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Abstract. Sequential reactive systems represent programs that interact with the environment
by receiving signals or requests and react to these requests by performing operations with data.
Such systems simulate various software like computer drivers, real-time systems, control
procedures, online protocols etc. In this paper, we study the verification problem for the
programs of this kind. We use finite state transducers over semigroups as formal models of
reactive systems. We introduce a new specification language LP-CTL* to describe the behavior
of transducers. This language is based on the well-known temporal logic CTL* and has two
distinguished features: 1) each temporal operator is parameterized with a regular expression
over input alphabet of the transducer, and 2) each atomic proposition is specified by a regular
expression over the output alphabet of the transducer. We develop a tabular algorithm for
model checking of finite state transducers over semigroups against LP-CTL* formulae, prove
its correctness, and estimate its complexity. We also consider a special fragment of LP-CTL*
language, where temporal operators are parameterized with regular expressions over one-letter
alphabet, and show that this fragment may be used to specify usual Kripke structures, while it
is more expressive than usual CTL*.
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1. Introduction

Finite state machines are widely used in the field of computer science and formal
methods for various purposes. While finite automata represent regular sets,
transducers stand for regular (or, rational) relations and, therefore, can serve as
models of programs and algorithms that operate with input and output data. For
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example, transducers are used as formal models in software engineering to represent
numerous algorithms, protocols and drivers that manipulate with strings, dataflows,
ete. [1, 15, 25].

By extending the concept of ordinary transducers, we build a new formal model for
sequential reactive systems. These systems are software programs or hardware
devices that receive requests (control signals, commands) from the environment and
perform in response some manipulations (actions, transformations) with data,
interactions with the environment, mechanical movements, etc. While the flow of
requests can be represented by finite or infinite words in some fixed alphabet, the
sequence of actions of the system needs a more sophisticated interpretation. The key
point here is that different sequences of actions may bring a computing system to the
same result. To capture this effect the collection of actions performed by a reactive
system can be viewed as a generating set of some algebraic structure (e.g. semigroup,
group, ring, etc.) and particular algebraic properties of basic actions should be taken
into account when choosing adequate formal models for this class of information
processing systems. Let us illustrate this consideration by several examples.

e A network switch with several input and output ports. A switch is a device, which
receives data packets on its input port, modifies their heads and commutes them
to one of the output ports. Once received a special control signal, this switch
changes its packet-forwarding table and, thus, its behaviour. Since packets from
different flows may be processed in any order, the switch can be modeled by a
transducer, which operates over a free partially commutative semigroup, or a
trace monoid. Trace monoids are commonly used as an algebraic foundation of
concurrent computations and process calculi (see, e.g., [9]).

e A real-time device that control the operation of some industrial equipment (say,
a boiling system). Such device receives data from temperature and pressure
sensors and switches some processes on and off according to its instructions and
the current state of the system. It seems reasonable that for some actions the order
of their implementation is not important (routine actions), while others must
follow in a strictly specified order (e.g. an execution of some complex operation).
Moreover, there are also actions which bring system to certain predefined
operation mode (set-up actions). These actions are implemented in the
emergency situations. A partially commutative semigroup with right-zero
elements 0 which satisfy the equalities x0 = 0 for every element x provides an
adequate interpretation for such operations.

e A system supervisor that maintains a log-file. For each entry its date and time is
recorded in the file and there is no way to delete entries from the log — only to
append it. Thus, for any two basic actions (record operations to the log-file) it is
crucial in which order they are performed and such a supervisor can be modeled
by a transducer over a free semigroup. Verification techniques for such reactive
systems are considered in [17]; this is the main topic of this paper as well.

e A radio-controlled robot, that moves on a surface. It can make one step moves in
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any of direction. When it receives a control signal in a state q’ it must choose and
carry out a sequence of steps and enter to the next state g"’. At some distinguished
state g the robot reports its current location. Movements of the robot may be
regarded as basic actions, and the simplest model of computation which is
suitable for analyzing a behaviour of this robot is a nondeterministic finite state
transducer operating on a free Abelian group of rank 2.

To construct a reliable system or network it is crucial for its components to have a
correct behaviour. For example, a network switch must process received data packets
within a specified number of execution steps and the boiling system should never be
overheated, that is, will never remain for a long time in a particular condition without
appropriate responses from the control device. By using finite state transducers as
formal models of reactive systems, one can develop verification algorithms for these
models to solve such problems as equivalence checking, deductive verification or
model checking.

The study of the equivalence checking problem for classical transducers began in the
early 60s. It was established that the equivalence checking problem for non-
deterministic transducers is undecidable [13] even over 1-letter input alphabet [16].
However, the undecidability displays itself only in the case of unbounded
transductions when an input word may have arbitrary many images. The
equivalence checking problem was shown to be decidable for deterministic [4],
functional (single-valued) [5, 19], and k-valued transducers [6, 26]. In a series of
papers [20-22] techniques for checking bounded valuedness, k-valuedness and
equivalence of finite state transducers over words were developed. Recently in [29]
equivalence checking problem was shown to be decidable for finite state transducers
that operate over finitely generated semigroups embeddable in decidable groups.

There are also papers where equivalence checking problem for transducers is
studiedin the framework of program verification. The authors of [23] proposed
models of communication protocols as finite state transducers operating on bit strings.
They set up the verification problem as equivalence checking between the protocol
transducer and the specification transducer. The authors of [25] extended finite state
transducers with symbolic alphabets, which are represented as parametric theories.
They showed that a number of classical problems for extended transducers, including
equivalence checking problem, are decidable modulo underlying theories. In [1] a
model of streaming transducers was proposed for programs that access and modify
sequences of data items in a single pass. It was shown that a number of verification
problems such as equivalence checking, assertion checking, and checking correctness
with respect to pre/post conditions, are decidable for this program model.

Meanwhile, very few papers on the model checking problem for transducers are
known. Transducers can be conveniently used as auxiliary means in regular model
checking of parameterized distributed systems where configurations are represented
as words over a finite alphabet. In such models, a transition relation on these
configurations may be regarded as a rational relation and, thus, it may be specified by
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finite state transducers (see [7, 28]). In these papers, finite state transducers just play
the role of verification instrument, but not an object of verification. However, as far
as we know, a deeper investigation of the model checking problem for the reactive
systems represented by transducers has not yet been carried out. We think that this is
due the following main reason. A transducer is a model of computation which, given
an input word, computes an output word. The letters of input and output alphabets
can be regarded as valuations (tuples of truth values) of some set of basic predicates.
Therefore, a transducer can be viewed as some special representation of a labeled
transition system (Kripke structure) (see [2]). From this viewpoint model checking
problem for finite state transducers conforms well to standard model checking scheme
for finite structures, and, hence, it is not worthy of any particular treatment.

However, our viewpoint is quite different. Transducer is a more complex model of
computation than a finite state automaton (transition systems). Its behaviorism
characterized by the correspondence between input and output words. A typical
property of such behaviour to be checked is whether for every (some) input word
from a given pattern a transducer outputs a word from another given pattern.
Therefore, when formally expressing the requirements of this kind one needs not only
temporal operators to specify an order in which events occur but also some means to
refer to such patterns. Conventional Temporal Logics like LTL or CTL are not
sufficient in this case; they should be modified in such a way as to acquire an ability
to express correspondences between the sets (languages) of input words and the sets
(languages) of output words. This could be achieved by supplying temporal operators
with patterns as parameters. Every such pattern is a formal description of a language
L over an input alphabetC; automata, formal grammars, regular expressions, language
equations are suitable for this purpose. The basic properties of output words can be
also represented by languages over an output alphabet. Then, for instance, an
expression G; P can be understood as the requirement that for every input word w
from the language L the output word h of a transducer belongs to the language P.

The advantages of this approach are twofold. On the one hand, such extensions of
Temporal Logics make it possible to express explicitly relationships between input
and output words and specify thus desirable behaviours of transducers. On the other
hand, it can be hoped that such extensions could rather easily assimilate some well-
known model checking techniques (see [3, 8]) developed for conventional Temporal
Logics. The first attempt to implement this approach was made in [17]. The authors
of this paper introduced an LP-LTL specification language based on LTL temporal
logic and developed a checking procedure for transducers over free monoids against
specifications from LP-LTL. It was shown that this procedure has double exponential
time complexity.

In this paper we continue this line of research and "raise" the specification language
introduced in [17] to the level of LP-CTL*. We will focus only on one task related to
the use of new logic for the verification of reactive systems, namely, the development
of a general model checking algorithm for finite state transducers against
specifications in LP-CTL". Such issues as expressive power of LP-CTL*, complexity
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of model checking and satisfiability checking problems, the influence of types of
languages used as parameters and basic predicates in LP-CTL* on decidability and
complexity of model checking problem remain topic of our further research and will
be covered in our subsequent works. We also leave beyond this work a number of
applied questions, which are worthy of consideration in a separate paper. For
example, it is important to understand to what extent the already developed model
checking tools can be adapted to the new temporal logic. And, of course, in the future
we will have a well-chosen series of examples that illustrate the new possibilities of
using LP-CTL*to describe the behavior of reactive systems.

The paper is organized as follows. In Section 2, we define the concept of finite state
transducer over semigroup as a formal model of sequential reactive systems (see [29])
and in Section 3, we describe the syntax and the semantics of LP-CTL" as a formal
language for specifying behaviour of sequential reactive systems. In Section 3 we also
set up formally model checking problem for finite state transducers against LP-CTL"*
formulae. In Section 4, we present an LP-CTL* model checking algorithm for the
case when parameters of temporal operators and basic predicates are regular
languages represented by finite state automata. The model checking algorithm we
designed has time complexity which is linear of the size of a transducer but
exponential of the size of LP-CTL* formula. This complexity estimate is in contrast
to the case of conventional CTL model checking: its time complexity is linear of both
the size of a model and the size of a CTL formula. To explain this effect in Section 5
we show how LP-CTL* formulae can be also checked on the conventional Kripke
structures. Finally, we compare LP-CTL* with some other known extensions
Temporal Logics and discuss some topics for further research.

2. Finite state transducers as models of reactive systems

In this section, we introduce a Finite State Transducer as a formal model of a reactive
computing system which receives control signals from the environment and reacts to
these signals by performing operations with data.

Let C be a finite set of signals. Finite words over C are called signal flows; the set of
all signal flows is denoted byC*. Given a pair of signal flows u and v we write uv for
their concatenation, and denote by € the empty flow.

Let A = {ay, ..., a,} be a finite set of elements called basic actions; these actions
stand for the elementary operations performed by a reactive system. Finite words over
A are called compound actions; they denote sequential compositions of basic actions.
Since different sequences of basic actions could produce the same result, one may
interpret compound actions over a semigroup (S, e, o) generated by a set of basic
actions A. The elements of S are called data states. Every compound action h =
a;,a;, ...a;, is evaluated by the data state [h] = [ail] o [aiz] °..o[a;]. For
example, if a reactive system just keeps a track of input requests by adding certain
records to a log-file then a free semigroup will be suitable for interpretation of these
operations. But when a robot moves on a 2-dimensional surface then the actions
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(movements) performed by this robot may be regarded as generating elements of
Abelian group G of rank 2, and the positions on the surface occupied by this robot
can be specified by the elements from G. In this paper we restrict ourselves to the
consideration of free semigroups when [h] = h holds for every compound action h,
and o is the word concatenation operation.
Let C be a set of signals and A be a set of basic actions that are interpreted over a
semigroup (S, e,0). Then a Finite State Transducer (in what follows, FST) is a
quintuple I1 = (Q, C, A, qinit, T), where

e () is a finite set of control states;

®  Qinit € Q is an initial control state;

e T CQXCXQ xA"is afinite transition relation.
Each tuple (q',c,q", h) in T is called a transition: when a transducer is in a control
state q" and receives a signal c, it changes its state to q'' and performs a compound
action h. We denote such transition by g’ i q". A run of a FST II is any finite
sequence of transitions

cuhy cghy  c3hy cphp
G~ q2 =43 ="~ qn+1;

this run transduces a signal flow w = ¢, c, ... ¢, into a data state [h,h, ... hy].
The behaviour of a FST I1 = (Q, C,A, qinit,T) over a semigroup (data space)
(S,e,0) is presented formally by a transition system TS(I1,S) = (D,C,dinit, T),
where

e D = Q xS is(in general case, infinite) set of states of computation,

o  dinir = (Qiniv> €) is the initial state, and

e T CDXCXD is a transition relation such that for every states of

computation d' = (q',s"),d" = (q",s"") and every signal ¢ € C the
relationship

(d',c,d"YeT = 3heA*(q',c,q",h) €T ands" = s' o [h]
holds.
As usual, a transition (d’, ¢,d"") € T is denoted by d’ Sar

A trajectory in a transition system TS(I1, S) is a pair tr = (dy, @), where dy € D
and a = (¢q,dy), (¢c3,d3), ..., (¢, d;), ... is a sequence of pairs (c;, d;) such that d;_;
4 d; holds for every i,i > 1. A trajectory represents a possible scenario of a
behaviour of a sequential reactive system: when receiving a signal flow ¢, ¢, ..., Cj, ...
the reactive system performs a sequence of basic actions h and follows sequentially
via the states of computation dy, ds, ..., d;, .... By tr|* we mean the trajectory(d;, a|%),
where a|! = (ciyq, dis1), (Civzr disz), ... is a suffix of a, respectively.
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3. LP-CTL" specification language

When designing sequential reactive systems one should be provided with a suitable
formalism to specify the requirements for their desirable behaviour. For example, one
may expect that

e a mobile robot, receiving an equal number of control signals "go_left" and
"go right", will always return to its original position,

e a network switch will never commute data packets from different packet
flows into the same output buffer,

e it is not possible for the interrupt service routine to complete the processing
of one interrupt before it receives a request to handle another.
These and many other requirements which refer to the correspondences between
control flows and compound actions in the course of FST runs can be specified by
means of Temporal Logics. When choosing a suitable temporal logic as a formal
specification language of FST behaviours one should take into account two principal
features of our model of sequential reactive systems:

e since a FST operates over a data space which is semigroup, the basic
predicates must be interpreted over semigroups as well, and

e since a behaviour of a FST depends not on the time flow itself but on a signal
flow which it receives as an input, temporal operators must be parameterized
by certain descriptions of admissible signal flows.

To adapt traditional temporal logic formalism to these specific features of FST
behaviours the authors of [17] introduced a new variant of Linear Temporal Logic
(LTL). We assume that in general case one may be interested in checking the
correctness of FST's responses to arbitrary set of signal flows. Every set of control
flows may be regarded as a language over the alphabet C of signals. Therefore, it is
reasonable to supply temporal operators ("globally" G, "eventually" F, etc.) with
certain descriptions of such languages as parameters. In more specific cases we may
confine ourselves with considering only a certain family of languages (finite, regular,
context-free, etc.) L used as parameters of temporal operators. These languages will
be called environment behaviour patterns.

A reactive system performs finite sequences of basic actions in response to control
signals from the environment and thus follows in the course of its run via a sequence
of data states, which are elements of a semigroup (S, e, ), Therefore, basic
predicates used in LTL formulae may be viewed as some sets of data states S', S’ &
S. These sets can be also specified in language-theoretic fashion. Any language P
over the alphabet of basic actions A corresponds to a predicate (set of data states)
Sp ={[h] | h € P}. As in the case of environment behaviour patterns we may
distinguish a certain class P of languages and use them as specifications of basic
predicates. When these languages are used as parameters in temporal formulae then
it will be assumed that they are defined constructively by means of automata,
grammars, Turing machines, etc.
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Thus, we arrive at the concept of LP-variants of Temporal Logics. In [17] the syntax
and semantics of LP-LTL was studied in some details in the case when both
environment behaviour patterns and basic predicates are regular languages presented
by finite automata. In this paper we make one step further and extend the concept of
LP-variants of Temporal Logics to CTL". Select an arbitrary family of environment
behaviour patterns £ and a family of basic predicates P. The set of LP-CTL"
formulae consists of state formulae and trajectory formulae, which are defined as
follows:
e cach basic predicate P € P is a state formula;
e if ¢, @, are state formulae then — ¢, @, A, and ¢, V @, are state
formulae;
e ify is a trajectory formula then Ay and Ei are state formulae;
e if @ is a state formula then ¢ is a trajectory formula;
o if 1,,y, are trajectory formulae then —y;, Y; AP, and P, VP, are
trajectory formulae;
o if @, @1, @, are state formulae, c € C, and L € L then X, ¢, Y., F, o,
G, ¢ and @, U¢, are trajectory formulae.
The specification language LP-CTL" is the set of all state formulae constructed as
defined above.
Now we introduce the semantics of LP-CTL* formulae. These formulae are
interpreted over transition systems. Let M = TS(II, S) be a transition system, d be
a state of computation in this system, and tr be a trajectory in M. Then for every state
formula ¢ we write M, d E ¢ to denote the fact that the assertion ¢ is true in the state
d of M, and for every trajectory formula y we write M, tr E 1) to denote the fact that
the assertion 1 holds for the trajectory tr in M.
In the definition below it is assumed that M is a transition system, d = (g, S) is a state
of computation in M, and tr = (d,, «) is atrajectory in M such that a=
(¢1,dq), (c3,d3), ..., (c;, dy), ... We define the satisfiability relation = by induction on
the height of formulae:
e MdE P & s€ P;
e M,dE —¢ ©itisnottruethat M,d E ¢;
e MdEp,Np, & M,dE@,and M,d E ¢,;
e M, dE Ep <& there exists a trajectorytr’ = (d,a’)in M such
that M, tr' E ¢;
e MdE Ap & for any trajectorytr’ = (d,a’)inMit is true
that $M, tr' E @;
e if ¢ is a state formula then M, tr £ ¢ & M,d, E ¢;
e M,tr E =) & itisnottruethat M, tr & ;
o M,tr = Y, AN Y, & M, tr E Y; and M, tr \models P, ;
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e Mitre X,¢o © c=c;andM,d; E @;
e MtrEe Y. o & ecitherc # c;,orM,d; E @;
e Mitre Fio ©3i=0: cic;... ; € LandM,tr|' & ¢;
e MitrE G & Vi=0:ifcicy... ¢; € Lthen M, tr|' E ¢;
e MitreUpp ©3i=20: ¢cy.. ;€ LM tr|' E ¥
andVj,0< j < i, ifc;cy ... ¢; € Lthen M, tr|/ & o.
Observe, that operators X and Y, as well as F; and G, are dual to each other:

Proposition 1. For any LP-CTL* formula @, any ¢ € C and any L € L, and for an
arbitrary trajectory tr in M

o trE X p & tre Y. -0,
e tre Fip & trkE =G, —09.

As usual, other Boolean connectives like V, —, = may be defined by means of —
and A. Some other CTL* operators like, for example, R (release) or W (weak until)
may be parametrized by environmental behaviour patterns in the same fashion.

The model checking problem we deal with is that of checking, given a finite state
transducer I operating over a semigroup (S, e, ©), and an LP-CTL* formula ¢,
whether TS(I1, ), dinir = ¢ holds. When a semigroup is fixed then we use a brief
notation I1 E ¢.

4. Model checking against LP-CTL* specifications

In this paper, we discuss only the most simple case of model checking problem for
finite state transducers against LP-CTL* formulae when
. the semigroup (S, o, e) the transducers operate over is a free monoid, which
means that S is the set of all finite words in the alphabet A, the binary operation
o is concatenation of words, and the neutral element e is the empty word ¢;
. the family of environment behaviour patterns L is the family of regular
languages in the alphabet C;
. all basic predicates in P are specified by regular languages in the alphabet A.
All regular languages used as environment behaviour patterns and basic predicate
specifications are defined by means of deterministic finite state automata (DFAs).
Therefore, the size of a LP-CTL* formula is the number of Boolean connectives and
temporal operators occurred in ¢ plus the total size of automata used in ¢ to specify
environment behaviour patterns and basic predicates.
Let us first describe a model checking algorithm for LP-CTL fragment of LP-CTL",
which consists of all LP-CTL* formulae such that every temporal operator
X., Y., F;, G; U; is immediately preceded by a trajectory quantifier E or A. In our
algorithm, we involve an explicit iterative model checking techniques for the ordinary
CTL (see [8, 10]). Following this approach satisfiability checking of a formula ¢ in
a state d of a model M is reduced to satisfiability checking of the largest subformulae
of ¢ in the state d and in the neighboring states of M. In other words, a model
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checking procedure incrementally labels all states of a model by those subformulae
of ¢ which are satisfied in these states.

LetIl = (Q,C, A, qinit, T) be a finite state transducer over the free semigroup (A",
-,€) and let @ be an LP-CTL formula. There are five pairs of coupled LP-CTL
temporal operators: AX, and EX., AY, and EY., AF; and EF;, AG; and EG;, AU;
and EU;. As in the case of “ordinary” CTL (see ), each of these couple can be
expressed in terms of four main coupled operators EX., EY,, EG; and EU;:

Proposition 2. For every formula @ the following equalities hold

1. = AX. ¢ = -=EY. o,
2. EAY.9p = —EX, -0,
3. EAF¢ = —EG, -0,
4. ©EEF,p = E[trueU,¢p],
5. EAG, 9o = —EF, -0,

6. E A[QD ULll)] = —|E[—|l/) U, (—l(p 7AN —|1/))] A —EG, —|l,0.

Certainly, some other relationships like fixed-point identities are also valid in LP-
CTL" (see [17]) but they will not be involved in this paper.

We can now bound our consideration with those LP-CTL formulae which are
constructed using only —, A, EX., EY,, EG; and EU;. Let M be a transition system
TS, A*) = (D, C diny, T)of I over A*. It should be noticed that M is, in
general, infinite. Therefore, to obtain an effective model checking procedure we need
a construction that will model the behaviour of M w.r.t. a target formula ¢.

For every basic predicate P € P let Ap = (Qp, A, initp,8p,Fp) be a minimal
DFA recognizing this language. Here Qp is a finite set of states, initp is an initial
state, Fp is a set of accepting states and 6p : Qp X A — Qp is a transition function.
The latter can be extended to the set <A™ in the usual fashion:

6p(qp,€) = qp and 6p(qp,ya) = 6p(6p(qp,v) ).

Let P4,P,,...,P; be all basic predicates occurred in the formula ¢. Given a
transducer Il = (Q, C, A, qinir» T) and a formula ¢, we build a checking machine
— atransducer M = (Q, C, A, Gini, T), Where

. Q = QX Qp, X ..XQp, is a set of states (to avoid misunderstanding we will
call them metastates);
. Ginit = (Qiniv, initp,, ..., initp, ) is an initial metastate;

. Tc Qx ¢x Qx A*is atransition relation, such that:
q'wc,q" h) €T and
@, cq"'heqg & st(q’P]-' h) = q"P,-
forallj1<j<k
Thus, every metastate is a tuple § = (qo, q1, -, qx) such that g, € Q and q; € ij for
every j, 1 < j < k, and the transition relation T synchronizes transitions of IT and the
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automata Ap,, ..., Ap, in response to every signal c. Recall that the elements of the
free monoid are words s from A*. The checking machine M induces a binary relation
~ on the set D: for an arbitrary pair d' = (¢',s") and d" = (q",s") of states of
computation of IT over A*

! n

d~d o o 4 =qand .

pi(lnltpj,s ) = 8pl.(mltp}.,s ) for all j.
The relation ~ is clearly an equivalence relation of finite index, and every equivalence
class of states of computation in M corresponds to a metastate of the checking
machine M. As it can be seen from the definition of ~, if two states of computation
d' and d" are equivalent and there is a trajectory tr' = (d',a’) in M, where
a' = (cq,d'y),(c3,d'), ..., from one of these states, then there is also a
corresponding trajectory tr” = (d",a"), where a” = (¢4,d"1), (co,d",), ... from
the other state, such that d’; ~ d"; holds for every i, i > 1. Actually, this means that
~ is a bisimulation relation on the state space of the transition system M. It is well
known (see [3, 8]) that bisimulation preserves the satisfiability of CTL formulae. The
Proposition below shows that the same is true for LP-CTL. This means that the
checking machine provides a finite contraction of the infinite transition system M =
TS(II, A*) w.r.t. satisfiability of LP-CTL formulae.

Proposition 3. Suppose that d' and d" are two states of computation in M such
thatd' ~ d". ThenM,d' = ¢ & M,d" E ¢.

Proof: 1t is carried out by induction on the nesting depth of ¢. When ¢ is a basic
predicate the assertion follows from the definition of ~. The cases when @ = —
and @ = P, AP, are obvious. We focus only on the case of ¢ = E[pp U, x]; the
other cases when ¢ is of the form EX .y, EY .y, or EG; can be treated similarly.
Suppose that M, d’ = E[1p U, x]. Then, by the definition of LP-CTL semantics, there
exists a trajectorytr’' = (d',a’), such that M,tr' =y U,y anda =
(c1,d'1), (cz,d'y), ... As it was noticed above, there is also a corresponding
trajectory tr” = (d", a") in M, where " = (¢4,d"1), (c5,d"3), ..., such that d'; ~
d"; holds for every i,i = 1. Then, by induction hypotheses, M, d'; = p & M, d"; =
Yand M,d'; E y © M,d"; E y hold for every i,i > 1.

Since M, tr' = 1 U, y, there exists i such that

l.  c¢cponc € Land M, tr'|P E x;

2. forallj <iifeic,..c; € Lthen M, tr'|/ 1.

However, taking into account the fact that i and y are state formulas, we must
recognize that M, tr"|' & y and that M,tr"|/ E 1 every time when M, tr'|) E 1.
Thus, we arrive at the conclusion that M, tr” & 1 U,y and, hence, M, d" = E[Y U, x].
]

Each metastate § = (qq,q1, ---,qx) of the checking machine A represents an
equivalence class Dg which includes all states d = (q, h) € D such that ¢ = q and
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8p].(initp].,h) = q; for allj,1 < j < k. By using Proposition 3, we can correctly
introduce a new satisfiability relation =, on the metastates of the checking machine:
iitg(p & forsomed €Dy M dE¢@.
Not only the states of the transition system M = TS(II,S) correspond to the
metastates of the checking machine M, but also there is a relationship between the
trajectories in M and the traces in M (they can be quite naturally called
metatrajectories). More formally, every trajectory tr = (dg,a) in M with
a = (¢y,dy)(cy,dy) ..., corresponds to a metatrajectory tr = (Go, @), where
@ = (c1,91)(c2,q3) ...issuch that foralli > 0: d; € DtAI,-' It is easy to see that every
metatrajectory &r = (g, &) corresponds to the only trajectory tr = (dy, &), which
originates in a given state dy from Dy, .
The well-known labeling algorithm for conventional CTL and ordinary Kripke
structures can be now adapted in such a way as to cope with model checking problem
for LP-CTL. The algorithm operates as follows. For every metastate § € Q of the
checking machine M it computes a set label(q) of all subformulae of ¢ satisfied
in §. More formally, let Sub(¢) be the minimal set of LP-CTL formulae such that:
@ € Sub(y);
2 if =y € Sub(¢) then ¢ € Sub(¢);
3. ifY Ay € Sub(p) theny, y € Sub(¢);
4. ifEX Y € Sub(¢), EY.Y) € Sub(¢) or EG,3p € Sub(¢@) then € Sub(¢p);
5 if E[Y U, x] € Sub(¢) then ¢, y € Sub(p).
The algorithm builds incrementally the sets label(q) of all those ¥ € Sub(¢) for
which § &, P holds. At the first step every label(§) contains only basic predicates,
i. e. label(q) < Sub(p) N P. Then, at step i the algorithm processes those
subformulae 1 whose nesting depth is i — 1. Every time when the algorithm adds a
subformula ¥ to label(q) it thus detects that § =, .
All we need now is to describe how the algorithm should process formulae of 7 types:
basic predicate P, =y, Y1 AP,, EX P, EY Y, EG; Y and E[y U x].
. A basic predicate P; is added to label(q) iff § = (qo, 44, ---,qi, -, qx) and
Q\i € FPiﬁ i = 1)
J A subformula — is added to label(q) iff ¢ & label(q);
. A subformula 1, A, is added to label(q) iff both Y4, Y, € label(§);
. A subformula EX_ i is added to label(q) iff there exists a transition
h
g 5 g’ such thaty € label(q");
. A subformula EY y is added to label(q) iff there exists a transition
h h
q = g’ such that 1 € label(q") or a transition § = G’ such that ¢’ # c;

. To handle a subformula E[y U, x] we construct a directed labeled graph (DLG)
[y(M, L) as follows. Let A, = (Q,, C, init;,§;, F;) be a minimal DFA that

314



T'narenxo A.P., 3axapoB B.A. O Bepu(uKaIMi KOHSYHBIX aBTOMATOB-TIpeoOpa3zoBaTeNell Hajl MoNyrpynnamMu. 7pyost
UCII PAH, tom 30, Beim. 3, 2018 1., cTp. 303-324

recognizes the language L. Then the nodes of ['; (M, L) are all pairs (g, q,) €

0 x Q. This DLG has an arc of the form (&', q,") 25 (@",q,”) iff§' =5 " is
a transition of M and 6,,(q,',¢) = q,".

We then delete all those nodes (§, q;,) of [y (M, L) for which the relations ¢ ¢
label(q), x ¢ label(§) and q;, € F, hold simultaneously and discard all arcs
incoming to or outcoming from such nodes. A DLG thus reduced is denoted by
Iy, L).

A subformula E U ] is added to the set label(§) iff [j; (M, L) includes the
node (g, init;) and there exists a directed path in this graph from this node to
some node (§',q,") such that y € label(§") and q,' € F;.

. For a subformula EG; 3 we construct a DLG ['; (M, L) in the same fashion and
delete all the nodes (g, q;) for which the relations Y & label(q) and q, € F,,
hold simultaneously. As the result we obtain the reduced DLG I'_G (M, L).
The subformula EG; v is added to the set label(q) iff T'; (M, L) includes the
node (@, init;) and there exists a directed path in this graph from this node to
some nontrivial strongly connected component (SCC), that is, to a subgraph,
every node of which is reachable from any other node by some non-empty path.

As soon as all the subformulae from Sub(¢) (including the formula ¢) are processed
we obtain the result of the model checking as

Neg@ < ¢@eclabel(Gini)-

The correctness of this assertion is based on the following relationship: § ¢ @ <
@ € label(q). 1t can be proved by applying induction on the nesting depth of
formulae with the help of Proposition 3. We also need Propositions 4 and 5 to justify
the induction step for formulae of the form E[3p U; x] and EG; .

Suppose, that for every metastate § € Q it is true that § &=, P < P € label(q)
andq Eo x © x € label(q). This statement is used as an inductive hypothesis.

Proposition 4. Let §o € Q be an arbitrary metastate in M. Then Go Eo E[Y ULx]
iff some node (q',q;") in DLGTy(M,L), such that §' = ¥ andq;' € Fy, is
reachable from the node (qq, init;) by a directed path.

Proposition 5. Let Gy € Q be an arbitrary metastate in M. Then § Eq EG Y iff
some nontrivial strongly connected component is reachable from the node (q, init;)
in DLG T';,(M, L) by a directed path.

The proofs of these Propositions are straightforward adaptations of the correctness
proof of the tabular model checking algorithm for CTL which is discussed in much
details in [8]. However, for completeness of the exposition we give here a proof of
Proposition 5. The proof of Proposition 4 follows the similar line of reasoning.

Proof of Proposition 5 (Sketch).

315

Gnatenko A.R., Zakharov V.A. On the model checking of finite state transducers over semigroups. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 303-324

(=) Suppose, that Gy Fo EG ). Consider an arbitrary state dy € Dg,. Then, by
definition of k4 and by Proposition 3, it is true that M, dy & EG; . This means that
there is a trajectory tr = (dy, @), where a@ = (cq,d4),(c2,d5),..., such
that M, tr & G . By the semantics of LP-CTL*, M, d; = ¥ holds for every i
such that c1Cy ...C; € L.
Consider now the corresponding metatrajectory &r = (go, &) in the checking
machine, where @ = (¢4, §1), (€2,G3), ..., and let

7= @ init) "5 @1, q1) 25 @z q2) 25
be the respective path in the DLG Iz (M, L) which originates in the node (G, init;).
Relying on Proposition 3 and taking into account the fact that q; =
6, (init;, c1cy ...c;) for every i,i = 0, we may conclude that §; ¢ P holds for
every i such that q;; € F. By induction hypothesis, §; Fq ¥ is equivalent to ¢ €
label(q;). Therefore, by definition of DLG I'¢ (M, L) the path m is the infinite path
which is entirely contained in the Iz (M, L). Due to the finiteness of I'g (M, L), this
path may be represented as a concatenation T = 1r4 5, where 14 is a finite path, and
T, is an infinite path passing through each of its nodes infinitely often. It is clear that
the set V(1,) of all nodes of 7, is included in some strongly connected component.
Thus, a nontrivial strongly connected component is reachable from the node
(qo, init;) in DLG I (M, L).

(&) Suppose, that a nontrivial strongly connected component is reachable from the
node (G, inity) in DLG I;(M, L). Then there exists an infinite path
SN T chy c3,h3

T = (G, inity) — (@1, 911) — @2, 921) — -,
in Tg(M, L) from the node (G, init;) Consider now the sequence of the first
components g; of all nodes (§;, q;;), i = 0, occurred in this path. By the definition of
the DLG Ig(M, L),
1. this sequence is a metatrajectory £r in the checking machine M,

2.y € label(g;) holds for every node (§;, q;;) such that q;; € F;.

By the induction hypothesis, the latter implies §; =, P for every metastate @; in this
trajectory such thatcic,...c; € L. Consider an arbitrary state do € Dg, and a
trajectory tr = (dy, ) inM, where a = (cq,d,), (c3,d5), ..., which corresponds
to 1. By definition of =, and Proposition 3, M, d; E 1 holds for every i such that
€1Cy ...C; € L. Then, according to the semantics of LP-CTL*, M, tr & G, and,
hence, M, d, = EG. . Thus, by referring once again to definition of =y, we arrive at
the conclusion that §, £y EG; ). m

Now we estimate the complexity of the model checking algorithm for LP-CTL
described above. By the size of a transducer 1 = (Q,C, A, qinir, T) we will mean
the sum || IT |[= |Q| + |T|. The size of a formula ¢ is defined as follows. Suppose
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that basic predicates {P;}*, occurred in ¢ are recognized by minimal DFAs
{Ap, = Qp, A, initp,8p,F pi)}é‘zl. Suppose also that environment patterns {L;};_4
used in ¢ are recognized by minimal DFAs {Ay; = (Qy,A, inity,, 8, F,)}i=1. Then
the size of ¢ is the sum Il @ Il = [Sub(@)| + Xi1 | Qp,| + Xi=1 | Qp,l.

As it can be seen from the description of our model checking algorithm, the size of
auxiliary graphs I;(M, L) and T (M, L) used in this algorithm does not exceed the

value [l IT I- | [11Qp,| |- max(|Qy,|: 1 < i < s). These graphs are processed in no
k
i=0

more than |Sub(¢)| steps. So, the total time complexity of our model checking

algorithm does not exceed the value || IT ||- |Sub(¢p)| (]‘[ |QPi|> . maX(|QLi|= 1<
k
i=0
i < s) whichis O(|l IT ||- 2'").

Because of these considerations, we get the following

Theorem 1. Model checking of a finite state transducer II operating over a free
monoid against a formula @ € LP-CTL can be performed in time O(|| I ||- 2'#").

When a more general case of model checking problem of FSTs against LP-CTL*
formulae is concerned we can rely on the well-known combining approach which is
based on the interleaving application of model checking algorithms for CTL and LTL.
The details can be found in [8]. The similar procedure for LP-CTL* can be obtained
in the same fashion by means of LP-CT L model checking algorithm described above
and LP-LTL model checking algorithm developed in . Since this approach does not
take into account any specific features of LP-CTL* formulae, we will not give a
complete description of it.

5. LP-LTL" and ordinary Kripke structures

In this section, we consider the model checking problem for two subfamilies of
LP-CTL* whose semantics can be defined on ordinary Kripke structures.

Recall, that a Kripke structure over a finite set AP of atomic propositions is a
quadruple M = (Q, ginir, R, p), where Q is a finite set of states which includes an
initial state @i, R € Q X Q is a transition relation and p: Q — 24P is a labeling
function which for each state q gives a matching set p(q) S AP of all atomic
propositions that are evaluated to true in this state. As usual, the size of M is the
sum || M ||= |Q| + |R|. Below we present two modifications of LP-CTL" that are
well suited for model checking of Kripke structures.

Given a Kripke structure M = (Q, q;nit, R, L), consider a set of LP-CTL* formulae
where Lis a family of regular languages over one-letter alphabet {c} and P = AP
(we denote this formulac by LP-1-CTL*) and a transition system M, =
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(Q,{c}, qinie» Rc, L) where (q',c,q") € R, iff (q',q") € R. Then for q € Q the
relation q E P holds iff P € p(q). The semantics of more complex formulae is
defined exactly as in Section 3.

Some LP-1-CTL* formulae have an ability to keep track of the number of steps of
the run. For example, an LP-1-LTL formula AG, ¢, where L = {c*"} is a regular
language which contains all 1-letter words of even length, expresses the assertion that
@ holds at every even step of a run. By using the techniques of Ehrenfeucht-Fraisse
games for Temporal Logics developed and studied in [11] one can prove that this
property cannot be specified by means of usual LTL. This certifies that LP-1-CTL*
is more expressive than CTL" and justifies its use as a new specification language for
finite state transducers and Kripke structures.

Observe, that given a set AP of all atomic propositions used in formulae we can use
the M, directly as a checking machine M for the algorithm described in Section 4.
Suppose that formula ¢ refers to 1-letter regular languages Lq,L,, ..., Lg as the
parameters of temporal operators, and every language L;, 1 < i < s, is recognized
by a DFA with a set of states Q. Then the size of the graphs used in this algorithm
does not exceed the value || M |- max(|Q,|:1 < i <s) whichisO(I M II-ll ¢ 1),
where || @ l|= [Sub(@)| + Xi-o| Q|-

Another modification of the Kripke structure M allows one to encode more detailed
information of the computation flow. Let £ = 24P For each state q in M there exists
a letter g, (4) € X corresponding to the label p(q) assigned to this state.

Let Mzp = (Q U {err}, qinit, Rap, pap) be a transition system for M, where for
every q € Q the following equalities hold: p,p(q) = p(q), pap(err) = {err}
and Ryp S Q X 24P x @ is a minimal transition relation such that:

. for each transition (q’, ") of the Kripke structure M there exists a fair transition
(@', 0,(qn),q") and erroneous transitions (q', o, err) for each ¢ # 0,qu);

. (err,o,err) € Ryp holds for each ¢ € X and (err, g,q) & Ryp holds for each
q *+ err.

Then consider a specification language LP-n-CTL* which is a set of all such
formulae where L is a family of regular languages over 2 and P = AP. To model
check a transition system M,p against these formulae one needs to process only the
states in Q and only the fair transitions. To do so, we replace all state formulae of type
Ap with A(G — err — ¢) and all state formulae of type E¢ with E(G — err A ).
The transition system M,p thus obtained may as well be used as a checking machine
for the model checking algorithm described in Section 4.

Thereby, the following theorem holds.

Theorem 2.

1. There exists an algorithm for model checking of a Kripke structure M against
a formula @ € LP-1-CTL with time complexity O(Il M 11l ¢ 11?).
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2. There exists an algorithm for model checking of a Kripke structure M against
a formula ¢ € LP-n-CTL with time complexity O(Il M |I-l ¢ [|2- 214P).

As it can be seen from this theorem, the exponential complexity of model checking
procedure described in Section 4 is due to the language-theoretic nature of basic
predicates used in LP-CTL".

6. Related papers and conclusion

Actually, the idea of providing parameterization of temporal operators is not new. In
[27] right-linear grammar patterns were offered to define new temporal operators.
The same kind of temporal patterns but specified by means of finite state automata
were introduced in [18, 24]. For these extensions it was proved that they have the
same expressiveness as S1S and that satisfiability checking problem in these logics
is PSPACE-complete. We did not pursue a goal of merely expanding the expressive
possibilities of CTL*; our aim was to make CTL* more adequate for describing the
behaviour of reactive systems. Almost the same kind of parametrization is used in
Dynamic LTL. However, our extension of CTL* differs from that which was
developed in [14], since in our logic basic predicates are also parameterized.

The LP-CTL* formulae allows one to specify and verify the behaviour of finite state
transducers that operate over semigroups as well as classical Kripke structures.
Moreover, when Kripke structures are concerned LP-CTL* has more expressive
power than conventional temporal logics. But the place of LP-CTL" in the expressive
hierarchy of specification languages, such as S1S, PDL or p-calculus, has not yet
been established and remains a matter for our further research.

The results of this paper combined with the results of [17] provide positive solution
to model checking for transducers over free semigroups. Free semigroups is the most
simple algebraic structure which can be used for interpretation of basic actions
performed by transducers when they are regarded as formal models of sequential
reactive systems. Next, we are going to find out whether model checking algorithms
could be built for transducers operating over more specific semigroups. Some
preliminary results showed that this is not an easy problem. In [12] we proved that it
is undecidable for the case of Abelian groups and free commutative semigroups.

It is also interesting how much the complexity of model checking algorithms for LP-
CTL* depends on languages that are used as parameters of temporal operators. We
assume that model checking problem becomes undecidable when context-free
languages are allowed for this purpose. The complexity issues of model checking for
regular variant of LP-CTL* also need further research. We assume that even for
regular LP-CTL this problem is PSPACE-complete.

As for practical application of the results obtained, the most important issue is that of
adapting the existing means of working with finite automata to widely known model
checking tools (like SPIN, v-SMV, etc.) in order to be able to effectively implement
the proposed model checking algorithms for LP-CTL".
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W pearupyioT Ha OTH 3alpoChl, NPOBOAS OHepanuu C JaHHBIMU. [lomoOHBIE cHCTEMBI
MOTYT CIYXHTh MOJAENBIO [UIi MHOTUX IPOrpaMM: JApaiBepoB, CUCTEM pealbHOIo
BPEMEHH,  CETEBBIX NPOTOKONOB W Jp. B cratee  wumccnemyrorcs — 3amavya
BepuHKaLMKM MPOrpaMM TaKoro BHIA. B kauectBe (OpMalbHBIX Mojeneil [yt
pearupyomux CHUCTEM MbI  HCHONB3yeM KOHEUHbIE  aBTOMATHI-IIPE0Opa3oBaTENH,
paboTatorue Haj MOTYTPYIIIAMH. Jost OTIHCaHHUs TIOBE/ICHUS
aBTOMATOB-TIpeoOpazoBareneii BBenEH HOBBIA s3bIk crnenudukanuii LP-CTL*. B ero
OCHOBY mOJOXeHa TemmopanbHas jormka CTL*. OtoT s3pIk cnenudukanuii nmeer
IBE XapakTepHble OCOOEHHOCTH: 1) KaXIpli TEMIIOpaJbHBI oOIleparop CHAOXKEH
PEryJIIpHBIM ~ BBIp@KEHHEM HaJ BXOAHBIM andaBUTOM aBTOMara, W 2) KaxIoe
aTOMapHOE€  BBICKA3blBaHUE 3aaeTCi PETYSPHBIM  BBIPAXKEHUEM HaJ  BBIXOJIHBIM

anpaBUTOM aBTOMAaTa-rpeodpa3oBaTels. B JaHHOM pabote MIPEe/ICTaBICH
TaOJIMYHBI  aNroOpuT™M MNpoBepKH BhImosHUMOCTH  Gopmyn LP-CTL* na wmomensax
KOHEYHBIX aBTOMATOB-IIpeoOpazoBarTenei, paboTarommx Haj CBOOOHBIMU

nonyrpynnaMi. Jloka3aHa KOPPEKTHOCTh IMPENIOKEHHOTO alrOpHTMa M IOJNTydYeHa
OLIEHKA €ro CcloXHocTH. Kpome TOoro, paccMOTpeH CIEenuaabHBIA (parMeHT s3bIKa
LP-CTL*, comepxamuii B KadyecTBE IIapaMeTPOB  TEMIOPAIBHBIX  OIEPaTOPOB
TOJBKO PEryJisipHbIe BHIpAXEHHWs HaJX OXHOOYKBEeHHBIM andasuToM. Ilokasano, dTO
9TOT (hparMeHTa NPUMEHUM sl cneldukannii oObraHbIX Mozenel Kpurke, u mpu 3ToM ero
BBIPa3UTENIbHbIC BO3MOXKHOCTH NIPEBOCXOAAT 00bIuHY0 J0oruky CTL*.

KitoueBble ciioBa: pearupylolias cHUCTeMa, aBTOMAaT-IpeoOpa3oBareib, BepHOHUKALL,
[POBEpKa Ha MOJICIIH, TEMIIOpAJIbHAs JIOTHKA, KOHCUHBIH aBTOMAT, PETYJISPHBII A3bIK.
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