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Abstract. Device emulation is a common necessity that arises at various steps of the 
development cycle, hardware migration, or reverse-engineering. While implementing the 
algorithms behind the device may be a nontrivial task by itself, connecting the emulator to an 
existing environment, such as drivers intended to work with the actual hardware, may be no 
less complex. Devices relying on memory-mapped input/output are of a particular interest, 
because unlike port-mapped input/output there is much less of a chance that the target platform 
provides a direct interface to intercept the transmissions. A well-known approach used in 
various virtual machine software is to put the entire operating system under a hypervisor and 
build the emulator externally. This may not be desirable for reasons like hypervisor complexity, 
performance loss, and additional requirements for the host hardware. In this paper we extend 
this approach to the kernel and explain how it may be possible to build the emulator by relying 
on the existing interfaces provided by an operating system. Given the common availability of 
an MMU unit as well as memory protection mechanisms, allowing the handling of page or 
segment traps at read or write access, we presume that a suggested technique of intercepting 
memory-mapped input/output could be implemented in a broad number of target platforms. To 
illustrate the specifics and show potential issues we provide the ways to simplify the 
implementation and optimize it in speed depending on the target capabilities, the protocol 
emulated, and the project requirements. As a working proof we created a SMC emulator for an 
x86 target, which makes use of this approach. 

Keywords: device emulation; memory-mapped i/o; kernel modules 

DOI: 10.15514/ISPRAS-2018-30(3)-9 

For citation: Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped I/O Device 
Emulation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 121-134. DOI: 
10.15514/ISPRAS-2018-30(3)-9 

Cheptsov V.Yu., Khoroshilov A.V. In-Kernel Memory-Mapped I/O Device Emulation. Trudy ISP RAN /Proc. ISP RAS, 
vol. 30, issue 3, 2018, pp. 121-134 

122 

1. Introduction 
One of the common engineering demands is device emulation. It may arise during the 
software development cycle, for example, in testing or driver verification, at hardware 
migration, when there is no easy way to rewrite the existing software. Other than that, 
in the world of proprietary hardware and software it is not rare that the only way to 
understand and document the device abilities is to reverse-engineer it, and the ability 
to dynamically debug or reverse-engineer the code could be the key in security 
analysis or adding the device support to a virtual machine.  
Speaking of virtual machines, or rather hypervisors, building the entire virtual stack 
for a single device one needs to emulate is often an overkill due to performance 
reasons, although it could be partially mitigated by hardware-assisted virtualization 
and software compatibility. The latter may involve working on completely unrelated 
parts of the driver stack and result in unnecessary costs for continuous support.  
However, while the development of full platform emulators is a considerably 
common topic with abundance of existing papers and products like qemu, bochs, iOS 
simulator, etc., peripheral emulation is much less widespread. In some cases, virtual 
machine guest tools do try to mimic certain hardware, but even that is usually 
implemented as a part of a full scale platform emulation. The problem with the 
peripherals is not just in implementing the algorithms behind the device, which may 
be a nontrivial task by itself, but also connecting the emulator to an existing 
environment, such as other drivers above in the stack intended to work with the real 
hardware.  
Since one of the important aspects of using any peripherals is the ability for the CPU 
to communicate to them, the common demand for a device emulator is to provide a 
way to do it. Presently there are two common low-level approaches to perform input 
and output operations: port-mapped I/O (PMIO) and memory-mapped I/O (MMIO). 
While there are other ways such as involving some dedicated hardware, they are 
relatively less widespread. High-level communications operating on a packet basis 
(like USB bus) usually go through the dedicated abstraction layer, and thus may be 
implemented with the standard APIs offered by the operating system without any 
special effort.  
It is fairly easy to implement communication protocols with a hypervisor, the standard 
approach is to ensure that accessing certain memory exits the virtual machine context 
(vmexit), which is later handled by the implementation. However, as we mentioned 
previously, the use of a hypervisor may be impractical, and we have to look for other 
means of intercepting memory access. Since direct memory access is very common, 
yet quite problematic to intercept, in this paper we explain how one could implement 
a considerably portable MMIO emulator in the kernel and cover the details of 
emulating device communication protocols on common platforms.  
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2. State of the art 
We admit to not being the first to experiment with peripheral device emulation. Every 
single year several published papers in the field of hardware virtualisation cover this 
topic to a certain level. Articles published by VMware Inc. researchers [1] [2] provide 
an in-depth coverage of x86- compatible hardware emulation. They explain the 
existing obstacles and necessary actions to be taken to implement a complete virtual 
stack from the CPU to network adapters. In their works they pay a lot of attention to 
performance optimization, hardware-assisted virtualization and show a visible 
performance penalty reduction over the new CPU generations in Virtualization 
nanobenchmarks section of the first referenced paper.  
As a result of continuous contribution from different parties and competitive product 
development, the general hypervisor performance has dramatically improved. While 
GPU emulation is out of the scope of this paper, it should be admitted that there are 
several works which do manage to provide a complete GPU emulation at a reasonable 
performance [3] [4]. These works feature an open GPUvm platform in the Xen 
hypervisor.  
Another related direction involves security analysis or reverse-engineering. While 
less frequently found in academic writing, there are several products, tools, and 
patches for Linux intended to log execution details from the Linux kernel for later 
analysis. One of the most well-known toolsets is Linux Trace Toolkit, and one of the 
most prominent cases of applying the approach in practice is for Nouveau driver 
development for NVIDIA GPUs. Enabling OS Research by Inferring Interactions in 
the Black-Box GPU Stack by Konstantinos Menychtas, Kai Shen, and Michael L. 
Scott [5] provides a good coverage in detail.  

3. Basic I/O Introduction  
Port-mapped I/O is usually more demanding to the CPU instruction architecture and 
requires a number of so-called ports the devices will be mapped to, and perhaps a 
dedicated instruction set to access these ports as well. Because the device memory is 
accessed indirectly, another name for PMIO is detached I/O.  
As an example, one of the most popular architectures to implement PMIO is x86. It 
can be utilized by means of two dedicated instructions: in and out, which enable one 
to receive and send 8, 16, or 32 bits of data to a port from 0 to 65535. Since there are 
faster ways to perform I/O on x86 and PMIO is not recommended for use nowadays, 
in some literature it may be referred to as legacy I/O. This may not be the case for 
other architectures found in micro-controllers, but in general MMIO support is 
increasing.  
Memory-mapped I/O involves direct mapping of the device memory to the host 
memory, enabling the software to access the device just like a normal chunk of 
noncacheable RAM with the use of the native instruction set. Since MMIO 
implementation is often faster than PMIO and sometimes simpler to use, it will be the 
one to opt for when implementing a device communication protocol. For example, on 
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x86 various devices installed as PCI extension cards or system management 
controllers make a use of it.  
Virtual devices are not supposed to be functionally different from real hardware. For 
this reason, emulators have difficulties supporting I/O communication protocols. The 
taken approach varies depending on the demands and available resources, but usually 
one of the following is used: 

 Custom device development   
 Driver reimplementation  
 Building a hypervisor  

Sadly, each of these has serious limitations, and most of them create obstacles for 
generic peripheral emulation, as observed in Table. 1.  
Table 1. Pros and cons summary 

 Device Driver Hypervisor 
Software independency + - ± 
Low costs - ± + 
Legal issues + - - 
Infrastructure dependency - + - 
Forward compatibility + - - 
Performance + ± ± 
Other device support + + - 

Developing a new device by extending a microcontroller to offer a required interface 
or creating an entire chip mostly works for very simple devices when a single copy is 
going to be used for some kind of deep debugging or instrumentation. A good 
example could be removable BIOS chips for debugging or HDMI to VGA adapters 
with HDCP decoding. While this solution is very reliable for creating a test device, 
the results of mass-producing a customised device will likely be not worth the effort. 
It will be either more expensive or worse in quality. In addition, it is important to have 
the legal part of the question in mind and avoid patent infringement. However, this 
method could be most reliable when it comes to stability.  
Reimplementing the driver to support another communication interface for the virtual 
device is very useful when working with performance-critical hardware such as 
GPUs. For them each extra communication layer may heavily affect the performance 
due to high bandwidth usage, and that is why virtualization software implements 
extended GPU support (like DirectX or OpenGL) in such a way. However, in our case 
it defeats the entire purpose of creating a virtual device. If the point is to test the 
driver, it will no longer stay the same. If the reason is to support a proprietary driver, 
one will have to reverse-engineer it and have issues every time it gets updated.  
Bringing in a virtual machine with a hypervisor is a way to overdo it. While a decent 
virtual machine has a wide range of supported hardware, it adds a lot of downsides as 
well. In particular there will always be potential performance issues, even with 
hardware-assisted virtualization support. More than that, compatibility issues will 
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likely become a blocker if the rest of the environment is not generic and well-known. 
It is unfortunate, but even the mainstream operating systems may be unwilling to 
expose new interfaces for virtual machines (like most of the graphical stack on Apple 
macOS).  

4. Intercepting the I/O 
As a result I/O interception comes out as a pragmatic way to achieve the goal. Despite 
not being very common, software and hardware have enough capabilities to intercept 
raw device communication without touching the higher-level drivers themselves.  
For example, for the past 8 years the recent x86 firmwares contain a dedicated UEFI 
System Management Mode [6] protocol to intercept PMIO. This protocol originally 
existed as a EFI_SMM_IO_TRAP_DISPATCH_PROTOCOL protocol1, but later on 
was extended with an additional IO_TRAP_EX_DISPATCH_PROTOCOL 
protocol2. Both protocols allow you to create direct handlers to intercept the 
portmapped access. By design, the management mode affects the operating system 
code as well, so it works throughout the boot process and is fully transparent to the 
higher level software implementations like OS kernel or drivers. However, aside from 
not being very well documented, third-party code execution in the System 
Management Mode is generally prohibited. So even if one is to reimplement the SMI 
handler similar to what Intel offers with the open source platform code, it will be of 
no use for anyone but UEFI firmware developers.  
Fortunately, most of PMIO interface code is usually well abstracted in the kernel, and 
when it comes to intercepting you could just replace the underlying low level function 
implementation within the emulator context. However, devices relying on MMIO are 
of a particular interest, because unlike PMIO there is a much less chance that the 
target platform provides a direct interface to intercept the transmissions.  
For embedded devices it may well be sufficient to statically analyze the firmware, 
find the instructions responsible for I/O, and either dynamically or statically overwrite 
them to jump to prepared thunks that will handle them accordingly. This approach is 
common for security analysis especially when very little is known not only about the 
explored peripherals but the whole controller. However, since the firmware or the 
driver may receive updates in the future, this approach is not very effective outside of 
security or code coverage analysis, and the like.  
One of the first ideas that comes to mind due to the nature of MMIO writes is relying 
on CPU debug registers. These registers (e.g. DR on Intel or BP_CTRL/BP_COM on 
ARM Cortex) allow you to implement hardware breakpoints or rather watchpoints, 
which may trap read and write access. However, these registers are very few, and 
their scope area is small (i.e. a 32-bit or 64-bit word). Other than that, the kernel, 

                                                           
1 GUID: 58DC368D-7BFA-4E77-ABBC-0E29418DF930 
2 GUID: 5B48E913-707B-4F9D-AF2E-EE035BCE395D 
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debuggers, or other software may use these registers for their own needs, which leads 
to them being simply impractical for this kind of work.  
In general-purpose operating systems with defined kernel APIs there are much better 
ways, such as a page protection mechanism, which is used to implement watchpoints 
in software. While this is suitable for doing MMIO emulation, most of the known 
works relying on this technique either use it for tracing or just for debugging 
backends. The notable example is MMIO trace in Linux, which was originally  
developed to reverse-engineer proprietary NVIDIA drivers by tracing the register 
access [7]. Other than that, there are very few examples of how it can be utilized for 
device I/O emulation.  

5. Proposed approach 
The idea of general purpose I/O interception is very simple: catch reads and writes, 
make sure that the values read are correct, and the values written are accounted for. 
To apply it to MMIO we could limit page protection of the target area, and trap the 
faults as they happen. Due to bandwidth limitations and architecture simplicity the 
I/O sequences are generally serialized, even if they happen from different threads. It 
may not be the case for GPUs, yet GPUs likely will not need this kind of emulation 
due to performance reasons. Still, in general if serialized I/O is not guaranteed even 
within a single memory page (which is rare) one could always implement it manually 
by utilizing the synchronization primitives.  
Therefore, the most obvious approach will be:  

1. mark the relevant page as neither writable nor readable (not present in x86 
terms);  

2. catch a fault and decode the fault address and the direction (in or out);  
3. disassemble the instruction that caused the fault and obtain its operands from 

the frame;  
4. handle the operands for the emulation;  
5. update the destination registers or memory for the reads as necessary; 
6. return to the location after the instruction, which caused the fault.  

While it indeed solves the problem and looks very straightforward, the 
implementation itself could be very convoluted. While the saved context is likely to 
contain the fault and return addresses, bringing a full-scale disassembling framework 
to the kernel is inflexible due to extra architecture dependencies and considerable 
amounts of code required for instruction emulation. Even more, it may impose 
additional performance penalties, which are already tough enough.  
For these reasons we tried to alter the algorithm in a way that would be simpler, less 
platform-dependent, and similarly performant. After examining several real-world 
examples, we consider the following model of a MMIO-based I/O protocol, which 
could be applied to quite a number of devices:  

1. host ensures that the target is ready for an I/O operation; 
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2. host performs the I/O operation (by reading or writing at a defined address 
space);  

3. host ensures that the operation is complete and repeats the process.  
The 1st and 3rd steps are usually implemented as a write‐and-poll, a write-and-
interrupt or just as a poll. Another advantage comes out from common differences in 
frequencies between the host and the peripheral. Since communications usually 
happen between the devices with different clock bases, most of the protocols are 
synchronous, and the host generally does not overwrite the areas it has just written to 
without making a read to confirm it was successful. Even more, most of the protocols 
are stateful, and it is uncommon to see subsequent reads from the same place 
expecting the value to change more than once. A write operation will most likely 
appear in-between.  
Under these assumptions we use a simple satisfactory transaction model as an 
example:  

1. write operation type (read or write);  
2. read acknowledge status until status ready;  
3. handle the values:  

3.1. read the value for read operations;  
3.2. write the value for write operations and read acknowledge status until 

status ready.  

5.1 With write-only page support 
If write-only pages are supported, in a number of cases one may implement a flip-
flop approach that will switch page protection from read-only to write-only and 
backwards as the process goes.  
To emulate the proposed transaction we could start the communication process with 
the page marked as read-only, which will then trap on operation type. Here we will 
initiate the transaction and switch the protection to write-only. After the operation is 
written the trap on the status read will trigger, where we will read the written operation 
type, update the value for read operations and set its status. Afterwards the page 
protection is returned to read-only and the control is transferred back to the driver. 
For read operations that is all of it, for write operations the driver will read the status 
and attempt to perform the actual write, which should trigger the trap again. From 
there on one could repeat the process as described for the operation type. In the end 
for both reads and writes page protection returns back to read-only, eliminating any 
platform-specific disassembling and relying on generic approach.  
Expectedly one does not have any easy access to write-only pages on popular 
architectures such as ARM [8] or x86. Perhaps, if these architectures were originally 
designed at present, when the demand for better memory protection management is 
much higher and when features like WˆX memory and execute-only memory have 
already become commonplace, we would have had finer memory management that 
would support write-only pages. However, nowadays write-only pages are not very 
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common in both hardware and software implementations. Certain PowerPC 
implementations [9] or processor extensions may provide access to them, so it 
remains a good idea to check CPU manuals before abandoning the try. For example, 
Intel x86 processors starting from Nehalem technically support write-only memory 
via EPT (Extended Page Tables [10]), yet it can hardly be used for anything but 
virtualization.  

5.2 Without write-only page support 
When write-only pages are not available, we may still be able to work out a simpler 
approach, and this is where memory patching comes in hand. The idea is to let the 
original instruction perform the I/O just as normal, but to encode a jump-back 
instruction right afterwards to ensure that page protection is limited again to trap the 
next I/O operation. Initially this approach may appear to have too many issues to be 
considered in practice, however, they could all be solved with enough effort, and 
some of them could even be turned into benefits.  
The first issue to solve is the length of the faulted instruction. A number of 
architectures provide fixed-length instruction sets, so the next instruction address to 
encode our jumpback instruction could be calculated even without knowing anything 
about the current instruction. For others one could write or find simple instruction 
fetchers, to only decode the length without operand or operation details. Such 
software may also go under the name of length disassemblers, and various 
implementations exist for popular platforms [11]. It may become a little more 
involved when the I/O instruction results in non-linear control flow, but in general 
I/O and branching instructions belong to separate classes and are not mixed together.  
The second issue occurs when the device memory is mapped to userspace and the 
communication happens in userspace as well. In this case a direct jump to protection 
restoration code is not possible, and a breakpoint or similar instruction will have to 
be encoded to trigger the context switch, return to the kernel and pass the control to 
our handler.  
The third and probably the most serious issue happens when I/O operations are 
performed through shared code. By assuming serialized I/O we consider no cases of 
simultaneous code execution from the same area (unless there are multiple devices). 
Therefore, we could safely patch it. However, nothing prohibits the driver from 
utilizing generic memory primitives like memcpy or memset to bulk-write or read the 
dedicated area. These primitives generally have no effect on the I/O itself, and we do 
not need to intercept every byte they touch. To avoid the issue one could examine the 
stack trace and modify the instruction at the return address. Not only this does not 
require disassembling but also reduces the penalty from trapping extra I/O operations, 
so a quick stack unwinding that can often be implemented with compiler intrinsics 
easily pays off.  
With all the pieces put together it creates a solid approach for a large chunk of I/O 
protocols. In addition to these general improvements platform-specific optimizations 
could be applied. For example, extra page protection changes may be avoided for 
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write operations, if the hardware may ignore interrupts caused by write protection 
violation (CR0 WP bit on x86). It should be noted that one is to pay extra attention to 
the scheduler (e.g. disable preemption) not to let it switch the task to another core, 
where write protection is on.  

6. Evaluation 
To apply the proposed solution in practice we created a software-based emulator for 
the 2nd generation Apple SMC in a form of a kernel extension for Apple macOS. 
System Management Controller (SMC) is a chip commonly found in Intel-based 
Apple Macintosh computers or certain Google Chromebooks. This chip is responsible 
for computer power management, display backlight control, HDD monitoring, 
thermal control, hybrid sleep and hibernation support, external device current 
regulation (AirPort, USB, FireWire), charging the battery, trackpad controls, screen 
mirroring, etc. This chip is not essential for computer functioning, and could be 
viewed as a convenience feature for a vendor to rely on to centralize and simplify 
hardware management.  
There are two main generations of SMC controllers in Apple computers. The 1st 
generation was built on a 16-bit Renesas H8S/2117 controller and exposed port-
mapped I/O interfaces to communicate with the operating system. The 2nd and 
subsequent generations are based on 32-bit ARMv7-A processors, and expose 
memory-mapped and port-mapped I/O interfaces. Both approaches are used to 
implement the same functionality within a single synchronous stateful protocol. 
Initially the communication happens via the PMIO protocol, and then a switch to 
MMIO protocol happens if the device supports it. The whole communication process 
happens within the kernel and the existing drivers for the 2nd generation hardware are 
closed-source. Fortunately, due to side researchers the communication protocols are 
mostly documented [12].  
The reasons for taking this particular device into consideration was not only because 
it is a challenging task compared to devices with open specifications and decent 
documentation, but also for the importance of having better control of the hardware 
you use. Apple SMC has complete access to every device in the system and could 
monitor the bus communications. Other than that it stores temporary encryption keys 
for hibernation images or user action free restarts (authenticated restarts), when full 
disk encryption is enabled. Apple SMC drivers expose a dedicated protocol to 
userspace. This protocol provides a way to obtain SMC data and configure both SMC 
and onboard devices. Given its direct connection to the hardware, it may be possible 
to inflict damage on the computer by overheating or causing power surges. Moreover, 
previous researches discovered that it was very easy to modify SMC firmware, which 
is also a very serious concern [13].  
The actual implementation follows the proposed approach without write-only page 
support with all the suggested optimizations and certain platform-specific 
adjustments. SMC MMIO protocol covers a 64 KB area, which we split into pages 
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with the dedicated handlers based on the page index. Since the access to each page is 
serialized, no additional I/O wrapping is necessary.  
In the XNU kernel, which powers all modern Apple hardware including Macs, Intel 
CPU exceptions are routed through a dedicated kernel_trap function. To let the driver 
communicate with the emulated device we added a SMC nub via the standard I/O Kit 
APIs with mapped memory regions with restricted protection and extended the 
kernel_trap function in EXC_I386_PGFLT handling code specifically for our 
memory.  
A simplified version of this code is shown in Listing 1. ioRegionStart and 
ioRegionEnd locate the emulated I/O area starting and ending addresses, 
appleSmcStart and appleSmcEnd point to the AppleSMC driver address range. 
instrSize function calculates the instruction length at the return address to later write 
the jump-back code via writeTrampoline function, which not only writes the 
trampoline code (by disabling the WP bit and interrupts) but additionally disables 
CPU preemption to avoid the scheduler switch.  
auto faultAddr = state->cr2; 
if (faultAddr >= ioRegionStart && 
    faultAddr < ioRegionEnd) { 
  auto retAddr = state->rip; 
  if (retAddr >= appleSmcStart && 
      retAddr < appleSmcEnd) { 
    // Simple case (from AppleSMC) 
    retAddr += instrSize(retAddr, 1); 
  } else { 
    // Complex case (from e.g. memcpy) 
    retAddr = unwindToSMC(state->rsp); 
  } 
 
  auto faultType = FaultTypeRead; 
  if (state->err & T_PF_WRITE) { 
    faultType = FaultTypeWrite; 
  } 
  updateProtection(faultType, faultAddr); 
  saveOrgCode(retAddr, TrampolineSize); 
  writeTrampoline(faultType, faultAddr); 
  return; 
} 
 

Listing 1. Sample code 

To transfer the control flow to the protocol emulator updateProtection is performing 
the actual protection upgrade of the emulated I/O area and invokes the read access 
handler. It should be noted that a dedicated procedure may be needed for platforms 
with delayed physical mapping update. For example, with XNU it is necessary to 
trigger virtual memory fault twice when the page is not present. Similarly, the 
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protection restoration routine invoked from the trampoline preserves the registers and 
calls the write handler.  
As a result, it was possible to emulate all the existing SMC protocols at no issue and 
avoid the use of the original device.  

7. Conclusion 
Emulating peripheral devices within the existing operating system is not a new 
problem. Different solutions and approaches have appeared over the years. The 
industrial demand for full-stack operating system virtualization brought their 
performance to a completely different level, and the needs for better customization 
resulted in operating system developers providing more flexible interfaces with the 
possibility to create virtual hardware out of the box. Programmable microcontrollers 
made the process of building a device clone with the necessary features a much 
simpler task to accomplish.  
However, there are numerous cases, where in-kernel peripheral emulation is highly 
anticipated, such as driver development needs, testing and verification, hardware 
migration, security analysis, etc. As we stated, it is often not possible or extremely 
impractical to attempt to incorporate virtual machines due to development costs or 
performance penalties. While virtual machines succeed in emulating CPUs of the 
same architecture at almost the same speed with hardware assisted virtualization, the 
performance of other CPUs without the use of JITs, commonly used in video game 
console emulators but rarely found in generic virtualization software, is often much 
worse. And in terms of I/O emulation, which is the primary concern of this paper, the 
situation is no better.  
Furthermore, all the solutions heavily depend on the target architecture. While it was 
possible to think of x86 as the main architecture for personal computers in the 
beginning of 2000- s, today the concept of personal computers has shifted away, and 
other major players, e.g. ARM, appeared on the market. With this in mind the classical 
approach to virtualizing the whole operating system could face severe issues in the 
future.  
The idea of using page protection faults to handle device I/O events without a 
hypervisor may be known but not widespread anywhere out of I/O tracing. In this 
paper we described a way to implement a complete MMIO protocol emulator in the 
kernel with the use of a generic approach that has few dependencies on the target 
architecture and relies on platform features such as MMU and paging. We showed 
that certain target architecture capabilities and device protocol specifics may affect 
the implementation, and effectively allow or disallow a broad range of optimizations. 
We believe that a suggested device I/O protocol model is applicable to various 
hardware, and give examples on how to simplify and optimize its implementation. 
After exploring the existing hardware, we built a SMC emulator in the XNU kernel 
to illustrate the suggested approach.  
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Аннотация. Необходимость эмуляции оборудования часто возникает на различных 
стадиях цикла разработки, миграции оборудования или обратной разработки. 
Реализация алгоритмов, связанных с конкретным устройством, сама по себе является 
нетривиальной задачей, но интеграция эмулятора с существующей средой, например, 
драйверами, предназначенными для работы с реальным оборудованием, зачастую 
оказывается не менее сложной. Устройства, полагающиеся на ввод-вывод с 
отображением в оперативную память, представляют особый интерес, так как в этих 
случаях, в отличие от использования портов ввода-вывода, гораздо меньше вероятность, 
что целевая платформа предоставит интерфейс для перехвата операций. Один из 
распространённых подходов, широко используемый в ПО виртуальных машин, состоит 
в том, чтобы поместить всю операционную систему под гипервизор и создать внешний 
эмулятор. Однако это может быть нежелательно по причинам сложности гипервизора, 
потери производительности, дополнительных требований к аппаратному обеспечению 
и пр. В данной статье такой подход распространяется на ядро, и предлагается описание 
возможности построить эмулятор, прибегая лишь к существующим интерфейсам, 
предоставляемым операционной системой. Ввиду частой доступности MMU и 
механизмов защиты страниц, позволяющих перехватывать доступ записи и чтения, 
предполагается, что предлагаемый подход может быть использован на значительном 
количестве целевых платформ. В статье приводится подробное рассмотрение проблем, 
возникающих при написании конкретной реализации, и приводятся способы её 
упрощения и оптимизации в зависимости от возможностей целевой платформы, 
эмулируемого протокола и иных требований к задаче. В качестве экспериментального 
доказательства работоспособности предлагаемого подхода приводится реализация 
эмулятора SMC для платформы x86. 
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