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Abstract. After huge amount of big scientific data, which needed to be stored and processed, 

has emerged, the problem of large multidimensional arrays support gained close attention in 

the database world. Devising special database engines with support of array data model 

became an issue. Development of a well-organized database management system which 

stands on completely uncommon data model required performing the following tasks: 

formally defining a data model, building a formal algebra operating on objects from the data 

model, devising optimization rules on logical level and then on the physical one. Those tasks 

has already been completed by creators of different array databases. In this paper array 

formalization, core algebra and optimization techniques are revised using examples of AML, 

RasDaMan, SciDB – developed array database management systems with different algebras 

and optimization approaches.  
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1. Introduction 

Recently in many scientific fields database users need to support and process new 

non-traditional data structures. Among such uncommon structures are different 

hierarchical structures, graphs, as well as arrays. It's worth noting, that such a need 

is not explained by the subjective preferences of database users, it is fully justified 

by the real state of things for users and their requirements for processing the data 

under study. In this paper we will partially consider what is offered to users who 

need to store and process array data and how storage and processing are made 

efficient. But first, we let us understand more precisely, with what kind of data such 

users have to deal with. 

The data referred to is also called multidimensional discrete data (MDD) or raster 

data [1]. Such data is homogeneous, each element has some index (represented by a 

vector in a d -dimensional Euclidean space) and, hence, has some adjacent 
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elements. This data is typically huge. On a more intuitive level, MDD data can be 

imagined as huge multidimensional cubes. For such a cube, each cell has a discrete 

multidimensional index and contains a value of a fixed type. An example of a 3D 

cube may be the following: a series of images[2] obtained from two Huble 

telescopes cameras for some a period of time, say. a year. As it has been said, in real 

life those cubes are usually of tera- or even petabyte scale: for instance, Large 

Hadron Collider (LHC), producing raster cubes during its work, after a day of 

functioning and filtering produced data generates multidimensional data sizing over 

5 terabytes [3]. 

Granted, such cubes are not just stored as they often demand some kind of analysis. 

Usually the analysis to be done is not trivial due to the fact that the need for 

intelligent raster data processing arises in such fields as: natural sciences, medicine, 

census, multimedia and OLAP. Demand for efficient storage and processing of huge 

raster data cubes states a problem of devising special tools and algorithms. The 

specificity of the data in use is another factor increasing the need in a specialized 

storage systems. Raster data has several peculiarities induced by its properties 

mentioned above. These peculiarities include: large size of a single raster data value 

(a single cube may occupy several disk pages instead of a part of a disk page in case 

of conventional data types, e.g. numeric values); lack of index support due to 

absence of natural ordering of cubes, etc. Those peculiarities make efficient 

processing of raster data different from processing conventional data types in terms 

of storage and optimization techniques. 

Fortunately, the problem of optimized storage and efficient processing of raster data 

has already been faced by authors of special extensions for existing 

relational/object-relational databases (such as Terralib [4], PostGIS [5], SpatialLite 

[6], Oracle GeoRaster [7]) and creators of array databases standing on specially 

devised array data models [8]. Today there are several array database management 

systems (ADBMS) such as RasDaMan [9], SciDB [10], which are still maintained 

and intensively developed with the aim to continuously improve and to conform to 

rapidly increasing scientific demands. In each ADBMS much attention is paid to 

optimization as optimizing queries is crucial when processing queries operating 

with petabyte sized data cubes. 

There are two ways of optimization: logical and physical ones. Logical optimization 

is usually based on formal algebra standing behind the array model. Physical 

optimization is typically achieved by devising special storage scheme and/or data 

retrieving order[11], [12]. In the current work we will briefly review theoretical 

basement and optimization techniques considering three distinct developed 

ADBMSs : RasDaMan, AML and SciDB. 

The reader should be aware of the fact that the aim of this paper is to present and 

analyze different data models, algebras and optimization techniques used in some 

array databases and certainly NOT to compare those databases in order to determine 

advantages of one over another. The paper does NOT intend to characterize the 

databases anyhow so that the given characteristics are based on subjective opinions. 
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2. Diving In 

To study the the theoretical basement along with optimization techniques in 

ADBMSs it is important to understand a generic algorithm following which a new 

ADBMS can be built. 

First, an array term should be formally defined as it is a central object of interest in 

such systems. Obviously, in array DBMS algebras, the main object of all operations 

is an array. For best of our knowledge, all the existing algebras define an array 

mostly similarly. Formally, an array is a function defined on index domain D  to 

some value set V . Value sets differ in different systems. Index domain D  is 

represented as Cartesian product of finite amount of ordered sets kIII ,...,, 21 . The 

value k  is called an dimensionality ( valence ) of the array. Applying A  function 

to a vector ),...,,( 21 kiii  is associated with getting the array's cell value. 

Second, a formal algebra is introduced. Algebras are mathematical structures where 

several operations with some core objects are defined. Operations with those objects 

return an object from the same algebra. One of the most important features of 

algebras is an ability to construct expressions in them by combining application of 

algebra's operations. As algebras operations are closed, result of an expression 

evaluation is again an object from the algebra. In simpler words, a formal algebra 

enables to construct complex expressions value of which do not leave the algebra. 

In reality in different systems underlying algebras start to differ. Several existing 

algebras in existing array dbms are described further. 

Third, logical optimization rules are introduced. Complex expressions can be 

overburdened with unnecessary operations and elimination them simplifies the 

expression benefiting in less execution complexity. 

Fourth, physical optimization rules are derived. Logical optimization of an 

expression is not sufficient for actually executing the query in the most efficient 

way. In most cases a single query can be executed differently accounting "physical" 

information which tells how the queried data is actually stored. 

Fifth, the query language is introduced to give a user of the system of the system a 

convenient high-level language taking the user away from lower-level algebra 

language. 

In the current paper we will look at how the first four steps were followed for each 

of the highlighted array databases, ignoring high level query languages as they do 

not contribute much to understanding the theoretical essentials of ADBMS. 

2.1 Baumann's array algebra 

 We will now optimization process is organized in RasDaMan ADBMS, explaining 

its core model and formal algebra - Baumann's array algebra [13]. The overview of 

optimization techniques is mostly based on PhD thesis [14] of Ronald Ritsch. To 

present the entire data model the following terms should be explained:   
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    •  Multidimensional intervals and spatial domains   

    •  MDD types, values and elementary operations on them   

    •  Derived operations on MDD data   

    •  Extended relational model with MDD support   

2.1.1 Multidimensional Intervals and Spatial Domains 

 An m -interval X  is defined as follows: let 
nZD = , then 

]:,...,:[= 11 nn hlhlX  is }1..(|),...,,{( 21 nihxlDxxx iiin  . 

Multiple probe functions are defined on the multidimensional intervals:   

 Domain function : DXdom =)(    

 Dimension function : nXdim =)(    

  Lower bound function : ),...,(=)( 1 nllXlo , where )( Xloi  denotes il    

 Upper bound function : ),...,(=)( 1 nhhXhi , where )(Xhii  denotes ih    

 Extent function : 1))()((=)( 1=  XloXhiXcard ii

n

i    

 

Usually a multidimensional interval represents an index set of a multidimensional 

array, therefore it is commonly called a spatial domain. It is convenient to restrict 

the possible value type of an interval by introducing a spatial domain type. More 

precisely, a spatial domain type 
d  is a set of admissible d -dimensional domains 

d
Zd 2 . Union of all 

d  over all non-negative integers d  will be denoted as 

 . Then, it is possible to define multiple operations from   to  : 

 Trimming along dimension i  with one dimensional m -interval B  

 
)()(|),...,,{(=),,( 21 BhixBloXxxxBiXtrim in   

 Slicing along dimension i  at point b

}),...,,,...,(|),...,,...,{(=),,( 111111 XxxbxxxxxxbiXslice niinii 

   

2.1.2 MDD values and types 

 An MDD value a  over base type T  and spatial domain D  with T  and 

D  is a set of (coordinate, value)-tuples defined by a mapping function a : 

TD  . Then an MDD value a  would be },)(|))(,{( DxTxaxax  . 

Defining an MDD type is accompanied by definition of several probe functions:   

 Tabase )(    
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 Dasdom )(  

 An MDD type M  with base type T  and spatial domain D  with T  and 

D  is defined as aa |{  is MDD value over base type T  and spatial domain 

D , },   DT . An MDD type with base type T  and spatial domain D  is 

denoted by ]],[[ DT . 

Further, such operation as  'cell access' will be used very frequently on MDD arrays, 

therefore it should be defined now.  

Let a  = ]],[[},)(|))(,{( dd DTDxTxaxax   be an MDD value and 

dDx  be a d-dimensional point, then the access operator [] : 

TZDT dd  )(]],[[  is defined as: )(=][ xaxa . 

2.1.3 Core operations 

 As reported in [14] Baumann's array algebra stands on two basic operators. They 

are listed below.   

    •  Array constructor ),,( xexXMARRAY   

Let D  be an spatial domain, x  be a point variable, xe  be an expression with result 

type T  which contain free occurrences of identifier x . Then 

),,( xexXMARRAY  returns an array ]],[[ DTa  for which xexA =][ .   

    •  Condense operator ),,,( ,AxexXopCOND   

Let X  be an array, op  be a commutative and associative operation on 

TTT  , x  be a free identifier, xe  be an expression with result type T , 

which contains free occurrences of identifier x  and MDD array A . Then 

),,,( ,AxexXopCOND  returns a scalar value s  being equal to AxXx eOP ,    

 In some works [13], [8], [15] Baumann's array algebra is defined with additional 

sort operator ),,( eiXSORT , which can be defined as follows: let X  be an 

array, i  be a dimension number, r  be an expression of some type E  on which a 

total ordering is defined. Let S  be a one-dimensional array representing a 

permutation of elements of a set )}(),...,({= ii XhiXloJ  sorted by 

),,(( jiXslicer  where Jj . In less formal words, SORT  operator allows to 

sort hyperplanes of a hypercube along given dimension by value of r  expression 

evaluated on each hyperplane. In [15] it is used for modeling of such a geo-raster 

operations as ktop  and median  operations. 
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It should be mentioned that from optimization point, it is very important to 

understand what expression e  or operation op  is provided for an operator to make 

best possible optimizations. As reported in [14], all operations for MARRAY 's 

expression e  are classified into seven disjoint classes:   

     
1CE : Constant expression  

     
2CE : Cell access with probing point x   

     3CE : Simple expression on cell at probing point x   

     
4CE : Cell access with cluster preserving index expression  

     5CE : Access to small neighbourhood of probing point x  

     6CE : Simple expression on two cells at probing point x   

     7CE : General expression  

 Those types of operations help to formally classify all probable expressions 

provided for cell expression and to exploit that knowledge for finer optimization. 

Similarly, all the operations for COND 's operation op  are considered to be from 

one of the following class:   

     
1CA : Cell access with probing point x   

     
2CA : Simple expression on cell with probing point x  

     3CA : General expression  

 

Generally speaking, classes 
1CE  and 7CA  incorporate expressions to which an 

optimizer cannot apply any modifications to optimize the MARRAY  

performance. 

2.1.4 Derived operations 

When core operation are defined, multiple additional ones are built on top the low-

level core operations to have a convenient notation for frequently used typical 

operations. Such operations are called derived operations and there are several types 

of them: geometric, induced, binary induced, aggregate induced. 

Geometric operations  

These operations are some special cases of application of MARRAY  constructor. 

Let A  be an MDD of type ]],[[ DT , K  be a result of application of trim  with 

some parameters to multidimensional interval D , i  be a dimension number, v  

some valid point along i -th dimension of domain D . Then the following 

operations can be defined:   
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    •  )( Atrimming K
 = ])[,,( xAxKMARRAY    

    •  ])[,),,),(((=)(),( xAxviAsdomsliceMARRAYAslice vi    

 All MARRAY  cell expressions in geometric derived operations belong to class 

2CE . 

Induced operations  

These operations are again some special cases of application of MARRAY  

constructor. Let A  be an MDD of type ]],[[ DT , B  be an MDD of type 

]],[[ DT  , op  be a function DT  , binOp  be a function TTT  . 

Then the following operations are defined:   

 Unary induced operation ]],[[]],[[:)( DTDTAop   which is the 

replacement to ]))[(,,( xAopxDMARRAY    

 Binary induced operation: 

]],[[]],[[]],[[:),( DTDTDTBAbinOp   which is equivalent 

to ]))[],[(,,( xBxAbinOpxDMARRAY    

  Left induced operation: ]],[[]],[[:),( DTTDTconstAopleft
  

which is a shorter notation for ))],[(,,( constxAbinOpxDMARRAY    

  Right induced operation: 

]],[[]],[[:),( DTDTTAconstopright
  which is equivalent 

notation for ]))[,(,,( xAconstbinOpxDMARRAY    

  Note that in case of unary induced operations MARRAY  cell expression 

belongs to 3CE  class and in case of binary induced operations to class 

6CE . 

Aggregate induced operations  

The main convenient operation is reduce  operation on which other derived 

aggregates are based. Let A  be an MDD of type ]],[[ DT , op  be an associative 

and commutative binary operation defined and closed on T . Then reduce  

operation can be defined as follows: ),,( ADopreduce  = 

])[,,,( xAxDopCOND . Then several convenient operations can be defined as 

follows:   

   
])[,),(,(=)(_ xAxAsdomreduceAcellssum 

   

   ])[,),((*,=)(_ xAxAsdomreduceAcellsmult    
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    •  
))((

)(_
=)(_

Asdomcard

Acellssum
Acellsavg    

    •  ])[,),(,min(=)(_ xAxAsdomreduceacellsmin    

    •  ])[,),(,max(=)(_ xAxAsdomreduceacellsmax    

2.1.5 Extended relational model 

 In order to examine MDD specific optimization techniques in combination with set 

based query processing, the MDD Model is integrated into an adapted Relational 

Model. The attribute domain of multi-dimensional values can be specified 

differently:   

 Base type is fixed. Spatial is domain unknown  

 Base type is fixed. Spatial domain's dimensionality is fixed  

 Base type is fixed. Spatial domain is fixed  

 Base type is fixed. Spatial domain is fixed with its physical representation 

(violation of 'hidden physical representation' principle) 

 The type of attribute domain sets amount of restrictions on MDD values that can be 

effectively used by an optimizer. 

Formally speaking, let iD  be spatial domains, iT  be types and id  be 

positive integers. Let iA  be attributes with 

}]],,[[]],,[[]],{[[)( iiiiiii TDTdTTAdom  . Then the mutidimensional relation 

R  is defined as )(...)()( 21 nAdomAdomAdomR  . When attribute 

domains are formalized in the model, three relational operations are defined. Let R  

and S  be relations, cond  be a predicate on R , jop  be a function defined on R  

and returning either scalar or multidimensional values for each j . Then relational 

operations are defied as follows:   

  Selection Application    

)(Rcond  = )}(|{ tcondRt    

 Cross product    

),( SR = ),...,,,,...,,(=|{ 2121 nn sssrrrtt , Rrr n ),...,( 1 , 

}),...,( 1 Sss n     

 Application    

)(,...,
1

Rop
s

op  = })),(),...,((=|{ 1 Ryyopyoptt s    
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The first two operations are very similar to those in canonical relational model, 

however, the third operator differs significantly. What it does is application of the 

provided operators to all of the tuples Relational projection can be expressed 

through projection operation with special functions returning an element of a tuple 

at the specific position.  

2.1.6 Formalizing Array Query Processing 

  An array query can be represented as a special graph. Each node of the graph is 

represented by an operator which comprises the query. This graph is a tree and 

consists of set trees and element trees. Set trees include relational operations as 

inner nodes and MDD relations(see definition above) as leaves, whereas element 

trees' inner nodes are MDD/logical operations. Leaves are MDD constants/iterators. 

There are also some specific kinds of trees for naming convenience: condition trees 

and operation trees. The former are element trees representing boolean 

multidimensional expressions attached to a select node. The latter are element trees 

representing some multidimensional expression attached to an application node. 

The mere query graph represents data flow between operator nodes. A single edge 

transfers only particular type of data, thus all edges can be classified into distinct 

categories depending on type of data flowing through it. The whole edge set is 

divided into non-intersection sets of three types: relational, dimensional, scalar 

types. Data edges carrying relations comprises relation sets, edges carrying raster 

data - dimensional ones, and edges carrying non-dimensional or scalar values are 

those forming scalar sets. According to this classification, the graph is partitioned in 

subgraphs of maximal size, each of which contains only one sort of edges. Such 

subgraphs are called areas and are in particular called relational data areas (RDAs), 

dimensional data areas (DDAs) and scalar data areas (SDAs), depending on the 

type of edges they contain. Optimizing data flow in DDAs is of primary importance 

in extended relational model for array query processing. 

In general, when a query optimizer receives a query it processes it in three stages:   

     Rewriting   

     Transformation   

     Execution   

During rewriting a query is represented in a normal query form which is based on 

logical optimization rules and the following key principles:   

 Eager constant subexpressions evaluation.  

This saves computational resources as those expressions might be needed to be 

computed for each cell of MDD objects   

 Boolean expressions normalization aimed at application of optimization 

rules.  

All boolean expressions are transformed to CNF or DNF depending on the 

predicates in order to let the optimizer detect patterns for application of logical 

optimization rules   

Pavlov V.A., Novikov B.A. Array Database Internals. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 137-

160 

146 

 Prepare induction expressions for the application of optimization rules.  

Such a modification leverages associativity and distributivity of induced operations, 

which can replace MDD operations by scalar ones, dramatically reducing 

computation cost of the expression   

 

In [14] more than one hundred logical optimization rules are presented. Those rules 

are mainly based on load optimization for geometric operations; exploitation of 

operations' beneficial properties (such as associativity, distributivity) for induced, 

binary induced and aggregate operations; movement of individual  ,   

subexpressions through cross product operation for set trees. 

In the first case, geometric operations are pushed down to multidimensional nodes 

serving as data sources for upper nodes. This potentially reduces amount of I/O 

needed to process a single MDD value by an upper node. An example of such a rule 

is ))(())(( AtrimmingdunOpInduceAdunOpInducetrimming DD   

where dunOpInduce  is an unary induced operation, A  is an MDD value. 

In the second case, rewriting expressions leveraging beneficial properties of an 

operation on which some induced, binary induced or aggregation operation is based 

may reduce the amount of multidimensional operations in an expression. A 

remarkable example of such a rule is

)),(,()),,(( cbbinOpAedbinOpInduccbAedbinOpInducbinOp   

In the third case, computation effort is potentially diminished by reducing the 

amount of multidimensional operations performed. For example, the amount of 

multidimensional predicate evaluation may be diminished as in case of application 

of the rule  

)()()( SRSR condScondRcondSandcondR    

where R , S  are relations, condScondR,  - predicates defined on R  and S  

respectively. 

In general, query rewriting is reported to be notably profitable if following 

heuristics are taken into account:   

 Perform geometric operations eagerly (load optimization rewriting)  

 Reduce number and overall cardinality of Dimensional Data Areas as much 

as possible  

Abiding by this rule lets to diminish the number of edges in DDAs by applying rules 

that eliminate MDD expressions or transform them into scalar ones.   

 Perform applications eagerly  

Similar to pushing down projections while using greedy algorithms in relational 

query processing [16], which is not always the best choice [17]. However, lack of 

join conditions lets sieving down application into cross product to reduce amount of 
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tuples for which given functions are applied. Application is an expensive operation 

as MDD values typically have plenty of cells to operate on.   

 Perform selections eagerly  

This heuristics also resembles the common heuristics in relational query processing 

as noted in [18]. Selections are pushed down to diminish operation sets as early as 

possible. Scalar predicates are given priority over MDD ones.   

 Search for common subexpressions  

Common subexpressions are stored as intermediate results. Doing one unit of work 

several times is useless and even costly when operating on large MDD values.   

During transformation logical plan operations are mapped to physical plan's 

operations. Such a mapping is not the distinctive feature of RasDaMan, for example, 

AML (described in Sec. 2.2) also maps logical operations to physical ones. 

Typically multiple physical plans are valid and semantically equivalent. Those 

might be analytically compared via usage of special array cost models which were 

devised for corresponding algebras in [19], [14]. However, being able to just 

compare physical plans using cost functions is not always sufficient, it is crucial that 

some physical plan refinement techniques are exploited whose aim is to try to 

reduce the cost of a physical plan by accounting physical layout of the processed 

MDD values and to adjust the iteration order correspondingly. In RasDaMan system 

each type operation is considered separately. 

Transformation of induced and aggregate operations is pretty straightforward. Main 

idea of transformation in such cases is to provide parallel tile processing. However, 

transformation of binary induced operations is a bit more tricky and we will focus 

on them in more detail further. 

  Binary induced operations are optimized by trying to find the optimal tile 

traversing order over tiles comprising binary induced operands. Finding optimal tile 

traversing order minimizes disk reads as the main bottleneck during MDD values 

processing, leveraging efficient exploitation of main memory. The problem can be 

formalized using graph terminology. Let  EVG ,=  be a graph, where 

21= VVV   and  =21 VV , so that 
1V , 

2V  represent tile sets forming the first 

and the second operands of the binary induced operation respectively. The edge 

Evv ),( 21
 if and only if tiles corresponding to 

1v , 
2v  need to be processed 

simultaneously during binary induced operation performance. The result graph is a 

bipartite graph, as any edge from E  has the one end in 
1V  and another in 

2V . An 

edge in the graph may intuitively be perceived as an indicator of represents a need 

for holding two tiles from different sets in main memory for faster processing. 

However, to process the tiles in main memory those tiles should be, obviously, 

loaded into the main memory first, unless they are already in place. Loading of a tile 

is an expensive operation as it is directly related to expansive disk I/O, hence the 

amount loads should be diminished as much as possible. If there is no cache and 

only two tiles can be held in main memory simultaneously at a time then the 
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problem of minimization of disk access can be formulated as follows: find a vertex 

traversing order nkkk ,, 21 , minimizing amount of disk access. 

The tile traverse algorithm for binary induced operations has been pondered in [14]. 

Disk access minimization problem is reduced to the problem of minimization of a 

special cost  function that is defined as 

2:1?1)>),((),..,(=),...,,( 112121 iiiii kandkkisAdjkkkcostkkkcost   . 

The minimum is obtained when the sequence nkkk ,,, 21   forms a Hamilton cycle. 

In generic case determination of whether such a sequence of vertices exist is known 

to be an NP-complete problem [20]. 

However, the restriction to visit each vertex only once can be relaxed. Such an 

approach has been used in [21] for facing the problem of finding the optimal tile 

traversing order for array join - a special case of binary induces operation. In this 

paper the requirement of exclusive visit of each vertex is replaced with requirement 

of visiting each edge only once with intention to minimize multiple reads of a tile. 

Authors exploit Hierhozer and Weiner necessary and sufficient condition to find an 

Euler circuit, i.e. a circuit that visits each edge in the graph only once. As the 

Hierholzer and Wiener criteria claims [22] the presence of Euler circuit in a graph is 

equivalent to its connectivity and all vertices having even degrees. Authors split the 

graph G  into connected components, augmenting each with extra auxiliary edges 

so that each vertex has an odd degree and Euler circuit exists. For each component 

an Euler circuit is computed and tile traverse path is determined. The result traverse 

path is built from a random permutation of components' paths. The authors report 

that it is still an open question how this approach may be adapted to either a 

distributed environment where each tile load may have its own cost and or to a 

presence of an arbitrary sized cache. 

2.2 AML algebra 

2.2.1 Array abstraction 

 In Array Manipulation Language (AML) [23] an array A  is set by its shape S , 

domain D  (which is conceptually similar to Array's algebra value set), and the 

mapping M  that establishes the link between the array's shape and domain. ][iS  

represents the extent of A  along i -th dimension, as all cells of an AML array has 

lower bound equal to zero. A vector x  is said to be in array's shape S  iff 

][<][0 iSixi  . Said that, we can define the mapping M  more formally as a 

function that returns some value from D  for every Sx  and a special Dnull  

element otherwise. 
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2.2.2 Algebra operations 

 AML makes use of bit patterns and several probe functions defined on those 

patterns (index and count). The ),( kPindex  function returns the index of the 

1k -th 1 in the bit pattern P  if it does not equal to (0) , otherwise the function 

returns 0. The ),( kPcount  function will return number of 1 up to k -th position 

in the bit pattern B . 

Let BA,  be the multidimensional arrays with different shapes 
21, SS  and common 

domain D  with d  dimensions, P , iP  be some bit patterns, fD , fR  be some 

shapes called domain and range boxes respectively; then the core operations on 

arrays in AML algebra are:   

 Subsection. ),(= PASUBC i   

The 
ISUB  operator iterates over hyperplanes along i -th dimension and, if allowed 

by the corresponding bit in P , concatenates the hyperplane to the result array.  

 Merging ),,,(= PBAMERGEC i    

The MERGE  operator cyclically glues together hyperplanes cut along i -th 

dimension according to pattern P . Hyperplane are taken from A  for set bit in the 

pattern and from B  otherwise. If source array has no values hyperplane is filled 

with   value.  

 Function application. ),,,,,,( 10 dff PPRDfAAPPLY    

Iterates over slabs of shape fD  from A , checks whether that slab is "allowed" by 

all of the iP  patterns (by looking through corresponding bits over all patterns and 

rejecting the slab if some of the bits is not set). If the slab is "allowed" function f  

is applied to the slab and a slab of shape fR  is obtained. The result slab is "glued" 

to the result array from the side indicated by iteration position (more formally to (

),(,),,( 1110  dd iPcountiPcount   where vector ),,( 1 nii   represents the 

iteration vector) ).  

 The APPLY  operator might seem to resemble the MARRAY  operator defined 

in Baumann's array algebra. Indeed, MARRAY  operator can be called as a more 

restrictive version of MARRAY  operator with range boxes equalling a single 

array cell. In AML function f  is a black box just as an expression of class 7CE  

for MARRAY  operator. 
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2.2.3 Optimization 

 AML optimization techniques, similarly to those in Baumann's algebra, can be 

classified into logical and physical ones. In AML those techiques are applied in 

three phases, so called rewriting phase and plan generation phase, plan refinement 

phase. 

During rewriting phase an AML optimizer receives an AML query, builds query 

expression tree, and transforms it to semantically equivalent one using algebra's 

transformation rules. The transformed expression is guaranteed to be evaluated to 

the same result as the intial one, however the transformed query is hoped to be 

executed faster for some reason (e.g. due to operating on smaller amount of cells as 

in case of load optimization in Baumann's array algebra, see Sec. 2.1.6). In [19], 

[23] several algebraic rules are presented. The set of logical optimization rules is not 

so diverse compared to those devised in [14]. The approaches used by AML 

optimizer is similar to those exploited by Baumann's Algebra optimzer for load 

optimization. Examples of AML optimizer's query transformations are: merging 

several subsample operators into one, pushing subsample through merge in some 

cases, pushing subsamples through apply in some cases, etc. As AML's algebra 

operators by nature are superior to Baumann's Algebra ones in terms of flexibility 

(e.g. bit pattern support in all elementary operators, differently sized range boxes for 

function application operator), logical optimization rules become more complex, 

accompanied with extra initial conditions and overburdened by auxiliary bit pattern 

calculations. For example, some generic optimizations exploited by a Baumann's 

algebra optimizer, like reducing the cardinality of processed cells set before 

function application, cannot be simply borrowed by AML optimizer for use. This 

occurs due to the fact that additional logic is introduced by bit patterns and possibly 

different sizes of range and domain boxes. However, overall relative complexity of 

AML's logical transformation rules does not diminish the AML optimization 

potential. At plan generation phase rewritten expression tree is mapped to a 

physical plan just as during Transformation phase of Baumann's optimizer. The 

physical plan is represented by a directed graph where a vertex represents a logical 

operator, while an edge depicts a data flow. Every operator expects a stream of non-

overlapping chunks (tiles in RasDaMan terminology) of some particular shape and 

in some particular order as an input. Operators produce non-overlapping array 

chunks of particular shape and in some particular order as an output. An operator 

may have some parameters which specifies its behavior. The summary on the 

physical operators is provided in table 1. 

Table 1. AML physical operations 

  Name   Input  

Stream  

 Parameters   Description  

 APPLY_P   1   function   Applies a function to an array  

 LEAF_P    0   array   Reads array from disk  

 COMBINE_P   > 0   combination  Maps input slabs (in each 
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map  dimension) to output slabs. Used 

for MERGE  and SUB  

 REGROUP_P   1   -   changes input chunks' shapes  

 REORDER_P   1   -   permutes input chunks  

  

  The building of the physical operator tree is based on recursive top-down 

traversing of the expression tree. The algorithm step can be determined depending 

on the currently processed node of the expression tree. Algorithm of building the 

physical plan tree is summarized in tab. 2. 

Table 2. AML physical plan tree building algorithm   

  Current tree root 

node is ...  

Action 

 Nonleaf 

APPLY with 

domain box fD  

and range box 

fR    

Add APPLY_P and REGROUP_P operators where  

* REGROUP_P precedes APPLY_P 

* APPLY_P input chunk shape matches fD  ; output – fR  

* Application mask are taken from APPLY  patterns 

 SUB  or 

MERGE  with 

n  leaves  

Find max tree of SUB  and MERGE  rooted at current 

node. Translate it to n -ary COMBINE_P and n  

REGROUP_P operators 

 Leaf APPLY   Translate it to LEAF_P 

The main aims of the optimizer on plan refinement phase are to remove no-op 

operators and specify chunk ordering of each operator. Chunk iteration order 

directly affects the amount of data buffed by an operator, therefore the optimizer 

tries to minimize the memory requirement so that try to execute entirely in memory 

not to spent effort on materializing intermediate results of evaluation. For d -

dimensional array consisting of q  chunks there are !q  iteration orders. If a plan 

consists of multiple operators consuming several arrays then considering all 

iteration orders becomes exponentially expensive. AML authors decided that the 

optimizer should consider only d  iteration orders for each operator, where d  is the 

maximum dimensionality of an array consumed in the plan. Each of those d  

iteration order differs in the primary dimension by which all the input chunks are 

ordered. Other sort dimensions are taken in dimension number increasing order. 

Authors claim that Hilbert  curve [24] or Z -order [25] could be considered by an 

optimizer as those orders might be related to secondary storage scheme, but those 

types of orders are neglected for the sake of simplicity. 
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For physical plan consisting of w  operators there will be 
w

d  iteration orders. 

There is another problem that even if an optimal iteration order is found for some 

operator it does not mean that optimizer is done with this operator. There might be 

another dependent operator expecting output chunk stream of the just considered 

operator in a completely different order. However, instead of examination of 

another possible chunk ordering it might be more beneficial to insert a reorder 

operator between the producer and the consumer operators. Having addressed the 

aforementioned problems, AML authors devised a cost-based algorithm reducing 

the complexity of assigning chunk iteration orders to operators down to )(
2

dwO . 

The algorithm is briefly discussed below. 

Let )(xCi  be cost of choosing output to be returned in i -th order for operator x . 

Let )(xY  be set of x  neighbors. If the x  is LEAF_P then cost function is equal 

to operator memory cost (defined for each operator separately), otherwise: 

  ),,,()(min),((min)(=)(
)(

yxijtreorderCosyCyCxcxC jjiixYyii  
 Here ),,,( yxijtreorderCos  shows the additional cost augmented after 

inserting a REORDER_P operator between x  and y  operator reordering j -th 

ordered chunk stream into i -th order one. 

2.3 SciDB 

 To the best of our knowledge the formal SciDB algebra description with possible 

derived optimization techniques has not been yet published. This may be explained 

by the fact that, formally speaking, there is no formal algebra in SciDB, as it will be 

seen below, and all operators are initially considered to be user defined functions 

(UDFs). There are some built-in operators, but they do not form any algebra, and 

are still considered UDFs, as SciDB pays much attention to extensibility. Despite 

this fact, here we try to formalize our knowledge about SciDB and structure it using 

the plan used for AML and Baumann's array algebra. First we define an array, then 

list built-in elementary operations of SciDB and finally try to explore how SciDB 

query optimizer works. 

2.3.1 Array abstraction 

 SciDB operates on collection of n -dimensional arrays each of which again may be 

represented as a mapping  

   }{: 2121 NULLVVVIIIA kn    

Sets 
1I , 

2I , , nI  are closed subsets of 
nZ  just as in case of Baumann's array 

algebra. Value associated with each index vector  nii ,,1   represents an array's 

cell. What needs more attention here is the nature of a SciDB array's cell. As it can 
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be seen from formal SciDB array definition the cell value is actually a 

heterogeneous tuple or a special NULL value. The presence of NULL value gives 

lets SciDB to store sparse arrays just out of the box. Cells which are mapped to 

NULL are called empty. Each tuple element can be addressed by so called attribute 

name. It should be mentioned, there are some constraints on value sets jV , which 

restrict a tuple value to be of one of some predefined types: fixed length string, 

number, etc. However, users of SciDB are given an opportunity to compose custom 

types (user defined types – UDTs). One of the features of the SciDB array data 

model is that it is nested, allowing an array cell contain another array. 

2.3.2 Algebra operators 

 One of the most distinguishable feature of SciDB is that as reported in [26] it has 

no built-in operators, forming some rigor algebraic system. Authors claim that all 

operators are in fact UDFs and SciDB has some embedded UDFs, which to some 

extent may be perceived as elementary operators forming SciDB base algebra. 

However, this might seem as contradiction to the SciDB ideology. In [27] the term 

'algebra' is used, but formalism is avoided and just built-in operator usage examples 

are provided. Below we describe SciDB built-in operators mentioned in [27] and 

specified in online SciDB documentation [28]. 

Let   

 A  be an n -dimensional SciDB array, B  be m -dimensional array  

 V  be a array index values for A ,  

where array index values can be defined as a set of pairs 

)},(,),,{( 11 pp vivi   where for every nj <0   : ni j <0  , ji  

values are distinct and jv  is an admissible index value for array's 

dimension j .   

 Q  be a predicate containing free occurrence of A  cell's dimensional 

index  

 E  be a predicate containing free occurrences of A  cell's attributes  

 F  be a function mapping A  cell attributes values to some admissible cell 

type  

 

Then the set of the following operators may be described:   

 ),( VASlice   

Gets out the subarray of dimensionality ||)( VAdim   from array A , taking A  

as buffer array and sequentially cutting out hyperplanes from buffer array based on 

elements in V .   
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 ),( QASubsample   

Gets out the subarray from array A  building it from those cells whose index over 

dimension j  satisfies the predicate Q  for every admissible j .   

 ),( BASJoin   

Combines the cells' values of two input arrays if cells have the identical dimensional 

indices.   

 ),( EAFilter   

Gets an array of the same dimensionality as A  where each cell is taken from A  iff 

E  evaluates to true on it, or considered empty otherwise.   

 ),( FAApply   

Gets a new array applying F  to a cell (substituting cell's corresponding attribute 

values to F ) and storing the result of the calculation in the result array's cell with 

the same dimension index.  

 

It should be mentioned that SciDB orients on high extensibility, which explains the 

shift of SciDB towards UDFs (and UDTs). ScidDB provides a special facility that 

enables to extend the aforementioned set of operators with custom ones, written in 

C++. Custom operators are required to take array input(s) and return array output(s). 

Moreover, SciDB supports defining own aggregates (user defined aggregates – 

UDAs), increasing the degree of extensibility even more. 

2.3.3 Optimization 

 The shift to the paradigm 'everything is defined by a user' makes query planning a 

much harder task. The SciDB optimizer operates on 'blackbox' operators which may 

theoretically be optimized, but in general case their nature is too generic for the 

optimizer to determine optimizations it might perform. However, compared to AML 

and RasDaMan systems, SciDB tries to overcome this difficulty with optimizations 

basing more on physical data storage and parallelism. Those optimizations are 

discussed below. 

When a query is got an optimizer builds a logical plan ding all the required semantic 

checks. As it is stated in [27] the optimizer will produce a complete physical plan 

corresponding to the built logical plan, where possible. Otherwise it will split the 

query plan into subplans consisting of pipelinable operators and execute them (in 

parallel, taking into account the physical structure, discussed further). One logical 

optimization of SciDB query optimizer mentioned in [29] is detecting commuting 

operations and pushing them down in the query tree. However, due to generic nature 

UDFs finding such operators is typically a luck. 

When physical information comes in use, SciDB optimizer starts to 'breathe easier'. 

A SciDB instance is supposed to run on multiple nodes, adhering to shared nothing 
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design. A central system catalog exists, storing meta information about user-defined 

extentions, data distribution, etc. By such SciDB enables to provide a high level of 

parallelizm and related performance improvements accounting the fact that array 

data manipulations are known to be CPU bound([14], [29]). SciDB optimizer makes 

use of distributed architecture and performs several related optimizations discussed 

in [29]. For example, the optimizer examines the logical tree for blocking 

operations, i.e. those which require a temporary array to be constructed (e.g. 

operations demanding redistribution of data in order to execute). In [29] built-in 

SciDB optimizer is reported to be an incremental and cost-based one. It means that 

the optimizer picks the best choice for the first subtree to execute making use of a 

cost model for plan evaluation. The same paper states the SciDB optimizer can be 

called a 'simple optimizer' which tries to minimize amount of date movement and 

increase the level of parallelism. 

However, different optimization techniques has been recently proposed, which 

might be used in SciDB environment. Those include devising iterative array 

processing model for a parallel array engine proposed in [30], optimization of 

SciDB's Filter  operator proposed in [31], shuffle join optimization framework for 

the SciDB array data model presented in [32], etc. 

3. Possible directions of investigation 

 Based on the overview of the optimization process provided above we summarize 

some directions that are available for further investigation. Under no circumstances 

should this list be perceived as complete one. The list below is just a set of noticed 

future work directions which is actually much larger. 

    •  Baumann's Array Algebra. Array Query Processing. Commutativity of 

slice and trimming is not accounted during optimization  

How can this property be exploited for load optimization?   

    •  Baumann's Array Algebra. Array Cost Model. Approximating selectivity 

of predicates containing MDD expressions using common techniques for AQP 

approach.  

In relational query processing there are three well-known techniques: Sampling, 

Parametric, Histogram-based Techniques. RasDaMan creators opted for Histogram-

based approach, saying that parametric techniques have a problem that real 

distributions (especially those of operations results) are seldom accurately 

approximated by mathematical distributions. The problem is very serious in case of 

raster image data. Sampling techniques are reports to be very flexible and tolerant to 

updates. The main disadvantage of such an approach is that sampling has have 

considerable I/O and CPU overhead and lacks computation result reusability. How 

serious is that overhead and how disadvantages overweigh advantages?  

    •  Baumann's Array Algebra. Cell expressions analyzing  
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It is possible to analyze cell expressions for the elementary operations ( MARRAY

, COND ) in order to optimize disk access, e.g. detect tiles which should be cached 

iteration over MDD value.  

    •  Baumann's Array Algebra. Optimization of binary induced operations. 

Array join problem. Optimization for relaxed restrictions  

When the tile graph is built as in [21] the cost of fetching a tile from disk is 

considered the same for all tiles. However, this might be not the case for a 

distributed environment or in presence of cache with size allowing to hold more 

than 1 tile of each operand. The approach presented in [33] might be considered.  

    •  AML. Plan refinement. Iteration order  

Authors claim that Hilbert  curve or Z -order could be accounted by an optimizer 

during plan refinement as those orders might be related to storage scheme, but those 

types of orders are dismissed from consideration for the sake of simplicity. Can 

such a simplification be revisited?   

4. Conclusion 

In the current paper we have investigated the theoretical background of array 

databases exploring three different mature array database management systems: 

RasDaMan, AML, SciDB. We have looked at those database from a fixed 

perspective: firstly, we explore the data model the system uses to simply define an 

array; secondly, we examine what formal algebra the system constructs above 

arrays; thirdly, we take a closer look on algebraic optimizations (logical 

optimizations) and those applied when information about physical storage and 

retrieval of data is taken into account (physical level optimizations). We collect 

some possible directions of further investigation for considered array databases. The 

list of directions mainly contain ones outlined by the authors of the array databases 

themselves. 
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Аннотация. После появления огромного количества научных данных, которые 

необходимо было хранить и обрабатывать, в мире баз данных возникла задача 

поддержки больших многомерных массивов. Стала необходимой разработка 

специальных баз данных, которые основывались бы на модели данных, "сердцем" 

которой было понятие массива (array). Разработка хорошо организованной системы 

управления базой данных, базирующейся на нетрадиционной модели данных, 

требовала решения следующих задач: формальное определение модели данных, 

основывающейся на понятии массива; построение формальной алгебры, работающей с 

объектами модели; разработка правил оптимизации запросов на логическом уровне, а 

затем и на физическом. Эти задачи уже решались создателями специальных баз 

данных, настроенных на обработку и хранение массивов (array databases). В данной 

работе рассматриваются понятия массива, формальные алгебры и методы оптимизации 

запросов в таких развитых базах данных, как RasDaMan, AML, SciDB – базах данных, 

ориентированных на хранение и обработку крупных многомерных массивов. 

Ключевые слова: базы данных для обработки массивов; обзор; формальная алгебра 

баз данных для обработки массивов; обработка запросов к базам данных для обработки 

массивов; оптимизация запросов к базам данных для обработки массивов; AML; 

RasDaMan; SciDB 
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