
137

Array Database Internals

V.A. Pavlov <vlad.pavlov24@gmail.com>

B.A. Novikov < b.novikov@spbu.ru >

Saint Petersburg State University,

13B Universitetskaya Emb., St Petersburg, Russia, 199034

Abstract. After huge amount of big scientific data, which needed to be stored and processed,

has emerged, the problem of large multidimensional arrays support gained close attention in

the database world. Devising special database engines with support of array data model

became an issue. Development of a well-organized database management system which

stands on completely uncommon data model required performing the following tasks:

formally defining a data model, building a formal algebra operating on objects from the data

model, devising optimization rules on logical level and then on the physical one. Those tasks

has already been completed by creators of different array databases. In this paper array

formalization, core algebra and optimization techniques are revised using examples of AML,

RasDaMan, SciDB – developed array database management systems with different algebras

and optimization approaches.

Ключевые слова: array databases; overview; formal array algebra; array query processing;

array query optimization; AML; RasDaMan; SciDB

DOI: 10.15514/ISPRAS-2018-30(1)-10

For citation: Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc.

ISP RAS, vol. 30, issue 1, 2018, pp. 137-160. DOI: 10.15514/ISPRAS-2018-30(1)-10

1. Introduction

Recently in many scientific fields database users need to support and process new

non-traditional data structures. Among such uncommon structures are different

hierarchical structures, graphs, as well as arrays. It's worth noting, that such a need

is not explained by the subjective preferences of database users, it is fully justified

by the real state of things for users and their requirements for processing the data

under study. In this paper we will partially consider what is offered to users who

need to store and process array data and how storage and processing are made

efficient. But first, we let us understand more precisely, with what kind of data such

users have to deal with.

The data referred to is also called multidimensional discrete data (MDD) or raster

data [1]. Such data is homogeneous, each element has some index (represented by a

vector in a d -dimensional Euclidean space) and, hence, has some adjacent

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

138

elements. This data is typically huge. On a more intuitive level, MDD data can be

imagined as huge multidimensional cubes. For such a cube, each cell has a discrete

multidimensional index and contains a value of a fixed type. An example of a 3D

cube may be the following: a series of images[2] obtained from two Huble

telescopes cameras for some a period of time, say. a year. As it has been said, in real

life those cubes are usually of tera- or even petabyte scale: for instance, Large

Hadron Collider (LHC), producing raster cubes during its work, after a day of

functioning and filtering produced data generates multidimensional data sizing over

5 terabytes [3].

Granted, such cubes are not just stored as they often demand some kind of analysis.

Usually the analysis to be done is not trivial due to the fact that the need for

intelligent raster data processing arises in such fields as: natural sciences, medicine,

census, multimedia and OLAP. Demand for efficient storage and processing of huge

raster data cubes states a problem of devising special tools and algorithms. The

specificity of the data in use is another factor increasing the need in a specialized

storage systems. Raster data has several peculiarities induced by its properties

mentioned above. These peculiarities include: large size of a single raster data value

(a single cube may occupy several disk pages instead of a part of a disk page in case

of conventional data types, e.g. numeric values); lack of index support due to

absence of natural ordering of cubes, etc. Those peculiarities make efficient

processing of raster data different from processing conventional data types in terms

of storage and optimization techniques.

Fortunately, the problem of optimized storage and efficient processing of raster data

has already been faced by authors of special extensions for existing

relational/object-relational databases (such as Terralib [4], PostGIS [5], SpatialLite

[6], Oracle GeoRaster [7]) and creators of array databases standing on specially

devised array data models [8]. Today there are several array database management

systems (ADBMS) such as RasDaMan [9], SciDB [10], which are still maintained

and intensively developed with the aim to continuously improve and to conform to

rapidly increasing scientific demands. In each ADBMS much attention is paid to

optimization as optimizing queries is crucial when processing queries operating

with petabyte sized data cubes.

There are two ways of optimization: logical and physical ones. Logical optimization

is usually based on formal algebra standing behind the array model. Physical

optimization is typically achieved by devising special storage scheme and/or data

retrieving order[11], [12]. In the current work we will briefly review theoretical

basement and optimization techniques considering three distinct developed

ADBMSs : RasDaMan, AML and SciDB.

The reader should be aware of the fact that the aim of this paper is to present and

analyze different data models, algebras and optimization techniques used in some

array databases and certainly NOT to compare those databases in order to determine

advantages of one over another. The paper does NOT intend to characterize the

databases anyhow so that the given characteristics are based on subjective opinions.

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

139

2. Diving In

To study the the theoretical basement along with optimization techniques in

ADBMSs it is important to understand a generic algorithm following which a new

ADBMS can be built.

First, an array term should be formally defined as it is a central object of interest in

such systems. Obviously, in array DBMS algebras, the main object of all operations

is an array. For best of our knowledge, all the existing algebras define an array

mostly similarly. Formally, an array is a function defined on index domain D to

some value set V . Value sets differ in different systems. Index domain D is

represented as Cartesian product of finite amount of ordered sets kIII ,...,, 21 . The

value k is called an dimensionality (valence) of the array. Applying A function

to a vector),...,,(21 kiii is associated with getting the array's cell value.

Second, a formal algebra is introduced. Algebras are mathematical structures where

several operations with some core objects are defined. Operations with those objects

return an object from the same algebra. One of the most important features of

algebras is an ability to construct expressions in them by combining application of

algebra's operations. As algebras operations are closed, result of an expression

evaluation is again an object from the algebra. In simpler words, a formal algebra

enables to construct complex expressions value of which do not leave the algebra.

In reality in different systems underlying algebras start to differ. Several existing

algebras in existing array dbms are described further.

Third, logical optimization rules are introduced. Complex expressions can be

overburdened with unnecessary operations and elimination them simplifies the

expression benefiting in less execution complexity.

Fourth, physical optimization rules are derived. Logical optimization of an

expression is not sufficient for actually executing the query in the most efficient

way. In most cases a single query can be executed differently accounting "physical"

information which tells how the queried data is actually stored.

Fifth, the query language is introduced to give a user of the system of the system a

convenient high-level language taking the user away from lower-level algebra

language.

In the current paper we will look at how the first four steps were followed for each

of the highlighted array databases, ignoring high level query languages as they do

not contribute much to understanding the theoretical essentials of ADBMS.

2.1 Baumann's array algebra

 We will now optimization process is organized in RasDaMan ADBMS, explaining

its core model and formal algebra - Baumann's array algebra [13]. The overview of

optimization techniques is mostly based on PhD thesis [14] of Ronald Ritsch. To

present the entire data model the following terms should be explained:

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

140

 • Multidimensional intervals and spatial domains

 • MDD types, values and elementary operations on them

 • Derived operations on MDD data

 • Extended relational model with MDD support

2.1.1 Multidimensional Intervals and Spatial Domains

 An m -interval X is defined as follows: let
nZD = , then

]:,...,:[= 11 nn hlhlX is }1..(|),...,,{(21 nihxlDxxx iiin  .

Multiple probe functions are defined on the multidimensional intervals:

 Domain function : DXdom =)(

 Dimension function : nXdim =)(

 Lower bound function :),...,(=)(1 nllXlo , where)(Xloi denotes il

 Upper bound function :),...,(=)(1 nhhXhi , where)(Xhii denotes ih

 Extent function : 1))()((=)(1=  XloXhiXcard ii

n

i

Usually a multidimensional interval represents an index set of a multidimensional

array, therefore it is commonly called a spatial domain. It is convenient to restrict

the possible value type of an interval by introducing a spatial domain type. More

precisely, a spatial domain type
d is a set of admissible d -dimensional domains

d
Zd 2 . Union of all

d over all non-negative integers d will be denoted as

 . Then, it is possible to define multiple operations from  to  :

 Trimming along dimension i with one dimensional m -interval B

)()(|),...,,{(=),,(21 BhixBloXxxxBiXtrim in 

 Slicing along dimension i at point b

}),...,,,...,(|),...,,...,{(=),,(111111 XxxbxxxxxxbiXslice niinii 

2.1.2 MDD values and types

 An MDD value a over base type T and spatial domain D with T and

D is a set of (coordinate, value)-tuples defined by a mapping function a :

TD  . Then an MDD value a would be },)(|))(,{(DxTxaxax  .

Defining an MDD type is accompanied by definition of several probe functions:

 Tabase )(

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

141

 Dasdom )(

 An MDD type M with base type T and spatial domain D with T and

D is defined as aa |{ is MDD value over base type T and spatial domain

D , },   DT . An MDD type with base type T and spatial domain D is

denoted by]],[[DT .

Further, such operation as 'cell access' will be used very frequently on MDD arrays,

therefore it should be defined now.

Let a =]],[[},)(|))(,{(dd DTDxTxaxax  be an MDD value and

dDx be a d-dimensional point, then the access operator [] :

TZDT dd )(]],[[is defined as:)(=][xaxa .

2.1.3 Core operations

 As reported in [14] Baumann's array algebra stands on two basic operators. They

are listed below.

 • Array constructor),,(xexXMARRAY

Let D be an spatial domain, x be a point variable, xe be an expression with result

type T which contain free occurrences of identifier x . Then

),,(xexXMARRAY returns an array]],[[DTa for which xexA =][.

 • Condense operator),,,(,AxexXopCOND

Let X be an array, op be a commutative and associative operation on

TTT  , x be a free identifier, xe be an expression with result type T ,

which contains free occurrences of identifier x and MDD array A . Then

),,,(,AxexXopCOND returns a scalar value s being equal to AxXx eOP ,

 In some works [13], [8], [15] Baumann's array algebra is defined with additional

sort operator),,(eiXSORT , which can be defined as follows: let X be an

array, i be a dimension number, r be an expression of some type E on which a

total ordering is defined. Let S be a one-dimensional array representing a

permutation of elements of a set)}(),...,({= ii XhiXloJ sorted by

),,((jiXslicer where Jj . In less formal words, SORT operator allows to

sort hyperplanes of a hypercube along given dimension by value of r expression

evaluated on each hyperplane. In [15] it is used for modeling of such a geo-raster

operations as ktop and median operations.

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

142

It should be mentioned that from optimization point, it is very important to

understand what expression e or operation op is provided for an operator to make

best possible optimizations. As reported in [14], all operations for MARRAY 's

expression e are classified into seven disjoint classes:


1CE : Constant expression


2CE : Cell access with probing point x

 3CE : Simple expression on cell at probing point x


4CE : Cell access with cluster preserving index expression

 5CE : Access to small neighbourhood of probing point x

 6CE : Simple expression on two cells at probing point x

 7CE : General expression

 Those types of operations help to formally classify all probable expressions

provided for cell expression and to exploit that knowledge for finer optimization.

Similarly, all the operations for COND 's operation op are considered to be from

one of the following class:


1CA : Cell access with probing point x


2CA : Simple expression on cell with probing point x

 3CA : General expression

Generally speaking, classes
1CE and 7CA incorporate expressions to which an

optimizer cannot apply any modifications to optimize the MARRAY

performance.

2.1.4 Derived operations

When core operation are defined, multiple additional ones are built on top the low-

level core operations to have a convenient notation for frequently used typical

operations. Such operations are called derived operations and there are several types

of them: geometric, induced, binary induced, aggregate induced.

Geometric operations

These operations are some special cases of application of MARRAY constructor.

Let A be an MDD of type]],[[DT , K be a result of application of trim with

some parameters to multidimensional interval D , i be a dimension number, v

some valid point along i -th dimension of domain D . Then the following

operations can be defined:

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

143

 •)(Atrimming K
 =])[,,(xAxKMARRAY

 •])[,),,),(((=)(),(xAxviAsdomsliceMARRAYAslice vi

 All MARRAY cell expressions in geometric derived operations belong to class

2CE .

Induced operations

These operations are again some special cases of application of MARRAY

constructor. Let A be an MDD of type]],[[DT , B be an MDD of type

]],[[DT  , op be a function DT  , binOp be a function TTT  .

Then the following operations are defined:

 Unary induced operation]],[[]],[[:)(DTDTAop  which is the

replacement to]))[(,,(xAopxDMARRAY

 Binary induced operation:

]],[[]],[[]],[[:),(DTDTDTBAbinOp  which is equivalent

to]))[],[(,,(xBxAbinOpxDMARRAY

 Left induced operation:]],[[]],[[:),(DTTDTconstAopleft


which is a shorter notation for))],[(,,(constxAbinOpxDMARRAY

 Right induced operation:

]],[[]],[[:),(DTDTTAconstopright
 which is equivalent

notation for]))[,(,,(xAconstbinOpxDMARRAY

 Note that in case of unary induced operations MARRAY cell expression

belongs to 3CE class and in case of binary induced operations to class

6CE .

Aggregate induced operations

The main convenient operation is reduce operation on which other derived

aggregates are based. Let A be an MDD of type]],[[DT , op be an associative

and commutative binary operation defined and closed on T . Then reduce

operation can be defined as follows:),,(ADopreduce =

])[,,,(xAxDopCOND . Then several convenient operations can be defined as

follows:


])[,),(,(=)(_ xAxAsdomreduceAcellssum 

])[,),((*,=)(_ xAxAsdomreduceAcellsmult

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

144

 •
))((

)(_
=)(_

Asdomcard

Acellssum
Acellsavg

 •])[,),(,min(=)(_ xAxAsdomreduceacellsmin

 •])[,),(,max(=)(_ xAxAsdomreduceacellsmax

2.1.5 Extended relational model

 In order to examine MDD specific optimization techniques in combination with set

based query processing, the MDD Model is integrated into an adapted Relational

Model. The attribute domain of multi-dimensional values can be specified

differently:

 Base type is fixed. Spatial is domain unknown

 Base type is fixed. Spatial domain's dimensionality is fixed

 Base type is fixed. Spatial domain is fixed

 Base type is fixed. Spatial domain is fixed with its physical representation

(violation of 'hidden physical representation' principle)

 The type of attribute domain sets amount of restrictions on MDD values that can be

effectively used by an optimizer.

Formally speaking, let iD be spatial domains, iT be types and id be

positive integers. Let iA be attributes with

}]],,[[]],,[[]],{[[)(iiiiiii TDTdTTAdom  . Then the mutidimensional relation

R is defined as)(...)()(21 nAdomAdomAdomR  . When attribute

domains are formalized in the model, three relational operations are defined. Let R

and S be relations, cond be a predicate on R , jop be a function defined on R

and returning either scalar or multidimensional values for each j . Then relational

operations are defied as follows:

 Selection Application 

)(Rcond =)}(|{ tcondRt

 Cross product 

),(SR =),...,,,,...,,(=|{ 2121 nn sssrrrtt , Rrr n ),...,(1 ,

}),...,(1 Sss n 

 Application 

)(,...,
1

Rop
s

op = })),(),...,((=|{ 1 Ryyopyoptt s 

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

145

The first two operations are very similar to those in canonical relational model,

however, the third operator differs significantly. What it does is application of the

provided operators to all of the tuples Relational projection can be expressed

through projection operation with special functions returning an element of a tuple

at the specific position.

2.1.6 Formalizing Array Query Processing

 An array query can be represented as a special graph. Each node of the graph is

represented by an operator which comprises the query. This graph is a tree and

consists of set trees and element trees. Set trees include relational operations as

inner nodes and MDD relations(see definition above) as leaves, whereas element

trees' inner nodes are MDD/logical operations. Leaves are MDD constants/iterators.

There are also some specific kinds of trees for naming convenience: condition trees

and operation trees. The former are element trees representing boolean

multidimensional expressions attached to a select node. The latter are element trees

representing some multidimensional expression attached to an application node.

The mere query graph represents data flow between operator nodes. A single edge

transfers only particular type of data, thus all edges can be classified into distinct

categories depending on type of data flowing through it. The whole edge set is

divided into non-intersection sets of three types: relational, dimensional, scalar

types. Data edges carrying relations comprises relation sets, edges carrying raster

data - dimensional ones, and edges carrying non-dimensional or scalar values are

those forming scalar sets. According to this classification, the graph is partitioned in

subgraphs of maximal size, each of which contains only one sort of edges. Such

subgraphs are called areas and are in particular called relational data areas (RDAs),

dimensional data areas (DDAs) and scalar data areas (SDAs), depending on the

type of edges they contain. Optimizing data flow in DDAs is of primary importance

in extended relational model for array query processing.

In general, when a query optimizer receives a query it processes it in three stages:

 Rewriting

 Transformation

 Execution

During rewriting a query is represented in a normal query form which is based on

logical optimization rules and the following key principles:

 Eager constant subexpressions evaluation.

This saves computational resources as those expressions might be needed to be

computed for each cell of MDD objects

 Boolean expressions normalization aimed at application of optimization

rules.

All boolean expressions are transformed to CNF or DNF depending on the

predicates in order to let the optimizer detect patterns for application of logical

optimization rules

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

146

 Prepare induction expressions for the application of optimization rules.

Such a modification leverages associativity and distributivity of induced operations,

which can replace MDD operations by scalar ones, dramatically reducing

computation cost of the expression

In [14] more than one hundred logical optimization rules are presented. Those rules

are mainly based on load optimization for geometric operations; exploitation of

operations' beneficial properties (such as associativity, distributivity) for induced,

binary induced and aggregate operations; movement of individual  , 

subexpressions through cross product operation for set trees.

In the first case, geometric operations are pushed down to multidimensional nodes

serving as data sources for upper nodes. This potentially reduces amount of I/O

needed to process a single MDD value by an upper node. An example of such a rule

is))(())((AtrimmingdunOpInduceAdunOpInducetrimming DD 

where dunOpInduce is an unary induced operation, A is an MDD value.

In the second case, rewriting expressions leveraging beneficial properties of an

operation on which some induced, binary induced or aggregation operation is based

may reduce the amount of multidimensional operations in an expression. A

remarkable example of such a rule is

)),(,()),,((cbbinOpAedbinOpInduccbAedbinOpInducbinOp 

In the third case, computation effort is potentially diminished by reducing the

amount of multidimensional operations performed. For example, the amount of

multidimensional predicate evaluation may be diminished as in case of application

of the rule

)()()(SRSR condScondRcondSandcondR  

where R , S are relations, condScondR, - predicates defined on R and S

respectively.

In general, query rewriting is reported to be notably profitable if following

heuristics are taken into account:

 Perform geometric operations eagerly (load optimization rewriting)

 Reduce number and overall cardinality of Dimensional Data Areas as much

as possible

Abiding by this rule lets to diminish the number of edges in DDAs by applying rules

that eliminate MDD expressions or transform them into scalar ones.

 Perform applications eagerly

Similar to pushing down projections while using greedy algorithms in relational

query processing [16], which is not always the best choice [17]. However, lack of

join conditions lets sieving down application into cross product to reduce amount of

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

147

tuples for which given functions are applied. Application is an expensive operation

as MDD values typically have plenty of cells to operate on.

 Perform selections eagerly

This heuristics also resembles the common heuristics in relational query processing

as noted in [18]. Selections are pushed down to diminish operation sets as early as

possible. Scalar predicates are given priority over MDD ones.

 Search for common subexpressions

Common subexpressions are stored as intermediate results. Doing one unit of work

several times is useless and even costly when operating on large MDD values.

During transformation logical plan operations are mapped to physical plan's

operations. Such a mapping is not the distinctive feature of RasDaMan, for example,

AML (described in Sec. 2.2) also maps logical operations to physical ones.

Typically multiple physical plans are valid and semantically equivalent. Those

might be analytically compared via usage of special array cost models which were

devised for corresponding algebras in [19], [14]. However, being able to just

compare physical plans using cost functions is not always sufficient, it is crucial that

some physical plan refinement techniques are exploited whose aim is to try to

reduce the cost of a physical plan by accounting physical layout of the processed

MDD values and to adjust the iteration order correspondingly. In RasDaMan system

each type operation is considered separately.

Transformation of induced and aggregate operations is pretty straightforward. Main

idea of transformation in such cases is to provide parallel tile processing. However,

transformation of binary induced operations is a bit more tricky and we will focus

on them in more detail further.

 Binary induced operations are optimized by trying to find the optimal tile

traversing order over tiles comprising binary induced operands. Finding optimal tile

traversing order minimizes disk reads as the main bottleneck during MDD values

processing, leveraging efficient exploitation of main memory. The problem can be

formalized using graph terminology. Let  EVG ,= be a graph, where

21= VVV  and  =21 VV , so that
1V ,

2V represent tile sets forming the first

and the second operands of the binary induced operation respectively. The edge

Evv ),(21
 if and only if tiles corresponding to

1v ,
2v need to be processed

simultaneously during binary induced operation performance. The result graph is a

bipartite graph, as any edge from E has the one end in
1V and another in

2V . An

edge in the graph may intuitively be perceived as an indicator of represents a need

for holding two tiles from different sets in main memory for faster processing.

However, to process the tiles in main memory those tiles should be, obviously,

loaded into the main memory first, unless they are already in place. Loading of a tile

is an expensive operation as it is directly related to expansive disk I/O, hence the

amount loads should be diminished as much as possible. If there is no cache and

only two tiles can be held in main memory simultaneously at a time then the

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

148

problem of minimization of disk access can be formulated as follows: find a vertex

traversing order nkkk ,, 21 , minimizing amount of disk access.

The tile traverse algorithm for binary induced operations has been pondered in [14].

Disk access minimization problem is reduced to the problem of minimization of a

special cost function that is defined as

2:1?1)>),((),..,(=),...,,(112121 iiiii kandkkisAdjkkkcostkkkcost   .

The minimum is obtained when the sequence nkkk ,,, 21  forms a Hamilton cycle.

In generic case determination of whether such a sequence of vertices exist is known

to be an NP-complete problem [20].

However, the restriction to visit each vertex only once can be relaxed. Such an

approach has been used in [21] for facing the problem of finding the optimal tile

traversing order for array join - a special case of binary induces operation. In this

paper the requirement of exclusive visit of each vertex is replaced with requirement

of visiting each edge only once with intention to minimize multiple reads of a tile.

Authors exploit Hierhozer and Weiner necessary and sufficient condition to find an

Euler circuit, i.e. a circuit that visits each edge in the graph only once. As the

Hierholzer and Wiener criteria claims [22] the presence of Euler circuit in a graph is

equivalent to its connectivity and all vertices having even degrees. Authors split the

graph G into connected components, augmenting each with extra auxiliary edges

so that each vertex has an odd degree and Euler circuit exists. For each component

an Euler circuit is computed and tile traverse path is determined. The result traverse

path is built from a random permutation of components' paths. The authors report

that it is still an open question how this approach may be adapted to either a

distributed environment where each tile load may have its own cost and or to a

presence of an arbitrary sized cache.

2.2 AML algebra

2.2.1 Array abstraction

 In Array Manipulation Language (AML) [23] an array A is set by its shape S ,

domain D (which is conceptually similar to Array's algebra value set), and the

mapping M that establishes the link between the array's shape and domain.][iS

represents the extent of A along i -th dimension, as all cells of an AML array has

lower bound equal to zero. A vector x is said to be in array's shape S iff

][<][0 iSixi  . Said that, we can define the mapping M more formally as a

function that returns some value from D for every Sx and a special Dnull

element otherwise.

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

149

2.2.2 Algebra operations

 AML makes use of bit patterns and several probe functions defined on those

patterns (index and count). The),(kPindex function returns the index of the

1k -th 1 in the bit pattern P if it does not equal to (0) , otherwise the function

returns 0. The),(kPcount function will return number of 1 up to k -th position

in the bit pattern B .

Let BA, be the multidimensional arrays with different shapes
21, SS and common

domain D with d dimensions, P , iP be some bit patterns, fD , fR be some

shapes called domain and range boxes respectively; then the core operations on

arrays in AML algebra are:

 Subsection.),(= PASUBC i

The
ISUB operator iterates over hyperplanes along i -th dimension and, if allowed

by the corresponding bit in P , concatenates the hyperplane to the result array.

 Merging),,,(= PBAMERGEC i

The MERGE operator cyclically glues together hyperplanes cut along i -th

dimension according to pattern P . Hyperplane are taken from A for set bit in the

pattern and from B otherwise. If source array has no values hyperplane is filled

with  value.

 Function application.),,,,,,(10 dff PPRDfAAPPLY 

Iterates over slabs of shape fD from A , checks whether that slab is "allowed" by

all of the iP patterns (by looking through corresponding bits over all patterns and

rejecting the slab if some of the bits is not set). If the slab is "allowed" function f

is applied to the slab and a slab of shape fR is obtained. The result slab is "glued"

to the result array from the side indicated by iteration position (more formally to (

),(,),,(1110  dd iPcountiPcount  where vector),,(1 nii  represents the

iteration vector)).

 The APPLY operator might seem to resemble the MARRAY operator defined

in Baumann's array algebra. Indeed, MARRAY operator can be called as a more

restrictive version of MARRAY operator with range boxes equalling a single

array cell. In AML function f is a black box just as an expression of class 7CE

for MARRAY operator.

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

150

2.2.3 Optimization

 AML optimization techniques, similarly to those in Baumann's algebra, can be

classified into logical and physical ones. In AML those techiques are applied in

three phases, so called rewriting phase and plan generation phase, plan refinement

phase.

During rewriting phase an AML optimizer receives an AML query, builds query

expression tree, and transforms it to semantically equivalent one using algebra's

transformation rules. The transformed expression is guaranteed to be evaluated to

the same result as the intial one, however the transformed query is hoped to be

executed faster for some reason (e.g. due to operating on smaller amount of cells as

in case of load optimization in Baumann's array algebra, see Sec. 2.1.6). In [19],

[23] several algebraic rules are presented. The set of logical optimization rules is not

so diverse compared to those devised in [14]. The approaches used by AML

optimizer is similar to those exploited by Baumann's Algebra optimzer for load

optimization. Examples of AML optimizer's query transformations are: merging

several subsample operators into one, pushing subsample through merge in some

cases, pushing subsamples through apply in some cases, etc. As AML's algebra

operators by nature are superior to Baumann's Algebra ones in terms of flexibility

(e.g. bit pattern support in all elementary operators, differently sized range boxes for

function application operator), logical optimization rules become more complex,

accompanied with extra initial conditions and overburdened by auxiliary bit pattern

calculations. For example, some generic optimizations exploited by a Baumann's

algebra optimizer, like reducing the cardinality of processed cells set before

function application, cannot be simply borrowed by AML optimizer for use. This

occurs due to the fact that additional logic is introduced by bit patterns and possibly

different sizes of range and domain boxes. However, overall relative complexity of

AML's logical transformation rules does not diminish the AML optimization

potential. At plan generation phase rewritten expression tree is mapped to a

physical plan just as during Transformation phase of Baumann's optimizer. The

physical plan is represented by a directed graph where a vertex represents a logical

operator, while an edge depicts a data flow. Every operator expects a stream of non-

overlapping chunks (tiles in RasDaMan terminology) of some particular shape and

in some particular order as an input. Operators produce non-overlapping array

chunks of particular shape and in some particular order as an output. An operator

may have some parameters which specifies its behavior. The summary on the

physical operators is provided in table 1.

Table 1. AML physical operations

 Name Input

Stream

 Parameters Description

 APPLY_P 1 function Applies a function to an array

 LEAF_P 0 array Reads array from disk

 COMBINE_P > 0 combination Maps input slabs (in each

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

151

map dimension) to output slabs. Used

for MERGE and SUB

 REGROUP_P 1 - changes input chunks' shapes

 REORDER_P 1 - permutes input chunks

 The building of the physical operator tree is based on recursive top-down

traversing of the expression tree. The algorithm step can be determined depending

on the currently processed node of the expression tree. Algorithm of building the

physical plan tree is summarized in tab. 2.

Table 2. AML physical plan tree building algorithm

 Current tree root

node is ...

Action

 Nonleaf

APPLY with

domain box fD

and range box

fR

Add APPLY_P and REGROUP_P operators where

* REGROUP_P precedes APPLY_P

* APPLY_P input chunk shape matches fD ; output – fR

* Application mask are taken from APPLY patterns

 SUB or

MERGE with

n leaves

Find max tree of SUB and MERGE rooted at current

node. Translate it to n -ary COMBINE_P and n

REGROUP_P operators

 Leaf APPLY Translate it to LEAF_P

The main aims of the optimizer on plan refinement phase are to remove no-op

operators and specify chunk ordering of each operator. Chunk iteration order

directly affects the amount of data buffed by an operator, therefore the optimizer

tries to minimize the memory requirement so that try to execute entirely in memory

not to spent effort on materializing intermediate results of evaluation. For d -

dimensional array consisting of q chunks there are !q iteration orders. If a plan

consists of multiple operators consuming several arrays then considering all

iteration orders becomes exponentially expensive. AML authors decided that the

optimizer should consider only d iteration orders for each operator, where d is the

maximum dimensionality of an array consumed in the plan. Each of those d

iteration order differs in the primary dimension by which all the input chunks are

ordered. Other sort dimensions are taken in dimension number increasing order.

Authors claim that Hilbert curve [24] or Z -order [25] could be considered by an

optimizer as those orders might be related to secondary storage scheme, but those

types of orders are neglected for the sake of simplicity.

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

152

For physical plan consisting of w operators there will be
w

d iteration orders.

There is another problem that even if an optimal iteration order is found for some

operator it does not mean that optimizer is done with this operator. There might be

another dependent operator expecting output chunk stream of the just considered

operator in a completely different order. However, instead of examination of

another possible chunk ordering it might be more beneficial to insert a reorder

operator between the producer and the consumer operators. Having addressed the

aforementioned problems, AML authors devised a cost-based algorithm reducing

the complexity of assigning chunk iteration orders to operators down to)(
2

dwO .

The algorithm is briefly discussed below.

Let)(xCi be cost of choosing output to be returned in i -th order for operator x .

Let)(xY be set of x neighbors. If the x is LEAF_P then cost function is equal

to operator memory cost (defined for each operator separately), otherwise:

  ),,,()(min),((min)(=)(
)(

yxijtreorderCosyCyCxcxC jjiixYyii  
 Here),,,(yxijtreorderCos shows the additional cost augmented after

inserting a REORDER_P operator between x and y operator reordering j -th

ordered chunk stream into i -th order one.

2.3 SciDB

 To the best of our knowledge the formal SciDB algebra description with possible

derived optimization techniques has not been yet published. This may be explained

by the fact that, formally speaking, there is no formal algebra in SciDB, as it will be

seen below, and all operators are initially considered to be user defined functions

(UDFs). There are some built-in operators, but they do not form any algebra, and

are still considered UDFs, as SciDB pays much attention to extensibility. Despite

this fact, here we try to formalize our knowledge about SciDB and structure it using

the plan used for AML and Baumann's array algebra. First we define an array, then

list built-in elementary operations of SciDB and finally try to explore how SciDB

query optimizer works.

2.3.1 Array abstraction

 SciDB operates on collection of n -dimensional arrays each of which again may be

represented as a mapping

   }{: 2121 NULLVVVIIIA kn  

Sets
1I ,

2I , , nI are closed subsets of
nZ just as in case of Baumann's array

algebra. Value associated with each index vector  nii ,,1  represents an array's

cell. What needs more attention here is the nature of a SciDB array's cell. As it can

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

153

be seen from formal SciDB array definition the cell value is actually a

heterogeneous tuple or a special NULL value. The presence of NULL value gives

lets SciDB to store sparse arrays just out of the box. Cells which are mapped to

NULL are called empty. Each tuple element can be addressed by so called attribute

name. It should be mentioned, there are some constraints on value sets jV , which

restrict a tuple value to be of one of some predefined types: fixed length string,

number, etc. However, users of SciDB are given an opportunity to compose custom

types (user defined types – UDTs). One of the features of the SciDB array data

model is that it is nested, allowing an array cell contain another array.

2.3.2 Algebra operators

 One of the most distinguishable feature of SciDB is that as reported in [26] it has

no built-in operators, forming some rigor algebraic system. Authors claim that all

operators are in fact UDFs and SciDB has some embedded UDFs, which to some

extent may be perceived as elementary operators forming SciDB base algebra.

However, this might seem as contradiction to the SciDB ideology. In [27] the term

'algebra' is used, but formalism is avoided and just built-in operator usage examples

are provided. Below we describe SciDB built-in operators mentioned in [27] and

specified in online SciDB documentation [28].

Let

 A be an n -dimensional SciDB array, B be m -dimensional array

 V be a array index values for A ,

where array index values can be defined as a set of pairs

)},(,),,{(11 pp vivi  where for every nj <0  : ni j <0  , ji

values are distinct and jv is an admissible index value for array's

dimension j .

 Q be a predicate containing free occurrence of A cell's dimensional

index

 E be a predicate containing free occurrences of A cell's attributes

 F be a function mapping A cell attributes values to some admissible cell

type

Then the set of the following operators may be described:

),(VASlice

Gets out the subarray of dimensionality ||)(VAdim  from array A , taking A

as buffer array and sequentially cutting out hyperplanes from buffer array based on

elements in V .

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

154

),(QASubsample

Gets out the subarray from array A building it from those cells whose index over

dimension j satisfies the predicate Q for every admissible j .

),(BASJoin

Combines the cells' values of two input arrays if cells have the identical dimensional

indices.

),(EAFilter

Gets an array of the same dimensionality as A where each cell is taken from A iff

E evaluates to true on it, or considered empty otherwise.

),(FAApply

Gets a new array applying F to a cell (substituting cell's corresponding attribute

values to F) and storing the result of the calculation in the result array's cell with

the same dimension index.

It should be mentioned that SciDB orients on high extensibility, which explains the

shift of SciDB towards UDFs (and UDTs). ScidDB provides a special facility that

enables to extend the aforementioned set of operators with custom ones, written in

C++. Custom operators are required to take array input(s) and return array output(s).

Moreover, SciDB supports defining own aggregates (user defined aggregates –

UDAs), increasing the degree of extensibility even more.

2.3.3 Optimization

 The shift to the paradigm 'everything is defined by a user' makes query planning a

much harder task. The SciDB optimizer operates on 'blackbox' operators which may

theoretically be optimized, but in general case their nature is too generic for the

optimizer to determine optimizations it might perform. However, compared to AML

and RasDaMan systems, SciDB tries to overcome this difficulty with optimizations

basing more on physical data storage and parallelism. Those optimizations are

discussed below.

When a query is got an optimizer builds a logical plan ding all the required semantic

checks. As it is stated in [27] the optimizer will produce a complete physical plan

corresponding to the built logical plan, where possible. Otherwise it will split the

query plan into subplans consisting of pipelinable operators and execute them (in

parallel, taking into account the physical structure, discussed further). One logical

optimization of SciDB query optimizer mentioned in [29] is detecting commuting

operations and pushing them down in the query tree. However, due to generic nature

UDFs finding such operators is typically a luck.

When physical information comes in use, SciDB optimizer starts to 'breathe easier'.

A SciDB instance is supposed to run on multiple nodes, adhering to shared nothing

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

155

design. A central system catalog exists, storing meta information about user-defined

extentions, data distribution, etc. By such SciDB enables to provide a high level of

parallelizm and related performance improvements accounting the fact that array

data manipulations are known to be CPU bound([14], [29]). SciDB optimizer makes

use of distributed architecture and performs several related optimizations discussed

in [29]. For example, the optimizer examines the logical tree for blocking

operations, i.e. those which require a temporary array to be constructed (e.g.

operations demanding redistribution of data in order to execute). In [29] built-in

SciDB optimizer is reported to be an incremental and cost-based one. It means that

the optimizer picks the best choice for the first subtree to execute making use of a

cost model for plan evaluation. The same paper states the SciDB optimizer can be

called a 'simple optimizer' which tries to minimize amount of date movement and

increase the level of parallelism.

However, different optimization techniques has been recently proposed, which

might be used in SciDB environment. Those include devising iterative array

processing model for a parallel array engine proposed in [30], optimization of

SciDB's Filter operator proposed in [31], shuffle join optimization framework for

the SciDB array data model presented in [32], etc.

3. Possible directions of investigation

 Based on the overview of the optimization process provided above we summarize

some directions that are available for further investigation. Under no circumstances

should this list be perceived as complete one. The list below is just a set of noticed

future work directions which is actually much larger.

 • Baumann's Array Algebra. Array Query Processing. Commutativity of

slice and trimming is not accounted during optimization

How can this property be exploited for load optimization?

 • Baumann's Array Algebra. Array Cost Model. Approximating selectivity

of predicates containing MDD expressions using common techniques for AQP

approach.

In relational query processing there are three well-known techniques: Sampling,

Parametric, Histogram-based Techniques. RasDaMan creators opted for Histogram-

based approach, saying that parametric techniques have a problem that real

distributions (especially those of operations results) are seldom accurately

approximated by mathematical distributions. The problem is very serious in case of

raster image data. Sampling techniques are reports to be very flexible and tolerant to

updates. The main disadvantage of such an approach is that sampling has have

considerable I/O and CPU overhead and lacks computation result reusability. How

serious is that overhead and how disadvantages overweigh advantages?

 • Baumann's Array Algebra. Cell expressions analyzing

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

156

It is possible to analyze cell expressions for the elementary operations (MARRAY

, COND) in order to optimize disk access, e.g. detect tiles which should be cached

iteration over MDD value.

 • Baumann's Array Algebra. Optimization of binary induced operations.

Array join problem. Optimization for relaxed restrictions

When the tile graph is built as in [21] the cost of fetching a tile from disk is

considered the same for all tiles. However, this might be not the case for a

distributed environment or in presence of cache with size allowing to hold more

than 1 tile of each operand. The approach presented in [33] might be considered.

 • AML. Plan refinement. Iteration order

Authors claim that Hilbert curve or Z -order could be accounted by an optimizer

during plan refinement as those orders might be related to storage scheme, but those

types of orders are dismissed from consideration for the sake of simplicity. Can

such a simplification be revisited?

4. Conclusion

In the current paper we have investigated the theoretical background of array

databases exploring three different mature array database management systems:

RasDaMan, AML, SciDB. We have looked at those database from a fixed

perspective: firstly, we explore the data model the system uses to simply define an

array; secondly, we examine what formal algebra the system constructs above

arrays; thirdly, we take a closer look on algebraic optimizations (logical

optimizations) and those applied when information about physical storage and

retrieval of data is taken into account (physical level optimizations). We collect

some possible directions of further investigation for considered array databases. The

list of directions mainly contain ones outlined by the authors of the array databases

themselves.

References
[1]. Peter Baumann. Raster Data Management and Multi-Dimensional Arrays, pages 2332-

2339. Springer US, Boston, MA, 2009.

[2]. Hubble telescope images. https://www.spacetelescope.org/images/.

[3]. Large hadron collider storage. http://lhcb-public.web.cern.ch/lhcb-public/en/Data

[4]. Gilberto Câmara, Lúbia Vinhas, Karine Reis Ferreira, Gilberto Ribeiro De Queiroz,

Ricardo Cartaxo Modesto De Souza, Antônio Miguel Vieira Monteiro, Marcelo Tílio De

Carvalho, Marco Antonio Casanova, and Ubirajara Moura De Freitas. TerraLib: An

Open Source GIS Library for Large-Scale Environmental and Socio-Economic

Applications, pages 247-270. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[5]. PostGIS official web page. https://postgis.net/.

[6]. SpatialLite web page. https://www.gaia-gis.it/fossil/libspatialite/home.

[7]. Oracle GeoRaster documentation.

https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm.

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

157

[8]. Baumann P. and Holsten S. A comparative analysis of array models for databases. In

Database Theory and Application, Bio-Science and Bio-Technology. Communications

in Computer and Information Science, volume 258, 2011.

[9]. Rasdaman home page. http://www.rasdaman.org/.

[10]. Paul G. Brown. Overview of scidb: large scale array storage, processing and analysis.

In SIGMOD '10 Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, pages 963-968, 2010.

[11]. Paulo Jorge Pimenta Marques. Arbitrary tiling of multidimensional discrete data cubes

in the rasdaman system. 1998.

[12]. L.T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani. Efficient

organization and access of multi-dimensional datasets on tertiary storage systems.

Information Systems, 20(2):155-183, 1995. Scientific Databases.

[13]. Peter Baumann. A database array algebra for spatio-temporal data and beyond. 06

1999.

[14]. Roland Ritsch. Optimization and evaluation of array queries in database management

systems. 12 1999.

[15]. A. G. Gutierrez and P. Baumann. Modeling fundamental geo-raster operations with

array algebra. In Seventh IEEE International Conference on Data Mining Workshops

(ICDMW 2007), pages 607-612, Oct 2007.

[16]. Frank P. Palermo. A data base search problem. 01 1974.

[17]. Joseph M. Hellerstein. Optimization techniques for queries with expensive methods.

ACM Trans. Database Syst., 23(2):113-157, June 1998.

[18]. A. Swami. Optimization of large join queries: Combining heuristics and combinatorial

techniques. SIGMOD Rec., 18(2):367-376, June 1989.

[19]. Arunprasad P. Marathe and Kenneth Salem. Query processing techniques for arrays.

SIGMOD Rec., 28(2):323-334, June 1999.

[20]. Hamiltonian cycle. http://mathworld.wolfram.com/HamiltonianCycle.html.

[21]. P. Baumann and V. Merticariu. On the efficient evaluation of array joins. In 2015

IEEE International Conference on Big Data (Big Data), pages 2046-2055, Oct 2015.

[22]. Ethan Kim. Comp 251: Data structures and algorithms.

https://ethkim.github.io/TA/251/eulerian.pdf.

[23]. Arunprasad P. Marathe and Kenneth Salem. A language for manipulating arrays. In

Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB '97,

pages 46-55, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[24]. Hilbert curve. http://www4.ncsu.edu/ njrose/pdfFiles/HilbertCurve.pdf.

[25]. Z-curve general information. http://wiki.gis.com/wiki/index.php/Z-order_(curve).

[26]. P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P.

Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S.

Madden, J. Patel, M. Stonebraker, and S. Zdonik. A demonstration of scidb: A science-

oriented dbms. Proc. VLDB Endow., 2(2):1534-1537, August 2009.

[27]. Paul G. Brown. Overview of scidb: Large scale array storage, processing and analysis.

In Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data, SIGMOD '10, pages 963-968, New York, NY, USA, 2010. ACM.

[28]. Scidb doucumentation. https://paradigm4.atlassian.net/wiki/spaces/ESD/overview.

[29]. Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The architecture

of scidb. In Proceedings of the 23rd International Conference on Scientific and

Statistical Database Management, SSDBM'11, pages 1-16, Berlin, Heidelberg, 2011.

Springer-Verlag.

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

158

[30]. Emad Soroush, Magdalena Balazinska, Simon Krughoff, and Andrew Connolly.

Efficient iterative processing in the scidb parallel array engine. In Proceedings of the

27th International Conference on Scientific and Statistical Database Management,

SSDBM '15, pages 39:1-39:6, New York, NY, USA, 2015. ACM.

[31]. Sangchul Kim, Seoung Gook Sohn, Taehoon Kim, Jinseon Yu, Bogyeong Kim, and

Bongki Moon. Selective scan for filter operator of scidb. In Proceedings of the 28th

International Conference on Scientific and Statistical Database Management, SSDBM

'16, pages 28:1-28:4, New York, NY, USA, 2016. ACM.

[32]. Jennie Duggan, Olga Papaemmanouil, Leilani Battle, and Michael Stonebraker. Skew-

aware join optimization for array databases. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, SIGMOD '15, pages 123-

135, New York, NY, USA, 2015. ACM.

[33]. Weijie Zhao, Florin Rusu, Bin Dong, and Kesheng Wu. Similarity join over array data.

In Proceedings of the 2016 International Conference on Management of Data, SIGMOD

'16, pages 2007-2022, New York, NY, USA, 2016. ACM.

Базы данных для обработки массивов: взгляд изнутри

В.А. Павлов <vlad.pavlov24@gmail.com>

Б.А. Новиков < b.novikov@spbu.ru >

Санкт-Петербургский государственный университет,

199034, Россия, Санкт-Петербург, Университетская набережная, д. 13б

Аннотация. После появления огромного количества научных данных, которые

необходимо было хранить и обрабатывать, в мире баз данных возникла задача

поддержки больших многомерных массивов. Стала необходимой разработка

специальных баз данных, которые основывались бы на модели данных, "сердцем"

которой было понятие массива (array). Разработка хорошо организованной системы

управления базой данных, базирующейся на нетрадиционной модели данных,

требовала решения следующих задач: формальное определение модели данных,

основывающейся на понятии массива; построение формальной алгебры, работающей с

объектами модели; разработка правил оптимизации запросов на логическом уровне, а

затем и на физическом. Эти задачи уже решались создателями специальных баз

данных, настроенных на обработку и хранение массивов (array databases). В данной

работе рассматриваются понятия массива, формальные алгебры и методы оптимизации

запросов в таких развитых базах данных, как RasDaMan, AML, SciDB – базах данных,

ориентированных на хранение и обработку крупных многомерных массивов.

Ключевые слова: базы данных для обработки массивов; обзор; формальная алгебра

баз данных для обработки массивов; обработка запросов к базам данных для обработки

массивов; оптимизация запросов к базам данных для обработки массивов; AML;

RasDaMan; SciDB

DOI: 10.15514/ISPRAS-2018-30(1)-10

Для цитирования: Павлов В.А., Новиков Б.А. Базы данных для обработки массивов:

взгляд изнутри. Труды ИСП РАН, том 30, вып. 1, 2018 г., стр. 137-160. DOI:

10.15514/ISPRAS-2018-30(1)-10

Павлов В.А., Новиков Б.А. Базы данных для обработки массивов: взгляд изнутри. Труды ИСП РАН, том 30,

вып. 1, 2018 г., стр. 137-160

159

Список литературы

[1]. Peter Baumann. Raster Data Management and Multi-Dimensional Arrays, pages 2332-

2339. Springer US, Boston, MA, 2009.

[2]. Hubble telescope images. https://www.spacetelescope.org/images/.

[3]. Large hadron collider storage. http://lhcb-public.web.cern.ch/lhcb-public/en/Data

[4]. Gilberto Câmara, Lúbia Vinhas, Karine Reis Ferreira, Gilberto Ribeiro De Queiroz,

Ricardo Cartaxo Modesto De Souza, Antônio Miguel Vieira Monteiro, Marcelo Tílio De

Carvalho, Marco Antonio Casanova, and Ubirajara Moura De Freitas. TerraLib: An

Open Source GIS Library for Large-Scale Environmental and Socio-Economic

Applications, pages 247-270. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[5]. PostGIS official web page. https://postgis.net/.

[6]. SpatialLite web page. https://www.gaia-gis.it/fossil/libspatialite/home.

[7]. Oracle GeoRaster documentation.

https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm.

[8]. Baumann P. and Holsten S. A comparative analysis of array models for databases. In

Database Theory and Application, Bio-Science and Bio-Technology. Communications

in Computer and Information Science, volume 258, 2011.

[9]. Rasdaman home page. http://www.rasdaman.org/.

[10]. Paul G. Brown. Overview of scidb: large scale array storage, processing and analysis. In

SIGMOD '10 Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, pages 963-968, 2010.

[11]. Paulo Jorge Pimenta Marques. Arbitrary tiling of multidimensional discrete data cubes

in the rasdaman system. 1998.

[12]. L.T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani. Efficient

organization and access of multi-dimensional datasets on tertiary storage systems.

Information Systems, 20(2):155 - 183, 1995. Scientific Databases.

[13]. Peter Baumann. A database array algebra for spatio-temporal data and beyond. 06

1999.

[14]. Roland Ritsch. Optimization and evaluation of array queries in database management

systems. 12 1999.

[15]. A. G. Gutierrez and P. Baumann. Modeling fundamental geo-raster operations with

array algebra. In Seventh IEEE International Conference on Data Mining Workshops

(ICDMW 2007), pages 607-612, Oct 2007.

[16]. Frank P. Palermo. A data base search problem. 01 1974.

[17]. Joseph M. Hellerstein. Optimization techniques for queries with expensive methods.

ACM Trans. Database Syst., 23(2):113-157, June 1998.

[18]. A. Swami. Optimization of large join queries: Combining heuristics and combinatorial

techniques. SIGMOD Rec., 18(2):367-376, June 1989.

[19]. Arunprasad P. Marathe and Kenneth Salem. Query processing techniques for arrays.

SIGMOD Rec., 28(2):323-334, June 1999.

[20]. Hamiltonian cycle. http://mathworld.wolfram.com/HamiltonianCycle.html.

[21]. P. Baumann and V. Merticariu. On the efficient evaluation of array joins. In 2015

IEEE International Conference on Big Data (Big Data), pages 2046-2055, Oct 2015.

[22]. Ethan Kim. Comp 251: Data structures and algorithms.

https://ethkim.github.io/TA/251/eulerian.pdf.

[23]. Arunprasad P. Marathe and Kenneth Salem. A language for manipulating arrays. In

Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB '97,

pages 46-55, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160

160

[24]. Hilbert curve. http://www4.ncsu.edu/ njrose/pdfFiles/HilbertCurve.pdf.

[25]. Z-curve general information. http://wiki.gis.com/wiki/index.php/Z-order_(curve).

[26]. P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P.

Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S.

Madden, J. Patel, M. Stonebraker, and S. Zdonik. A demonstration of scidb: A science-

oriented dbms. Proc. VLDB Endow., 2(2):1534-1537, August 2009.

[27]. Paul G. Brown. Overview of scidb: Large scale array storage, processing and analysis.

In Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data, SIGMOD '10, pages 963-968, New York, NY, USA, 2010. ACM.

[28]. Scidb doucumentation. https://paradigm4.atlassian.net/wiki/spaces/ESD/overview.

[29]. Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. The architecture

of scidb. In Proceedings of the 23rd International Conference on Scientific and

Statistical Database Management, SSDBM'11, pages 1-16, Berlin, Heidelberg, 2011.

Springer-Verlag.

[30]. Emad Soroush, Magdalena Balazinska, Simon Krughoff, and Andrew Connolly.

Efficient iterative processing in the scidb parallel array engine. In Proceedings of the

27th International Conference on Scientific and Statistical Database Management,

SSDBM '15, pages 39:1-39:6, New York, NY, USA, 2015. ACM.

[31]. Sangchul Kim, Seoung Gook Sohn, Taehoon Kim, Jinseon Yu, Bogyeong Kim, and

Bongki Moon. Selective scan for filter operator of scidb. In Proceedings of the 28th

International Conference on Scientific and Statistical Database Management, SSDBM

'16, pages 28:1-28:4, New York, NY, USA, 2016. ACM.

[32]. Jennie Duggan, Olga Papaemmanouil, Leilani Battle, and Michael Stonebraker. Skew-

aware join optimization for array databases. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, SIGMOD '15, pages 123-

135, New York, NY, USA, 2015. ACM.

[33]. Weijie Zhao, Florin Rusu, Bin Dong, and Kesheng Wu. Similarity join over array data.

In Proceedings of the 2016 International Conference on Management of Data, SIGMOD

'16, pages 2007-2022, New York, NY, USA, 2016. ACM.

