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Abstract. Over the last few decades buffer overflow remains one of the main sources of 
program errors and vulnerabilities. Among other solutions several static analysis techniques 
were developed to mitigate such program defects. We analyzed different approaches and tools 
that address this issue to discern common practices and types of detected errors. Also, we 
explored some popular sets of synthetic tests (Juliet Test Suite, Toyota ITC benchmark) and 
set of buggy code snippets extracted from real applications to define types of defects that a 
static analyzer is expected to uncover.  Both sources are essential to understand the design goals 
of a production quality static analyzer. Test suites expose a set of features to support that is 
easy to understand, classify, and check. On the other hand, they don’t provide a real picture of 
a production code. Inspecting vulnerabilities is useful but provides an exploitation-biased 
sample. Besides, it does not include defects eliminated during the development process 
(probably with the help of some static analyzer). Our research has shown that interprocedural 
analysis, path-sensitivity and loop handling are essential. An analysis can really benefit from 
tracking affine relations between variables and modeling C-style strings as a very important 
case of buffers. Our goal is to use this knowledge to enhance our own buffer overrun detector. 
Now it can perform interprocedural context- and path-sensitive analysis to detect buffer 
overflow mainly for static and stack objects with approximately 65% true positive ratio. We 
think that promising directions are improving string manipulations handling and combining 
taint analysis with our approaches. 
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1. Introduction 
Buffer overflow is a type of program defect caused by buffer access with index that 
exceeds buffer’s bounds. This can lead to a program crash or even to a security 
vulnerability. Defects of such kind are still common, despite all efforts made to 
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eliminate them. There are several techniques one can apply to detect buffer overflows. 
One approach is to employ testing and dynamic analysis. These methods don’t suffer 
from false positives, but in most cases, it’s impossible to check all execution paths, 
so some defects can remain undetected. Another approach is to analyze program code 
without executing it. In this way, one can find a defect on any path, even rarely 
executed. In this paper, we will focus on the latter approach known as static analysis. 
We are interested in building a buffer overflow detector that is applicable to large 
C/C++ programs with millions of lines of code while producing decent analysis 
performance and quality. Basic properties of the algorithms constituting such a 
detector are well-known and include among others interprocedural analysis, path 
sensitivity, and loop handling. However, after initial support for these features has 
been made and the quality goals achieved, it is unclear which direction to choose for 
the further improvement. The usual development pace that comes from the customer 
feedback and own code analysis may be not enough. In the following chapters, we’ll 
overview possible sources of inspiration for the buffer overflow detector 
development, present our short survey that is based on the buffer overflow-related 
vulnerabilities sample from the CVE database, then briefly describe our experience 
of developing an overrun detector as a part of the Svace tool, and present our 
conclusions from tools and vulnerabilities analysis. 

2. Buffer overflow detection techniques and tools 
There exist many static analysis tools that can detect buffer overflows. In this section, 
we conduct a brief survey on the most popular methods. 
Some buffer overflows can be detected during the process of lexical analysis, like in 
the ITS4 tool [1]. Most common errors and bad patterns can be found at this level. 
This technique can work really fast and, as it doesn’t involve compilation, can be 
easily applied to any code, even if it is not complete. As a result, such analysis can be 
performed “on-the-fly” during the process of code development with IDE, so that 
erroneous patterns are eliminated on the very early coding stage. Of course, such a 
lightweight method is far from being sound, i.e. it misses many defects. Even 
changing the name of a variable can prevent such tools from detecting a defect. 
To detect more defects a deeper analysis of code is needed. To achieve this, many 
tools use the idea of abstract interpretation [2]. Some tools chose different numerical 
abstract domains to implement the analysis of integer index values, buffer sizes, and 
string lengths. These domains include intervals, zones, octagons, affine equalities, 
interval linear equalities, convex polyhedra, tropical polyhedra, etc. [3]. Tools based 
on these approaches derive sound relationship between integer values listed above in 
varying degrees of precision. Soundness is a major advantage of such tools, but less 
precise domains produce large number of false positives, while analysis with more 
precise domains doesn’t scale on many real-world programs. 
Another popular approach is symbolic execution. The main idea of this method is 
performing analysis by traversing all paths in a function separately. This approach 
can be used to build a path-sensitive detector i.e. that can find errors that, at the same 
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time, occur only on a certain feasible function path and are not inevitable for any 
single point from this path alone. While processing a particular path, the analyzer 
keeps track of variables values and relationships and computes a path predicate, i.e. a 
conjunction of all corresponding branch conditions that are taken along this path. This 
information is used to prune infeasible paths and check buffer access instructions. 
Analyzing all paths in a function can be a challenging task due to the path explosion, 
so a number of techniques are proposed to reduce this problem. A simple, but often 
effective approach is to abandon the idea of full path coverage and just to stop the 
analysis after some threshold or time limit reached. Another approach is to merge 
symbolic states at join points, preserving path-sensitivity of analysis by providing 
guard conditions for joined states. Third approach, first introduced in Marple, is 
employing demand-driven analysis [4], [5], i.e. reducing the set of analyzed paths by 
focusing only on those that end with buffers access. 
One of the main obstacles for all mentioned symbolic execution-based approaches is 
handling loops. Typical solution is to implement some heuristics to handle the most 
simple and common loops and ignore other loops. However, there are methods 
proposed to handle loops with multiple paths inside and summarize their effect on 
program values [6]. 
Many buffer overflow errors are caused by violations of function contracts. This can 
happen when a caller of a library or a user function provides unexpected data to a 
function, or, on the contrary, a function is not able to correctly handle all input cases 
implied by the contract. Interprocedural analysis is needed to detect such 
inconsistencies. 
On the lexical analysis level, formal and actual arguments matching can be based on 
similar variables names and usually happens only for the well-known library callees 
like memcpy. For more rigorous scan some tools analyze the whole program as a 
unified inter-procedural graph. The monomorphic analysis merges information for 
every call-site — efficient, but imprecise approach. The polymorphic analysis treats 
each call site individually, so this approach provides context-sensitivity but scales 
poorly. 
An alternative approach is using some approximation of a function’s behavior when 
analyzing its caller. These approximations can be provided in user’s annotations, but 
they are not always available. A tool can use its own findings obtained by the callee 
analysis as an approximation. This approached is called summary-based. By choosing 
the right function order, a tool can minimize the number of missing summaries, but 
handling recursion still requires additional tricks, e.g. making several analysis passes 
over strongly connected components of the call graph. 

3. Buffer overflow detection tools benchmarking 
For the past twenty years several studies have been published on evaluating and 
testing buffer overflow detectors. In addition, there exist different test suites, which 
provide sets of synthetic buggy and correct code snippets to test the abilities and false 
positive rate of static analysis tools. 
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One of the biggest and probably the most popular benchmark is Juliet Test Suite 
C/C++, created by NSA’s Center for Assured Software (CAS) [7]. For C/C++ code 
it contains 64,099 test cases tagged by CWE entries. Groups corresponding to buffer 
overflow defects are CWE 121 — “Stackbased Buffer Overflow” (4,968 tests), CWE 
122 — “Heapbased Buffer Overflow” (5,922 tests), CWE 124 — “Buffer 
Underwrite” (2,048 tests), CWE 126 — “Buffer Over-read” (1,452 tests), and CWE 
127 — “Buffer Under-read” (2048 tests). Tests in this suite are also tagged with a 
number called “flow variant” that represents the complexity of control and data flow 
in a particular test case. 
Control flow variants cover different types of conditionals (e.g. 
STATIC_CONST_FIVE==5, globalReturnsTrueOrFalse(), etc.) and 
different control statements (switch, while, etc.). Data flow variants describe 
many types of intraprocedural data flow and interprocedural interaction, e.g. data 
passing through function arguments (via pointer, C++ reference, array, container, 
etc.), return value, global variable, etc. There are many flow variants that represent 
C++-specific features and not applicable to C-tests. 
We noticed that the distribution of the flow variants is close to uniform in groups of 
our interest. Another observation is large number of tests involving wide characters. 
Many tests contain library function usage, e.g. memcpy-like functions, string 
manipulations, format string processing, etc. 
Toyota ITC Benchmark is a test suite created by Toyota InfoTechnology Center 
aimed at the static analysis tool evaluation [8]. It contains 1,276 simple tests (638 
erroneous and 638 correct) divided into 9 types and 51 sub-types. Our interest is in 
the following tests: sub-types “static buffer overrun” (54 cases), “static buffer 
underrun” (13 cases) from the “static memory” type and sub-types “dynamic buffer 
overflow” (32 cases), “dynamic buffer underrun” (39 cases) from the “dynamic 
memory” type. Each case is represented by a pair of a buggy test and a fixed test. 
These samples cover following features in varying combinations: (i) static, stack and 
heap buffers; (ii) different element types (char, int, float, struct, etc.); (iii) 
index calculations (constant, linear and non-linear expressions, passed as an argument 
or returned from a function, loop variables and array elements); (iv) obtaining buffer 
address (local/global variable, function argument, pointer arithmetic including loop 
variables and aliases); (v) buffer size (heap buffers only with constant sizes, pointer 
casting); (vi) access types (via index, pointer dereference, in a library function, in a 
string function). 

4. Survey on overflow-related CVEs 
We believe that although evaluating with a test suite could give a good insight in a 
particular tool’s abilities, any test suite alone cannot perfectly represent the whole 
populations of buffer overflow defects in real code. One (but not the only one) noble 
goal for static analyzers is to prevent security vulnerabilities to sneak in the project 
source code. We wanted a better understanding of the features of a static analyzer that 
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are more or less important for achieving this goal. Our survey technique was inspired 
by [9] and we mostly followed in their footsteps to produce a set of vulnerabilities to 
classify. 
We have to note that detection of exploitable vulnerabilities is not the only goal of a 
static analyzer. Still there are some types of defects that don’t lead to vulnerabilities 
or may not be exploited with ease, but it is undesirable to have those in the source 
code. Besides, we believe that nowadays developers more intensively use different 
(static and/or dynamic) analysis tools before releasing the product. For this reason, 
many simple defects are eliminated during the development process and don’t appear 
in the vulnerability databases. Consequently, we think that analysis of the 
vulnerabilities can reveal the weakest sides of modern static analysis and show 
potential improvement directions. 
First of all, we have randomly picked 100 entries from the “overflow” category from 
the CVE database [10]. For 25 of them we could find a source code of the vulnerable 
version to inspect. For each defect, we have studied its causes in the code and then 
classified the defect by several attributes. Our set of attributes is based on the 
taxonomy provided in [11] with some changes. 
Our first insight is that there are some trends in our sample that can be explained by 
the source of this sample (vulnerability database): (i) most of the overflows from our 
sample (72%) happened on write memory access, only few on read access; (ii) only 
the upper bounds of buffers are exceeded in the defects from our sample; (iii) almost 
all defects (92%) occurred when tainted data (unbounded data from network, file read, 
input parameters etc.) overflowed some buffer. 
We also noticed that simple errors (e.g. using unsafe functions like strcpy) are 
present in the old code (before 2010), but rarely in the late entries. We believe that 
this can be partially explained by the usage of code analysis tools. 
In our sample about a half of overflowed buffers (48%) reside on a stack, other half 
(48%) is allocated on a heap, and just a few are global variables. 
40% of all defects have overflowed buffer accessed via index (e.g. buf[i]), 12% 
via pointer dereference, 44% via library calls, 24% of which are string functions. The 
latter requires C-strings modeling to properly analyze such patterns. When buffer is 
accessed in a library call, we think of size/limit argument as an index (when it’s 
reasonable) for further investigation. 
According to our data, 48% of all vulnerable buffers have constant size (all stack and 
static buffers and a few buffers on the heap). Another 16% have a size that is 
calculated as a linear combination of other variables. As a result, almost half of all 
inspected defects require deep analysis of integer variables relationship to detect 
them. 
Another feature that we have evaluated for every entry is whether buffer allocation is 
global or resides in the same function with buffer access. We have found that this is 
true only for 24% of defects. On the other hand, all index calculations are in the same 
function with the access in 32% of defects. Both properties are true for 12% of defects. 
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It follows from the foregoing that interprocedural analysis is essential for buffer 
overflow detection. 
Last thing that we have checked is whether there exists a program point that any path 
through this point will lead to a corresponding error. If there is no such point, then we 
assume that path-sensitive analysis is needed to detect this defect. Our sample 
contains only 28% of defects, for which such a program point exists. This means that 
path-sensitivity will provide the real advantage for a static analysis tool. 

5. Svace buffer overrun detector 
Svace is a static analysis tool that is designed to find as many defects of different 
types as possible with few false positives and acceptable analysis time [12]. The 
purpose of this work is to improve the Svace buffer overflow detector with the most 
needed features. Our detector implements the interprocedural path-sensitive detection 
algorithm based on symbolic execution with state merging [13]. For now, the analysis 
scope is limited to detection overflows of buffers with compile-time-known size. Our 
detector looks for faulty paths in a function, i.e. it reports a warning if it finds a path 
that for any input values is either infeasible or produces an error. Such a strict defect 
definition is chosen to prevent many false positives caused by unknown function 
preconditions. 
For a buffer access instruction, we collect a predicate that implies that there exists a 
faulty path through this instruction. We use an SMT solver to search a solution for 
this predicate if any. In case of this formula is satisfiable, we use its model provided 
by the solver to extract a faulty path. It follows from our experience that simply asking 
solver for any index value that exceeds buffer bounds in our case leads to many false 
positives. Reasons for that are unknown function precondition and symbolic path 
conditions being not precise enough (due to poor loop handling, calls of unknown or 
complex functions, etc.). 
Our interprocedural analysis is implemented using summaries. In the function 
summary, we save the information about relationships between integer values on 
function entry and exit points. We also save overflow conditions for those input-
dependent buffer accesses whose correctness can only be checked in the caller 
context. Such facts can be propagated to the caller more than once, so the analysis 
can find an overflow of a buffer allocated in a function that is far away on the call 
stack from a function with the access instruction. We also implemented a heuristic to 
handle simple loops that have an inductive variable iterating over an arithmetic 
progression. Currently on Android 5.0.2 our detector emits 351 warnings with 65% 
true-positive ratio. 

6. Conclusion 
We have inspected a number of buffer overflow test suites, related CVE entries, and 
the source code of large production projects that our tool regularly analyzes. All three 
sources are essential to understand the design goals of a production quality static 
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analyzer. Test suites expose a set of features to support that is easy to understand, 
classify, and check. On the other hand, they don’t provide a real picture of a 
production code. Inspecting vulnerabilities is useful but provides an exploitation-
biased sample. Besides, it does not include defects eliminated during the development 
process (probably with the help of some static analyzer). Finally, while developing a 
static analyzer one always deals with false positives produced by the tool and reported 
by customers, but getting false negative samples is much more difficult. True 
positives reported by the other tools could be useful, but most of the state-of-the-art 
tools are proprietary and their results are closed. 
From what has been said above it follows that interprocedural analysis, path-
sensitivity and loop handling are essential. An analysis can really benefit from 
tracking affine relations between variables and modeling C-style strings as a very 
important case of buffers. 
Our current goal is to improve the Svace buffer overflow detector to reduce the 
number of false negatives while preserving the moderate level of false positives. For 
the aforementioned reasons, we think that the most promising directions are handling 
buffers with dynamic size, C-string modeling, and tracking tainted values. We are 
working now on the extension of our detection technique described in Section 5 by 
tracking string length changes happening during string operations in much the same 
way as we track buffer indexes while calculating integer values. We believe that this 
will be sufficient for most of cases, but there are some promising works in the area of 
string solvers [14] that would additionally allow to track also string contents. 
As we have seen, static analysis detection of buffer overflows requires a number of 
techniques from vastly various fields to move on the road from expectations to real 
code, and there will always be a way to go. 
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Статический анализ для поиска переполнения буфера: 
актуальные направления развития 
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Московский государственный университет им. М.В. Ломоносова, 

119991, Россия, Москва, Ленинские горы, д. 1 

Аннотация. В последние десятилетия переполнение буфера остаётся одним из главных 
источников программных ошибок и эксплуатируемых уязвимостей. Среди прочих 
подходов к устранению подобных дефектов активное развитие получили различные 
методы статического анализа. В работе рассматриваются основные подходы и 
инструменты, используемые для решения этой задачи, с целью выявить наиболее 
популярные методы и типы обнаруживаемых ошибок. Также исследованы наборы 
синтетических тестов (Juliet Test Suite, Toyota ITC benchmark) и выборка фрагментов 
кода реальных приложений, содержащих эксплуатируемую ошибку переполнения 
буфера. Для понимания направлений развития промышленного статического 
анализатора важно рассматривать оба эти источника примеров ошибочных программ. 
Наборы тестов очерчивают круг ситуаций, которые необходимо поддержать в 
анализаторе, при этом их легко понять, классифицировать и проверить. С другой 
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стороны, они не отражают распределение таких ситуаций в реальном коде. Выборка 
уязвимостей из промышленных проектов также представляет интерес для исследования, 
но оказывается смещённой в сторону эксплуатируемых ошибок и к тому же не включает 
ошибки, исправленные на стадии разработки (возможно, как раз с использованием 
статического анализатора). Полученные данные были использованы для выделения 
основных шаблонов дефектов, которые должен обнаруживать статической анализатор с 
точки зрения пользователя. В результате исследования к наиболее важным 
возможностям статического анализатора были отнесены межпроцедурный путе- и 
контекстно-чувствительный анализ, а также базовая поддержка циклов. Кроме того, 
полезными оказываются отслеживание аффинных отношений между переменными и 
моделирование строк как важного случая использования массивов. Результаты данного 
исследования используются для улучшения детектора переполнения буфера, 
реализованного в рамках инфраструктуры статического анализатора Svace. На данный 
момент используется межпроцедурный чувствительный к путям и контексту анализ, 
позволяющий обнаруживать переполнения буфера на стеке и в статической памяти с 
долей истинных срабатываний 65%. По результатам исследования наиболее 
перспективными направлениями представляются поддержка строковых операций и 
внедрение анализа помеченных данных в имеющиеся подходы. 
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