| =< |vj —ag| — |2 —ak| + |y; — be| — |y — b if x; € Dy

|zi — ak| + |z; — ak| + |y; — be| — |yi — be| if x; € Dg

|ei — ar| — |z; — ak| + |yi — bk| + |y; — bi] if x; € Dy

|2 — ak| — |zi — ak| + |yi — b| + |y; — be| if x; € Dg

v — ak| + |z — ak| + |yi — bi| + |y; — bi| if x; € Dy,

where
D, = {x,‘l.l‘,' € D{.'I/,’ € D;I}Dz = {X,|.l‘, € szr.,(/,‘ € D;’}

Dy = {x;|z; € D3, y; € DY}, Dy = {x;|x; € DY, y; € D}},
D5 = {x;|z; € D3,y; € DY}, D¢ = {xi|x; € D5, y; € DY},
D7 = {x;|lz; € D{,y; € DY}, Dg = {x;|z; € D3,y; € DY},

Dy = {X,‘|J',‘ € D;y, (S D'{}

DY = {mjar L2 <zjoraz; <z <agl,
D; = {wi|lax <zj <z 0orz; <35 <ax},
D3 = {mi|z <ar <zjoor zy <ap < i}y
DY = {wilbr <wi <wyjory; <wui <bgl,
Dy = {yilbx <yj <yiory <y; <bl,
DY = {ylyi <br <yjory; <bp <w},

see Fig. 1b for geometric illustration of the domains with their poles. The point X; is
assigned for one representative pole defined by
ag(x;) = mgx{akmk < z;,br < Y5}

which is the closest pole to x; that has absolute values of coordinate smaller than x;.
For each point x;, the multipole L' Gauss transform is given by the equation (5),
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where G(z;) = G(a;—ar), G(y;) = Gly; — br),
and A(-) is an index function defined by
A(k) = lg;i-_?N(leak < T < A1 and b < Y < bk+1).
For the sake of simplicity, we assume that the numbers of poles in 2D are same M.
Following [11], M and the poles {cy } are given by

fax} = {be} = {0,1,2, ,A(I]l[ — l)}w‘

w =max(|z; —an|, [y1 —yn|), M

(6)
— w
~ o TosMAX)
where [-] is the ceiling function, MAX is the maximum value of precision (e.g.,
double floating point: DBL MAX in C programming language), and ¢ is a user-
specified parameter (0.5 is employed in our numerical experiments). The above pole
selection scheme leads to max(G(agy1 —ax). G(bgt1 — b)) < MAX which
theoretically guarantees numerical stability in our method.
When the distance between poles is determined by the equation (6) and G — x;)
becomes numerically zero if |y —x;| >7%7 - we can efficiently truncate Gauss
transform by approximating the values: o

> B

oA~ Y 4L Y Bl

Q

ar€Dg ar€p(Dg) ar€D7 ar€ep(D7)
E Cl ~ E Ci, E Di ~ E Dy,
ap€Dsg ar€u(Ds) ar€D3 ap€p(D3)
J o~ J
SN B~ Y EH,
ar€Dg ar€p(Ds)

where u#(Dy) = {xi € D, | |or(x;) — ar(xi)| < 37}

In other words, instead of computing terms A7, Bj,Cy, D], E] across all the
corresponding point sets, we consider only the neighbouring points, which allows to
avoid nested loop structures in our implementation and speed up the computational
process.

As in the 1D algorithm [11], the terms can be iteratively computed in linear time.
Assume that an image consists of VN x v/N pixels and the number of poles along
each dimension is M, total complexity of our method is O(16N+2% VN N +44%) which is

60




Baukuposa JI.P., Mouruazaga I11., Jlatsimos P.X., Mokora X. Beictpoe L1-npeo6pasopanne Caycca mist CriakuBaHms
n300paxeHuii ¢ coxpanenueM rpanut. Ipyost UCIT PAH, Tom 29, Bbim. 4, 2017 1., cTp. 55-72.

a little bit slower than the separable implementation employed in [11] that requires
O(12N +2v/N + M) operations.

Z T\

(a) Input image 1 (b) Input image 2
Fig. 2. Input images.

4. Numerical Experiments

We held all the experiments on Intel Core i7-6600U 2.60 GHz dual core computer
with 16GB RAM and a 64-bit operating system. We compared the multipole version
of our algorithm with box kernel (Box) using moving average method [7], the 1D
domain splitting (Y'Y 14) with separable implementations [11], and Fast Discrete
Cosine Transform (FDCT) via the FFT package [13] well-known for its efficiency.
To evaluate the performance of the methods mentioned above we used randomly
generated 2D point sets with 10 different sizes from 128%to 5120% and 10 various
values of o = 5,10,...,50. The radius for the Box method was chosen equal to ¢. The
timing results (see Fig. 5) show that our method is slightly slower than the 1D domain
splitting (Y'Y 14) despite its theoretical complexity is much larger. It is worth noticing
that the implementation of our method can be further improved by using GPU-based
or parallel computing techniques.

However, the accuracy evaluation results (see Table 1) show that our method achieves
best approximation quality among the discussed methods. We evaluate the precision
using F,.. and PSNR measures. Consider /¢ is the exact result of f! Gauss
transform, [® is the approximation achieved by a given algorithm, and
d; = |If = I"|. Emax is calculated using formula

E = max d;.
max ]SlSN T

We also use peak signal-to-noise ratio (PSNR) [2] to measure the performance of our

algorithm according to the equation
N
PSNR = —10log(} ( dy

. max (I, I%)

).

We performed linear image smoothing by the following normalized convolutions for
each color channel:
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JGE-WIy)y | J(x)
JGx-ydy  TVGx; -xi)

where the denominator is also obtained by our method convolving L' Gaussian with
the image whose intensity is equal to one everywhere.

Fig. 3 illustrates the smoothing results using naive implementation (Exact), our
method, Box kernel, and FDCT algorithms. The gradient magnitude V1] of smoothed
images on Figs. 4 and 6 show that, in contrast to FDCT and box kernel, our method
does not produce some undesirable artifacts and is extremely close to the exact
implementation.

Table 1. Precision and speed evaluation results (speed measured in Mpix/sec).

Our YY14 FDCT | Box
Emax 1.8x107" 3.8x10710 0.44 3.73
PSNR 291.05 281.81 58.98 | 41.45
Speed 7.19 9.76 3.37 8.58
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" \ A AR, &
|\

(a) Exact (b) Our /’

. A/
VN
. ”
(c) Box (d) FDCT
(e) Exact 09 Our

(¢) Box (d) FDCT F o
Fig. 3. Results of smoothing (o = 20), where the input image is given by Fig.2a. ‘
(g) Box (W FDCT

Fig. 4: Visualisation of | VI| for comparison of artifacts (o = 20).
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10 T T |
—o— Our YY14 == Box == FDCT

Time, sec

5 10 15 20 25
Image sixe, Mpix

Fig. 5: Timing with respect to image size (averaged by o).

- - e - ] o o

Fﬁ‘-‘ lﬁ‘-‘ l‘ " "
| ! | | | | i \ !

(3 o~ e E_3 o im -ﬁn

(a) Exact (b) Our (c) FDCT

(a) Exact (b) Our (c) FDCT

Fig. 6: Visualisation of | VI| for comparison of artifacts of FDCT (o = 20), where the input
image is given by Fig.2b.

5. Edge-Aware Filtering

The proposed algorithm for Gauss transform approach can be applied in various
computer vision tasks. We present one of the possible applications of our method by
introducing the novel approach for improving the so-called guided filter [12].
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Guided filter is categorized into a joint image filtering technique consisting of two
input images where one of them is called guidance image, and reflects guidance colors
into the other input. One of the most popular joint image filters is the joint bilateral
filter [14] which averages the neighbouring colors using the weights that depend on
the guidance image. Guided filter is an approach for joint image filtering that allows
to overcome a problem with the undesirable gradient reversal artifacts that joint
bilateral filter suffers from. Besides edge-aware filtering, it has various image
processing applications such as matting, flash-noflash synthesis, HDR-compression,
and haze removal.
Consider a point set X = {x;}¥,, x; = (z;,4:) € R?, a guidance image
g = g(x) € R, an input image I(x;) € R, a desired output image H(x;) € R, and an
image region (x) centered at X. The guided filter is defined as the following linear
transformation:
H(y)=ag(y) + b,y € Q(x),
where a,b € R are the coefficients constant in §2(x) that depend on the input image
1. Such representation is very useful for image processing tasks, since it preserves
the gradient extrema VH = aVyg, and hence the edges of the guidance image. The
coefficients a and b are obtained using the linear ridge regression model [15]:
K(a,b)= Y W(x-y)((ag(y) +b—I(y))? - ea?),
ye(x)
where W(x—y) is the weight that determines the importance of the point y in Q(x)
and € is the regularization parameter. One can obtain values a and b by minimizing
K(a,b): (.i;:[\'(n. b) = 0 and %f\'(u, b) = 0. This leads to the following representation:
(Ig) — f(I)f(g .
- LSOy ) -atle). )
Here f(#) is an averaging function. Since a point y is included in many overlapping
regions €2(x) and values a and b for y are different for each region, the final
coefficients are found by averaging over all possible values of y:
H(x) = f(a)g(x) + f(b). (8)
Guided filtering of color images involves inversion of 3 x 3 coefficient matrix in
order to solve the equation (7) (see [12] for further details). If we set I = ¢, then
the guided filter preserves salient edges while smoothing the flat regions (edge-aware
filtering). In the simplest case of I = ¢ and [ being is a grayscale image,
computing guided filter involves performing 4 smoothing operations
(e.g. f(I), f(I?), [(a), f(b)). and it takes 33 smoothing operations for a color image if
I # g. Which is why the choice of the smoothing operator f(*) is crucial, since it
determines the overall speed and quality of filtering. Authors of the guided filter [12]
suggested employing classic L* Gauss transform or box kernel method but prefer the
latter due to its simplicity and speed despite the fact that box kernel produces
undesired artifacts discussed above.
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We introduce the new approach for computing guided filtering where our L' Gauss
transform algorithm is employed for f(*) instead of the box kernel method. As it was
shown before, our algorithm gives a much higher quality of smoothing, and this
allows us to eliminate smoothing of f(a) and f(b) in the equation (8):

H(x)=ag(x)+b 9)
Thus, using our algorithm involves 2 operations of f(*) compared to 4 operations in
the original method if I = g (grayscale case), and 21 operations compared to 33
operations if I # g and both of them are color images.
We examined edge-aware filtering on color images, where the number of f(x) is equal
to 21 for the box kernel method and 10 for our approach (9 operations for smoothing
of the coefficients and one operation for normalization). As seen on the Figs. 7 and 9,
our approach with the reduced amount of smoothing operations f(x) gives quality of
edge-aware filtering higher than [12] with the box kernel method, and is faster (0.24
and 0.28 sec for Figs. 9a and 9d respectively).
We examine the differences of equations (8) and (9) in terms of filtering quality on
Figs. 9 and 10, which show us that the box kernel method causes artifacts similar to
linear filtering case.
We also applied our approach for the detail enhancement filter defined by:

D(x) = I(x) + 7(I(x) — H(x)),

where 7 is the enhancement parameter. The experiments show that applying our
approach for detail enhancement filtering gives high quality results (see Fig. 8).

Fig.10: Edge-aware filtering results (6=8, €=0.04). a: input image, b-d: visualization of
gradients |VH| of edge-aware filtering via our approach, eq. (9) and box kernel using egs.
(9) and (8) respectively.

6. Conclusion

In this paper' we presented a novel and fast approximation method for L' Gauss 2D
image transforms. Series of numerical experiments have shown that our method is
generally more accurate than the conventional methods and faster than the widely
used FFT. We also demonstrated capability of the proposed method in image
smoothing application where the conventional box kernel averaging and FFT both
suffer from undesirable artifacts. Despite our method is slightly slower than the
separable implementations of 1D algorithm [11], this approach can be efficiently used
for non-uniformly distributed points.

We have also proposed a novel approach for improving the guided filtering [12] via
our L' Gauss transform and showed its advantages in terms of quality and speed over
[12].

!'It is an extension of our previous work [16]. The main difference from [16] is the novel
approach to joint image filtering and its numerical experiments.
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Our method is applicable only to uniformly distributed structures, such as images.
Hence our future work includes extending the proposed method to higher-
dimensional nonuniform cases which can be done for example by using treelike
structures. We also would like to investigate possible applications of the proposed
method to various machine learning and image processing tasks, such as regression,
segmentation, and registration.

(b) L' GT (#: 10) () Box (4> 21)
Fig. 7: Edge-aware filtering results (6=8, €=0.0016).

(a) Input

(b) Edge-aware ﬁlering (c) Detail enhancement
Fig. 8: Our results of edge-aware filtering and detail enhancement (6=38, £=0.04, t=3).
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(@) L' GT (#f: 10) (b) Box (#f:9) (c) L' GT (#: 22) (d) Box (#f: 21)
/ \ / / ‘ \ / \
/ Ve J / ll Vi J £ A J &) l‘ A J A ‘1
/ i / [
(¢) |VH| L' GT of (a) () | VH| Box of (b) (g) |VH| L' GT of (c) (h) | VH| Box of (d)

Fig. 9: Edge-aware filtering results (6=8, ¢=0.0016). a: L' Gauss transform with eq. (9), b:
using box kernel with eq. (9), c¢: L' Gauss transform with eq. (8), d: box kernel with eq. (8).
e-h: visualization of | VH| of the corresponding images.

(a) Input (b) |VH| Our (#: 10) (c) |VH| Box (#:9) (d) |VH| Box (#: 21)
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AnHoTamms. IIpeoGpasoBanue ['aycca, Taxke Kak M €ro AUCKPETHBIM aHANOT, SBISIETCS
Ba)XHEHIINM HHCTPYMEHTOM BO MHOMKECTBE MAaTEMAaTHUECKHUX IUCLUIUIMH M HAXOMUT CBOE
NpUMEHEHHe BO MHOTHMX HAay4YHBIX M HHXXEHEPHBIX OOJIACTSIX, TaKMX KaK MaTeMaThuecKas
CTaTUCTHKA M TEOPHUs BEPOATHOCTECH, (U3MKA, MAaTEMAaTHYECKOE MOJICIMPOBAHNE, MAIIMHHOE
oOydyenue u o0paboTka un3zo0paxkeHMH H mpoune. BBHUIY BBICOKOH BBIYMCINUTEIBHOMN
CJIOXHOCTH TIpeoOpasoBaHust ['aycca (KBagpaTHUHasl CIOXKHOCTh OTHOCUTENBHO KOJIMYECTBA
TOYEK ¥ OKCIOHCHIMAIbHAS — OTHOCHTENIBHO Pa3MEPHOCTH TOUYEK), HEOOXOMUMEI
a¢dekTHBHBIE U OBICTPBIE METOABI €r0 alMpPOKCHMANNH, 00Iafaromye OoNbIe TOUHOCTHIO
110 CPAaBHEHHMIO C CYIIECTBYIOIINMH HBIHE METOaMH, TakuMu kak beictpoe IIpeobGpasoBanue
Oypre mwiM OKOHHOEe mpeoOpa3oBaHHe. B maHHON cTaThe NPEIUIOKEH HOBBI METOJ
anmpoKkcuMaluu mnpeobpasosanus ['aycca Uit paBHOMEPHO pacmpeeleHHbII MHOXECTB
TOUEK (HalpHuMep, IBYMEPHBIX H306pakeHH i), OCHOBAHHEIH Ha HCTIOTb30BaHNH L2 METpHKH U
MeTOo/Ia pa3fesIeHNs JOMEHOB. Takoi MOAXO0/ ITO3BOJISIET 3HAUUTEIIBHO COKPATHTH KOJIMIECTBO
BBIYHCIIMTENBHBIX ONEpPaNyii MyTeM BBINOIHEHUS IPEIBAPUTETbHBIX BBIUUCICHHN, U CHU3UTh
BBIYMCIIMTENBHYIO CJIOXHOCTh MeTOJa JO JHMHEWHOI. PesymbTaThl psfa YHMCIEHHBIX
SKCTIEPUMEHTOB IOKAa3alld, 4YTO pa3pabOTaHHBIM alropuUTM IMO3BOJAET MOIYYHTh Oolee
BBICOKYIO TOYHOCTbH aNMpOKCHUMaluu 0e3 MOTEpH CKOPOCTH BBIYMCICHUS B CPaBHEHHH CO
CTaHJApTHBIMH MeToAaMH. Takke B KadecTBE IpEMepa INPUMEHEHHS MpearacMoro
anroputMa ObuTa pa3paboTaHa HOBas CXeMa CMEXHON (UIbTpanuu n3oOpakeHus. bBeuio
TI0Ka3aHO, 4TO HOBBIH (HILTP Ha ocHOBE GhicTporo L1 mpeo6paszopanus IMaycca mosponser
TIOJTYYUTh Pe3yNIbTaT 00JIee BHICOKOTO Ka4ecTBa IIPH COIIOCTABUMOM CKOPOCTH BBIYHCIICHUS
TIPU 5TOM U30eKaTh MOSBIICHAS HEXKEIIATENILHBIX apTe(hakToB B pe3ysibTaTe 00pabOTKH, TaKUX
Kak 2¢dekr opeona.

KmioueBbie caoBa: ¢uiastp [aycca, pacmpenenenne Jlammaca, OBICTpBIE  MeTOX
annpoKCUMaluu
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