Automated Type Contracts Generation in
Ruby

L2 N, Y. Viuginov <viuginov.nickolay@gmail.com>
2V. 8. Fondaratov <fondarat@gmail.com>
!'St. Petersburg State University,
199034, Russia, St. Petersburg, Universitetskaya Emb., 13B.
2 JetBrains, 199034, Russia, St. Petersburg, Universitetskaya Emb., 7-9-11

Abstract. Elegant syntax of the Ruby language pays back when it comes to finding bugs in
large codebases. Static analysis is hindered by specific capabilities of Ruby, such as defining
methods dynamically and evaluating string expressions. Even in dynamically typed languages,
type information is very useful as it ensures better type safety and more reliable checking
whether the called method is defined for the object or whether the arguments of the correct
types are passed to it. One may annotate the code with YARD (Ruby documentation tool) to
declare the input and output types of methods or even declare methods that are added
dynamically. These annotations improve the capabilities of tooling such as code completion.
This paper reports a new approach to type annotations generation. We trace direct method calls
while the program is running, evaluate types of input and output variables and use this
information to derive implicit type contracts. Each method or function is associated with a
finite-state automaton consisting of all variants of typed signatures for this method. An
effective compression technique is applied to the automaton to reduce the cost of storage and
allows to display the collected information in a human-readable form. The exhaustiveness of
the contract defined by the generated automaton depends on the diversity of the traced method
usages. Therefore, it is also important to be able to merge all the automatons received from
users into one, which is further covered in this paper.

Keywords: Ruby; dynamically typed languages; Ruby VM; YARV; method signature; type
inference; static code analysis

DOI: 10.15514/ISPRAS-2017-29(4)-1

For citation: Viuginov N.Y., Fondaratov V.S. Automated Type Contracts Generation in Ruby.
Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp. 7-20. DOI: 10.15514/ISPRAS-2017-
29(4)-1

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

1. Introduction

Developers suffer from time-consuming investigations when trying to understand
why a particular piece of code does not work as expected. The dynamic nature of
Ruby allows for great possibilities, which has its drawback: the codebase as a whole
becomes entangled and investigations become more difficult compared to statically
typed languages like Java or C++ [1]. Another downside of its dynamic features is a
drastic reduction in static analysis performance due to inability to resolve some
symbols reliably. Consider the dynamic method creation which is often done with
define_method call. Names and bodies of dynamically created methods may be
calculated at runtime [2]. The following code dynamically adds active?, inactive?
and pending? methods to the User class:

class User
ACTIVE = 0
INACTIVE =
PENDING = 2

1

attr_accessor :status

def self.states(*args)
args.each do |arg|
define_method "#{arg}?" do

self.status == User.const_get(arg.upcase)
end
end
end
states :active, :inactive, :pending

end
One of the possible workarounds to get information about types for such difficult-to-
analyze syntactic constructions is using code documentation tools such as RDoc or
YARD. @!method annotation defines a method object with a given signature.
@param and @return annotations may help to define the actual types, but they have
several drawbacks too:

e the type system used for documenting attributes, parameters and return
values is pretty decent, however, it is not clear how to define relations
between the types. For example, operator [J= for array usually returns the
same type as the second arg taking any type so in YARD this will look like
@param value [Object], @return [Object] which is not really helpful,
because all classes in Ruby are inherited from the Object and such
annotation does not give any additional information about the method.

e from usability perspective, such documentation in some way contradicts the
purpose of Ruby to be as short, natural and expressive as possible.

The proposed approach is inspired by the way people tackle this problem manually:
one may run or debug the program to inspect the needed info about the code they are
investigating. This suggests that collecting direct input and output types of all method
dispatches during the program execution with postprocessing and structuring of this

8



Berorunos H. 10., ®onnaparos B. C. ABromMaTH3MpoBaHHas ITeHEPALHsl THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 7-20.

data may be considered as a way to automate manual investigations. As a result, it
will make up implicit type annotations. As the process is automated, one can retrieve
a lot of information about the executed code in the whole project.

Since the quality of the result highly depends on the code coverage of the programs
run during the data collection, it is important to be able to merge the result annotations
built for the same methods called from different places, projects and even users. These
annotations also could be stored in a public database to be shared and reused by
different users in order to maximize the coverage of the analyzed code and hence the
quality of the generated contracts.

Two main contract generation stages can be distinguished:

e During the first stage, the information about called methods and their input
and output types is collected throughout the script execution. It is very
important to collect the necessary information as quickly as possible not to
keep users waiting for script completion much longer compared to regular
execution. To achieve this, we implement a native extension which receives
all the necessary information directly from the internal stack of the virtual
machine instead of using the standard API provided by the language. This
stage is described in Section 3.

e During the second stage, the data obtained in the first stage is structured,
reduced to a finite-state automaton and prepared for further use in code
insight. This storage scheme provides the ability to quickly obtain a regular
expression that is easily perceived by a human. This stage is described in
Section 4.

The generated implicit annotations can be built into the static analysis tools [3] to
improve existing and provide additional checks and code completion suggestions.
This stage is described in Section 5.

2. Related works

In Static Analysis of Dynamic Languages [7], static analysis techniques for
dynamically and statically typed languages are compared. The author notes that the
attributes of dynamically typed languages such as flexibility and expressiveness limit
the availability of tool-support for those languages. The paper addresses the main
problems of analyzing code written in a language with dynamic typing: particularly,
the construction of developer tools is difficult due to the lack of static type systems,
therefore, many bugs are not discovered until run-time. The use of static analysis, and
in particular whole program dataflow analysis, allow static reasoning about programs
written in these languages without changing their nature or imposing unrealistic
restrictions on the programmers.

In addition, the article mentions the technique called Use Analysis. “Use Analysis: A
heuristic for recovering missing dataflow facts, due to missing library code, by
observing how applications objects are used in the application code.” An example of
such a heuristic is the approach to be described in this article.

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

For Ruby, as for most dynamically typed languages, there are tools for source code
analysis, but they are not capable of statically identifying all errors associated with
type mismatch. Here are some of them:

e Rubocop [4] — A Ruby static code analyzer, based on the community-
driven Ruby style guide, but it does not allow actual error detection.

e  Ruby-lint— A tool for detecting syntax errors, such as undeclared variables,
an invalid argument set for calling a method, or unreachable sections of
code.

e Diamondback Ruby [5] — an extension to Ruby that aims to bring the
benefits of static typing to Ruby. However, at the moment, it is impossible
to analyze even the standard Ruby library.

3. Collecting information about method calls

3.1 Calls structure
Method parameters in Ruby have the following structure:

def m(al, a2, ..., aM, # mandatory(req)
bl=(...), ..., bN=(...), # optional (opt)
*c, # rest
di, d2, ..., dL, # post
el:(...), «.., eK:(...), # keyword
*xf # kReyword_rest
&g) # block

An example of calling this method:

m(11, 12, 21, 22, 1, 2, 3, '1', '2', el: 1, e2: 2, e3: 3) {...}
#al a2 bl b2 ---c---- di d2 el e2 f g
TracePoint is an API allowing to hook several Ruby VM events like method calls and
returns and get any data through Binding, an object which encapsulates the execution
context (variables, methods) and retains this context for the future use.

Consider a simple Ruby method declaration and handlers set for :call and :return
events.

10



Berorunos H. 10., ®onnaparos B. C. ABromMaTH3MpoBaHHas ITeHEPALHsl THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 7-20.

def foo(a, b = 1)
b="1'
end

TracePoint.trace(:call, :return) do |tp]|
binding = tp.binding
method = tp.defined_class.method(tp.method_id)
p method.parameters
puts tp.event, (binding.local_variables.map do |v|
"#{v}->#{binding.local_variable_get(v).inspect}"
end.join ', ')
end

foo(2)
The execution output will be:

[[:req, :a], [:opt, :b]]
call
a->2, b->1

[[:req, :a], [:opt, :b]]
return
a->2, b->"1"

On each method call, the following information is to be obtained:
e method name
e method receiver class
e arity (names and types of parameters)
e types of arguments and return type, hereinafter “raw type tuple”
e name and version of gem (ruby library) in which the method was declared
e location of method declaration

3.2 Unspecified arguments

Code analysis often handles direct method calls, so in order to calculate the return
type it is important to distinguish which arguments were directly passed to the method
by the user, and which were assigned the default values.

Let the following expression occur during the code analysis: a, b, ¢ = foo, foo(‘1%),
foo(1), and the following two contracts be generated: Int » Int, String » String.
If the method cannot be statically analyzed, then we cannot select a contract to apply
to the method call without arguments.

Note that default values are assigned to unspecified optional arguments before the
:call event is triggered. Therefore, with the standard API, it is impossible to calculate
which arguments were passed to the method, and which were not. This poses a
problem because it renders detection of the default value types impossible and,
therefore, disables the calculation of the expected return type of calls with any

11

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

optional parameters unspecified. However, one can build a native extension for the
Ruby VM]2] and get this information from an internal stack.

Consider a simple Ruby method with an optional parameter and on appropriate
bytecode.
def foo(a, b=42, kwl: 1, kw2:, kw3: 3)
#...
end

foo(1l, kwl: '1', kw2: '2')
== disasm: #<ISeq:<compiled>@<compiled>>============

0000 trace 1
0002 putspecialobject 1
0004 putobject :foo
0006 putiseq foo

0008 opt_send_without_block <callinfo!mid: core#define_method, argc:2,
ARGS_SIMPLE>

0011 pop

0012 trace 1

0014 putself

0015 putobject OP_INT2FIX 0 1 C_

0016 putstring "t

0018 putstring "

0020 opt_send_without_block <callinfo!mid:foo, argc:3, kw: [kwl, kw2],
FCALL | KWARG>

0023 leave

== disasm: #<ISeq:foo@<compiled>>===================

The instruction number 0020, which calls the method foo, has information
characterizing the number of passed arguments and the list of passed named
arguments. Now we need to find a bytecode instruction for the current method
dispatch. It is necessary to find the caller control frame and the last executed
instruction in this frame. This instruction will correspond to the call of the method
that we are interested in.

The big disadvantage of this approach is that the calculation of the full execution
context is a time-consuming operation. But later we will only need information about
a small part of it. Namely: types of arguments, types and names of method parameters.
Creating a native extension for the Ruby VM, which will receive information about
the method name directly from YARYV instruction list (Fig. 1), will help us to receive
information about argument types directly from the internal stack.

12



Berorunos H. 10., ®onnaparos B. C. ABromMaTH3MpoBaHHas ITeHEPALHsl THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 7-20.

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

YARV Instruction list

trace
( \ putself

b conrol frame t putchiect 2
b_conrol_frame_t putcbject 2
putobject 2
Internal stack pc Pt_plus
sp opt_send_simple <callinfo!mid:puts..
2 self leave
— type
2
self

Fig. 1. YARV's internal registers.

4. Tranforming raw call data into contracts

A huge amount of raw data received from the Ruby process must be processed and
structured so that it can be easily used and perceived. In our approach, each traced
method is associated with a finite-state automaton. This storage structure allows to
quickly add raw type tuple obtained from the Ruby process. It can be also easily
reduced to a human-readable regular expression.

il

Ail—s

\lnteger\
(n
/ N\
(S ) = Z _nil__ S
(R —  #stat —Sting—s \:_ -Array— #end
P 4 & jnteger;,/
‘ : . o
\ il /
€ Regexp— </
\lnteger

Fig. 2. Example of generating a non-minimized automaton.

In each automaton, there are a single starting vertex, from which the signature begins
to be read and a single terminal vertex, in which all edges corresponding to the return
types enters. Words obtained by concatenating tuples and corresponding output types
are consistently added to the automaton.

13

Data: callArgs, returnType, automaton, parameterList
Result: automaton
tuple <— emptyList
for param : parameterList do
if Jarg : arg € callArgs&&arg.get Param == param then
| tuple << arg
else
| tuple << e
end
end
node < automaton.startVertex
for arg : tuple do
type < arg.type
if (node, type) ¢ automaton then
| automaton(node, type) < newNode
end
node « automaton(node, type)
end
automaton(node, returnType) < automaton.termV ertex

Algorithm 1. Adding a tuple to the automaton

Then, the minimization algorithm [7] is applied to the automaton, but it is slightly
modified for the automaton of this type (Alg. 2). Note that all the tuples added to the
automaton have the same length, so the resulting automaton has a layered structure
based on the distance from the starting vertex. And all the edges emerging from the
vertices of the i-th layer go to the vertices of i+1-st layer. Note that, after adding a
signature to a minimized automaton, each added vertex can be combined only with
the vertex of its level (Fig. 3).

Theorem 1. Only vertices from the same level can be joined during the minimisation.

Proof. Consider two vertices a and b from levels i and j (i # j). The vertices a and b join
iff their transition functions coincide. All transitions from the wvertices of level i lead to
vertices of level i + 1, so transitions from a lead to vertices of level i + 1, and transitions
from vertex b lead to vertices of level j + 1. It follows from the fact that the vertices adjacent
to a and the vertices adjacent to b lie on different levels that the transition functions for

the vertices a and b do not coincide. O
Corollary 1. Let n be the number of layers of the automaton, then the computational

complexity of the minimization algorithm after adding one tuple to the previously minimized

* automaton.levels[i]) or O(automaton.size), which

i )

automaton can be estimated as: O(Y

is better than O(automaton.size *n), as for the automaton in the general case.

14



Berorunos H. 10., ®onnaparos B. C. ABromMaTH3MpoBaHHas ITeHEPALHsl THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 7-20.

Data: automaton, nodes
Result: automaton
levels < automaton.levels/ /splitting automaton for layers
for node : nodes, i++ do
for nodeForComparison : levels[i] do
if node.getTransitions = nodeForComparison.getTransitions then
| automaton.joinNodes(node, nodeForComparison);

end
end
end
Algorithm 2. Automaton minimisation
il
ni—Q_
/ Tnteger
nil
nils: // il
#start ——String—— Array —_— #start —String /t Array
nteger/' \ ﬁn(eger
/ Regexp
_nil
Regexp-.O/
nteger

Fig. 3. Joining vertices

Quite often there are situations where types of two or more arguments of the method
always coincide or the type of the result coincides with the type of one of the
arguments. Consider method equals as an example.
def equals(a, b)

raise StandardError if a.class != b.class

a == b
end
equals (1, 1) # (Integer, Integer) —> TrueClass
equals (1, 2) #
equals(:b, :a) # (Symbol, Symbol) —> FalseClass

# (Symbol, Symbol) —> TrueClass

(Integer, Integer) —> FalseClass

oo B o B e}

equals(:a, :a)

While adding the next transition from the vertex to the automaton, let’s compare the
symbol of the transition we want to add with all the previous symbols of the current
tuple. In case there is at least one match, instead of a regular edge with a type symbol,
edge with a bit mask is added. The length of this mask equals to the ordinal number
of the current type within the tuple decreased by 1. i-th bit is 1 iff the i-th type in the
tuple equals to the type to be added (Fig. 4).

15

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

Integer—s —Integer
1

Data: tuple, type, typelndex

Result: mask /St””QH *S‘";‘Q —

mask = 0 #start 7[00 end
. e -

for i : [1..typeIndex — 1] do s 0, FalseClass
. 3 Symbol—s -Symbol =
if tupleli] == type then 1

| mask[i] =1
end Date—» —Date
end £

Fig. 4. Automaton with counted bit masks

When reading the signature, each following type is compared to the previous
signature types and if a nonzero mask is obtained, one goes through the transition
with the mask received.

for arg : tuple,i + + do
type < arg.type

mask < calculate _mask(tuple, type, i)
if mask > 0 then
if (node, mask) ¢ automaton then
| automaton(node, mask) < newNode
end
node < automaton(node, mask)
else
if (node,type) ¢ automaton then
| automaton(node, type) < newNode node < automaton(node, type)
end
node < automaton(node, type)
end
end
automaton(node, returnType) < automaton.termVertex

Algorithm 1'. Adding a tuple to the automaton with masks

Theorem 2. Before the minimization from the vertex cannot be the transition with a type

symbol and the transition with an appropriate mask simultaneously.

Proof. Consider two cases: the transition with the symbol was added before the transition
with the mask and vice versa.

1) If an transition with a symbol was added before the transition with the mask, then
when it was added, a non-zero mask should have been produced. Then instead of the usual
transitions had to be added a transition with a mask.

2) If the transition with a mask was added first, then instead of adding an edge with a
symbol, we should just go through the existing transition with mask. |

Corollary 1. After minimization, the automaton with masks remains deterministic, that
is, for every vertex and any type it is impossible to find both conventional and mask edges

corresponding to that type simultaneously.

16



Berorunos H. 10., ®onnaparos B. C. ABromMaTH3MpoBaHHas ITeHEPALHsl THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 7-20.

Automata received from different users need to be merged. The following algorithm
is used for this:

Data: automaton, additional Automaton

Result: automaton

bf sQueue.push(automaton.getStart N ode, additional Automaton.get Start N ode)
while !bfsQueue.emptydo

(oldNode, new N ode) = bf sQueue.pop

for transition : newNode.getTransitions do

node = createNewN ode
oldNode.addTransition(transition, node)

if transition € oldNode.getTransitions then
nodeToClone = oldNode.goByTransition(transition)
node.getTransitions.add(nodeToClone.getTransitions)
end

nodes = (node, newNode.goByTransition(transition))

if lused(nodes) then

used.add(nodes)
bf sQueue.push(nodes)
end
end
end

automaton.minimize

Algorithm 3. Automatons merge

In Ruby, Duck Typing [8] is quite heavily used. As a consequence, variables of
various types that implement a set of methods can be passed as arguments to a
method. Hence, many multiple edges corresponding to these classes appear in the
automaton. These multiple edges can be replaced by one edge containing information
about the interface that all these classes satisfy. Then, to jump on this edge, the next
type from the signature must implement this interface. In case this common interface
is empty on the edge, it is enough to write the type Object, since it is the parent class
for all objects.

5. Using of contracts in static analysis algorithms

The contract is used to calculate the type returned when the method is called with a
certain set of arguments. It is worth noting that the types of arguments are not always
uniquely defined. Sometimes there is a set of types to which the variable may belong.
To calculate the type returned by the method, it is necessary to go successively along
the edges of the automaton calculating a set of vertices reachable by reading some
sequence of types. The unspecified optional arguments types are imitated with a
special non-alphabetic character so that the length of a tuple is lower than the
automaton height by 1.

17

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

Data: argumentTypes, automaton

Result: returnType

node < automaton.startVertex

index =0

for type : argumentTypes,index + + do

mask = calculate,ask(argumentTypes, type, index)
if mask € node.getTransitions then

node = node.goByTransition(mask)

continue
end

if type € node.getTransitions then
| node = node.goByTransition{(iype)
| continue
end
return UNKNOWN_SET_OF _ARGUMENTS
end
returnType << node.getTransitions.types

Algorithm 4. Output type calculation

The generated contracts complement the type selection system because they allow to
calculate the types returned from methods which were not successfully analyzed
using standard tools. This expands the class of variables for which it is possible to
statically compute a type.
The collected information for the methods makes it possible to significantly
accelerate the existing control flow analysis because the methods for which a
sufficiently representative contract is generated do not require additional analysis.
Contracts allow to extend the applicability of some of the features that are supported
in most modern IDEs. The functions considered are applicable to method calls for
which it was possible to select the class of the object to which they were applied and
for this class there is a contract corresponding to the method with that name and
configuration of parameters. Functions in which contracts are applied:
¢ Go To Declaration/Find Usages. At the execution time information about
method declaration was collected. This information can be used for
navigation from method call to declaration and vice versa.
e Autocompletion. A list of methods implemented for an object can be
supplemented with methods for which the contract was found.

)
e  Incorrect method arguments’ Inspection. Information about the method
parameters can be used to detect incorrect calls.

6. Conclusion

The paper describes the approach to the generation of implicit type contracts. This
approach provides information containing type signatures of methods that cannot be
obtained by static analysis using the source code given it is possible to understand in
which library the method was declared and to resolve the method receiver. This
approach is useful for analyzing programs which heavily utilize dynamic features like
dynamic methods creation or when there are complex syntactic constructions in

18



Berorunos H. 10., ®onnaparos B. C. ABromMaTH3MpoBaHHas ITeHEPALHsl THIIOBBIX KOHTPAKTOB JUIs si3bika Ruby. Tpyost
HUCII PAH, Tom 29, Beim. 4, 2017 1., ctp. 7-20.

methods implementations. In addition, this approach can be applied to other
languages with dynamic typing, such as Python or JavaScript.

Several problems remain unsolved, such as Duck Typing and handling an ambiguous
resolve of the argument type in a static analysis.

The problem with duck typing is that, during the execution of the program, it is
impossible to save all the methods implemented for the object. Therefore, it is difficult
to find the largest common interface for a group of classes.

The problem with arguments with types ambiguous according to the static analysis is
that they cannot be read in the automaton.

References

[1]. Brianna M. Ren., J. Toman, T. Stephen Strickland and Jeffrey S. Foster. The ruby type
checker. Available: http://www.cs.umd.edu/~jfoster/papers/oops13.pdf

[2]. blog.codeclimate. Gradual type checking for ruby, 2014. [Online]. Available:
blog.codeclimate.com/blog/2014/05/06/gradual-type-checking-for-ruby/

[3]. O. Shivers. Control flow analysis in scheme. ACM SIGPLAN 1988 conference on
Programming language design and implementation, 1988.

[4]. Bozhidar Batsov. Rubocop, 2017. [Online]. Available: http://batsov.com/rubocop/

[5]. Jeff Foster, Mike Hicks, Mike Furr, David An. Diamond-back ruby guide, 2009.[Online].
Available: http://www.cs.umd.edu/projects/PL/druby/manual/manual.pdf

[6]. Pat Shaughnessy. Ruby Under a Microscope. No Starch Press, 2013.

[7]. Madsen M. Static  Analysis of  Dynamic Languages. Available:
http://pure.au.dk/ws/files/85299449/Thesis.pdf

[8]. Duck Typing [Online]. Available: http://rubylearning.com/satishtalim/duck typing.html

ABTOMaTn3npoBaHHaA reHepauuns TUNOBbIX
KOHTpaKTOB AnA A3blka Ruby

L2 H. JO. Bviozunos <viuginov.nickolay@gmail.com>
2 B. C. @ondapamos <fondarat@gmail.com>
Lcrery,
199034, Poccus, Canxm-Ilemepoype, Yuueepcumemckasn nao., 13B
2 JetBrains,
199034, Poccus, Canxm-Ilemepoype, Yuueepcumemckasn nao., 7-9-11

AHHOTanMs. DJICTAaHTHBI CHHTAKCUC s3bIKa Ruby 3aMeTHO ycOXXHSET MOWCK OHmMOOK B
GompIMX KONOBBIX ©0a3zax. CraTuueckuil aHamW3 YCIOXKHSETCS — CHelu(pUUYSCKUMU
BO3MOXHOCTSIMU $I3bIKa, TAKUMH KakK IMHAMHYECKOE CO3J[aHHE METOJOB M MHCIIOIHEHHE
CTPOKOBBIX BbIpaykeHHH. [laxke B A3bIKaxX ¢ JUHAMHYCCKON TUIM3auue HHPOPMAIHA O TUIIaX
Ba)XKHA, TaK KaK OHA IIO3BOJSET YIYYIIUTh TUIOOE30MACHOCTH M MPOM3BOAUTH Ooiiee
HaJEKHBIE CTATHYECKHE IMPOBEPKU TOTO, ONPEACIEH M MeToJ Uil 00beKTa M HepeiaH JIn
MeTOJa KOPPEeKTHHIH Habop aprymeHToB. OIHUM U3 IyTeH pemeHHUs HNPOOJIEeMBI SBISETCS
ucnoib3oBanue Y ARD noranumii. OHU 1103BOJISIIOT 32/10KyMEHTHUPOBATH BXOAHbIE U BBIXOIHBIN
THUIIBI METOJOB WM JaXKe JEeKJIapHpoBaTh METOABI, no0aBisieMble MUHaMUYeckd. Takue

19

N.Y. Viuginov, V.S. Fondaratov. Automated Type Contracts Generation in Ruby. Trudy ISP RAN/Proc. ISP RAS, vol.
29, issue 4, 2017, pp. 7-20.

AQHHOTALMK MO3BOJIAIOT YJIYUYIINTh aHAJIU3 KOJAa U aBTOAOIONHEHUE. B craTbe omuceiBaeTcs
HOBBIM MOJAXOJ K I'€Hepalud TUIOBBIX aHHOTaUui. MBI OTCIICXKUBAaEM HEMOCPEICTBEHHBIC
BBI30BBI METOJ]a BO BpeMs HCIIOJIHEHHUS] NPOTPaMMBl M COXPAHSEM THUIBI apryMEHTOB U
BbIXOAHOM THI. Ha ocHOBe coOpaHHO MHpOpMaNUy I KaXI0TO METOIa CTPOUTCS HEsIBHAs
THUMOBas aHHOTaHs. KaXk1oMy aBTOMAaTy COMOCTaBIIsIETCSI KOHEYHBII aBTOMAT, COCTaBICHHbIH
U3 Pa3INyYHbIX THIOBBIX CUHATYp Meroza. K aBromary npumensiercs 3 eKTHBHBII arOpuT™M
MUHMMU3ALUU C HEIbI0 CHU3UTD 3aTPAThl HA XPAHEHHE U II03BOJIACT IPUBECTU aBTOMAT K BULY,
KOTOpPBIIT MOXKET OBITh JIETKO IIPEACTABICH B BHAE PETYISIPHOTO BEIpaXeHHWs. B
CT€HEpPUPOBAHHOM aBTOMATE YUUTHIBACTCS TOJIBKO Ta (DYHKIHMOHAJIBHOCTH METOJA, KOTOpast
OblTa TOKpHITa MPOTPaMMOH, KOTOPYIO HCIOJNHHI II0Jb30BaTenb. llosToMy B momxone
NIPEAYCMOTPEHO OOBEAUHEHNE aBTOMATOB, ITOJMYYEHHBIX y Pa3HBIX MOJIB30BaTeNeH C LEIbIo
YBEJINYEHHUS PENIPE3CHTAaTUBHOCTH M OKPHITHS (DYHKIIMOHATEHOCTH METOA.

KuawueBbie ciaoBa: Ruby; muHaMuueckn THIU3UpOBaHHBIE s3bIKH,; Ruby VM; YARV;
CUTHATypa METO/1a; HaCJIeAOBaHNE TUIIOB; CTATHYECKUI aHANN3 KoJa

DOI: 10.15514/ISPRAS-2017-29(4)-1

Jost uutupoBanusi: Betorunos H. 0., ®onnaparos B. C. ABToMaTu3zupoBaHHas reHepaus
TUTIOBBIX KOHTPAKTOB /s si3bika Ruby. Tpynet UCIT PAH, Tom 29, Bem. 4, 2017 1., cTp. 7-20
(na anrmuiickoMm si3bike). DOIL: 10.15514/ISPRAS-2017-29(4)-1

Cnucok nutepatypbl
[

—_—

]. Brianna M. Ren., J. Toman, T. Stephen Strickland and Jeffrey S. Foster. The ruby type
checker. JfoctynHo mo cepuike: http://www.cs.umd.edu/~jfoster/papers/oops13.pdf

[2]. blog.codeclimate. Gradual type checking for ruby, 2014. [Online]. JlocTymHO 110 CCBUIKE:
blog.codeclimate.com/blog/2014/05/06/gradual-type-checking-for-ruby/

[3]. O. Shivers. Control flow analysis in scheme. ACM SIGPLAN 1988 conference on
Programming language design and implementation, 1988.

[4]. Bozhidar Batsov.  Rubocop, 2017. [Online]. [JdocTymHO 1O  CCBUIKE:
http://batsov.com/rubocop/

[S]. Jeff Foster, Mike Hicks, Mike Furr, David An. Diamond-back ruby guide, 2009.[Online].
Hocrtynno no cebuike: http://www.cs.umd.edu/projects/PL/druby/manual/manual.pdf

[6]. Pat Shaughnessy. Ruby Under a Microscope. No Starch Press, 2013.

[7]. Madsen M. Static Analysis of Dynamic Languages. [locTymHO IO CCBUIKE:
http://pure.au.dk/ws/files/85299449/Thesis.pdf

[8]. Duck Typing [Online]. JocTynHo 1o CCBUIKE:

http://rubylearning.com/satishtalim/duck_typing.html

20



