
123

Methodology and Tools for Development
and Verification of formal fUML Models of

Requirements and Architecture for Complex
Software and Hardware Systems

A.V. Samonov <a.samonov@mail.ru>
G.N. Samonova <g.samonova@mail.ru>

Mozhaiskiy Military Space Academy,
13, Zhdanovskaya St., Saint Petersburg, 197088, Russia

Abstract. The article presents models and algorithms to support end-to-end quality control of
complex software and hardware systems through the implementation of the software-controlled
process of development and verification of formal models of requirements and architecture of
such systems, Firstly, we give the analysis of scientific publications and the normative-
methodical base in the field of development and application in practice of the model-based
approach is given. We establish that least provided by model, algorithmic and software
solutions are issues related to the development of a complete and correct set of requirements,
as well as the formalization and verification of technical projects of software and hardware
systems. To solve the existing problems, we propose to develop a special unified environment
for the development, modeling and testing formal models of requirements and architecture of
complex software and hardware systems. These models provide an optimal set of
interconnected fUML diagrams presented in ALF notation and verified in the fUML virtual
machine and using SMT/SAT solvers.

Keywords: activity diagrams; class diagrams; design and implementation; life cycle of
automated systems; model of requirements; model of architecture; software and hardware
systems; verification and validation

DOI: 10.15514/ISPRAS-2018p-30(5)-8

For citation: Samonov A.V., Samonova G.N. Methodology and Tools for Development and
Verification of formal fUML models of Requirements and Architecture for Complex Software
and Hardware Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 123-146.
DOI: 10.15514/ISPRAS-2018-30(5)-8

1. Introduction
Now, when the confrontation in the political, economic and military fields is growing,
one of the most important activities of the state is to ensure the safe operation of
critical information infrastructure (CII). According to the Federal Law of the Russian
Federation [1], CII objects are automated control systems (ACS) for production and

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

124

technological processes of the critical objects of the Russian Federation and
information and telecommunication networks providing them, IT systems and
communication networks for solving public administration tasks, ensuring defense
capability, security and law enforcement. Disruption of the functioning of CII objects
can lead to disastrous consequences in the field of defense capability, economy, health
care and security of the nation.
Automation means complexes, which form the basis of the CII objects, are complex
software and hardware systems (CSHS); their foundation of reliable and safe
functioning is laid in the process of their design, development, and verification. The
main factors and conditions for achieving the required quality indicators of CSHS are:

1) implementation of a quality management system defined by modern
normative-methodical documents (NMD) in the field of system and software
engineering at companies developing CSHS;

2) highly qualified designers, developers, and testers of CSHS;
3) use of modern technologies, methods and tools for design, development, and

testing of CSHS.
The most important issues relate to the implementation of the third direction, which
is being developed in system and software engineering [2] and model-based
methodology [3]. The need to improve the technology and development tools of
CSHS is due to distressing statistics on the implementation of IT projects both in
Russia and abroad. Thus, according to the research of The Standish Group, the
analysis of the results of work on the creation of information systems showed that in
the United States (over the past 15 years), only 20% of the projects were completed
on time and according to the original budget. At the same time, 30% of the projects
failed; 50% faced various problems: the total budget exceeded the initial one by 2
times on average; the terms increased by 1.5 times; less than 75% of the required
functionality was implemented [4]. The development process of CSHS consists of
three main stages: justification of requirements, design, and implementation, each of
which, according to the methodology of the model-based approach, includes a
verification procedure of the corresponding artifact. As the analysis showed, issues
related to the automation of the processes of generating and verifying computer code
created at the implementation stage have been solved quite successfully. At the same
time, the stages of requirements formation and system architecture design require the
participation of specialists in the field of system engineering and information
technology and end users.
As the analysis showed, the main limiting factors in achieving qualitative
improvements in solving these tasks are:

 absence of a rigorous mathematical model describing the processes of
implementation and application of methods and tools of model-based
systems engineering in the main stages of the life cycle of CSHS in a uniform
model-language environment;

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

125

 objective complexity of the task of creating a formal presentation of system
requirements based on their original informal representation;

 availability of a wide range of languages and tools proposed for building
models of the analysis, architecture, and implementation of a system in the
absence of clear and specific rules and recommendations for their
application;

 lack adequate tools for automated construction and execution of test
scenarios for the verification of requirements and architecture.

The second section provides a brief overview of scientific and technical publications,
in which the described issues are considered and solved. The third and fourth sections
of the article present the models and algorithms for building a formal specifications
requirements. The fifth section describes the models and algorithms for developing
and verification the architecture of CSHS. The sixth section presents the methodology
for constructing test scenarios to verify models of requirements, architecture, and
implementation of CSHS using the SAT/SMT solvers.

2. Overview of the Current Normative-methodical Base and
Scientific Publications in the Field of Development and
Verification of CSHS

The exceptional relevance of the problems described above has led to the great
attention and efforts taken by international and national organizations, scientific and
professional communities, development teams and individual researchers to solve
them. In the authors’ opinion, the most important ones are methodical documents and
specifications developed under the auspices of the OMG (Object Management Group)
organization that cooperates with about 800 research organizations (DISA, INCOSE,
NIST, etc.) and industrial companies (AT & T, IBM, Oracle, Microsoft, Cisco
Systems, NASA, etc.). In Russia, active research in this area is carried out by such
organizations as ISP RAS, the Faculty of Computational Mathematics and
Cybernetics of Lomonosov Moscow State University, Saint Petersburg State
University, Novosibirsk State Technical University, Military Space Academy named
after A. F. Mozhaisky, etc.
Currently, more than 230 methodical documents and specifications have been
published on the OMG website. Considering the issues described above, the most
important specifications are: MOF (Meta Object Facility), UML (Unified Modeling
Language), XMI (XML Metadata Interchange), SysML (System Modeling
Language), OCL (Object Constraint Language), UTP (UML Testing Profile), ALF
(Action Language for Foundational UML), FUML (Semantics of a Foundational
Subset for Executable UML Models), ReqIF (Requirements Interchange Format).
These documents are the scientific and methodical base for their application, further
improvement, and development. A brief analysis of the most important scientific

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

126

publications and papers starts with monographs and practical guidelines in the field
of industrial development of CSHS.
The fundamental paper written by Dragan Milicev, the Serbian scientist and MBSE
expert, Professor of University of Belgrade [5], outlines the principles and methods
of applying modern information technologies based on the object-oriented paradigm
and model-based approach for the industrial development of CSHS. This is especially
valuable in the context of the problems considered in this article. Also, the paper
provides recommendations and examples of using the fundamental UML (fUML)
language, which is used to create and verify executable formal UML models.
In the monograph [6], the techniques and methods of applying the constructs and
mechanisms of the SysML language are described in a summary and illustrated form
containing practical examples, the idea and principles of this language are explained.
This monograph is written by the group of active developers of many OMG
methodical documents and specifications, and those who apply this knowledge in
practice at such companies as Lockheed Martin and Raytheon Company: S.
Friedenthal, A. Moore, R. Steiner. Useful information on applying the SysML
language mechanisms for designing CSHS is presented in the monograph by Lenny
Delligatti [7] (Lockheed Martin Corporation).
From among all publications of Russian organizations and researchers, it is worth to
mention the papers by the ISP RAS team dealing with both theoretical and practical
aspects of these problems. The theoretical foundations of the design and verification
of CSHS based on a category-theoretic approach to metaprogramming are described
in publications written by S. Kovalev, the leading ISP RAS researcher [8] [9]. They
present the ways to apply category theory to solve the problem of representing
heterogeneous software engineering technologies in a common format that would be
convenient for their integration and coordination in the software system design life
cycle. Particular attention is paid to such modern technologies as model checking
development and aspect-oriented programming, for which universal category-
theoretic semantic models are built.
One of the modern means to describe the architecture of software and hardware
systems is Architecture Analysis & Design Language (AADL) [10]. On the basis of
this language, the system for supporting the design and verification of MASIW
onboard aircraft systems developed by ISP RAS together with GosNIIAS as part of
the state program for the development of Integrated Modular Avionics (IMA) is being
actively used. When developing MASIW, the following libraries and tools were used:
Eclipse Modeling Framework, Graphical Editing Framework, Eclipse Team
Providing, SVN Team Provider, GIT Team Provider. As noted in the article [11], the
MASIW tools allow solving the following tasks:

 creation, editing, and management of models of hardware-software
complexes (HSCs) using the AADL language;

 analysis of models for the sufficiency of hardware resources and interface
consistency, the evaluation of the characteristics of projected data networks

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

127

built in accordance with the AFDX standard (Avionics Full-Duplex
Switched Ethernet);

 distribution of functional applications over computation modules, taking
into account the limitations of the hardware platform resources and the
requirements for the reliability and security of HSCs;

 generation of computer code and configuration data for VxWorks653 RT
OS and termination units of the AFDX network.

An example of using the special extension of the AADL language – Error Model
Annex (EMA) and the MASIW tool for modeling and analyzing the security of the
designed HSCs is presented in [12]. The model is created using EMA, in which a
finite-state machine (FSM) is developed for each component of HSCs. The states of
FSM are normal states and emergencies, including dangerous and failure situations
of this component. The effect of system component failures on other components is
described by specifying the logical conditions for the propagation of errors between
different types of components in different states, taking into account the probabilities
of their occurrence. The following algorithms are used for risk analysis: Fault Tree
Analysis, Failure Mode and Effects Analysis, Markov Analysis. The implementation
of the approach described in this article helps to identify and eliminate the security-
critical defects in design solutions at the design stage.
The ISP RAS team has developed the technology called UniTESK (Unified TEsting
Specification based toolkit) for testing software interfaces. This is a unified set of
testing tools based on specifications. UniTESK is unified due to the fact that the
general testing methodology and general architecture can be used to test modules
using almost all programming languages. Currently, there are the UniTESK
implementations for C (CTESK), C ++ (C ++ TESK), Java (JavaTESK and Summer),
Python (PyTESK). The UniTESK technology has two main differences from
common testing tools [13]:

 UniTESK helps to describe the specifications of a software contract of
modules in the form of pre- and post-conditions using the extensions of
programming languages (in case of C ++ TESK, no extension is required);

 instead of manual development of test cases, UniTESK allows describing a
generalized scenario – a compact description of test logic that allows the test
sequence generator to call each specified interface in all its uses
automatically and to verify the correctness of the result for compliance with
a specified post-condition.

The next group of publications consists of papers devoted to the solution of particular
problems of developing and verifying CSHS. The thesis written by A.V. Markov, the
employee of Novosibirsk State Technical University, is devoted to the issues of
automation of design and software analysis processes using the UML language and
Petri nets [14]. The paper describes the software design methodology using UML
sequence diagrams in the .xmi format and presents the method for their automatic
convert to the .cpn format used to describe Petri nets. The result of using this method

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

128

is hierarchical Petri nets being analyzed for verifying the software project, which is
represented in the form of UML diagrams. The following solutions presented in this
paper are the most valuable in practice:

 algorithm of transforming UML diagrams to Petri network;
 algorithm and rules of implementing inversion in Petri nets to check the

reachability of the selected network state;

 algorithms and software for constructing and analyzing Petri nets to identify
and eliminate defects in the developed software.

The review of modern methods for automatic test generation presented in [15] is quite
useful. The paper describes the following methods:

 structural testing using symbolic execution;
 model-based testing;
 combinatorial testing;

 random testing;
 search-based testing.

The article [16] presents the automated method for making UML sequence diagrams
using the description of UML use case diagrams and class diagrams. To implement
this method, it is necessary to use the ATL language and metamodels of use case
diagrams, class diagrams and sequence diagrams developed by the authors of the
article, as well as the rules for obtaining the third diagram from the first and second
ones. The result of this transformation is a sequence diagram in the XMI format,
which is then converted to the XSLT format to display a sequence diagram in a
graphical editor for viewing, analysis, and making changes. The disadvantage of the
proposed algorithm is the lack of automatic correction of the original models if any
new changes are made to a sequence diagram. This is due to the fact that the
transformations using the ATL language are unidirectional they work with read-
only source models and create write-only target models.
In the work [17], experts at Shanghai University have described the approach to verify
large-scale web projects by developing and analyzing the executable model of the
corresponding software. To build this executable model, the authors have developed
the method that uses live sequence charts (LSCs) as input data. A UML model using
LSCs diagrams is transformed into a symbolic finite-state machine. Test scenarios are
created by traversing a finite-state machine with the Depth-first Search method
(DFS).
The paper [18] describes the method of automatic generation of computer code based
on the project (architectural model) of a program presented in the ALF language. Of
particular interest is the conceptual scheme of the mechanism for generating computer
code from the project description in the ALF format using the rules in the extended
Backus-Naur (EBNF) notation). The authors point out the following advantages of
the tool to transform the model of the architecture of the ATL language: the ability to
describe both declarative and imperative language constructs, the presence of means

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

129

to combine modules that allow creating and reusing sets of transformation rules. The
result is a Java code that corresponds to the Modisco Java metamodel.
The article [19] describes two methods for implementing automatic testing of real-
time loaded systems using scenarios. In the first, the system is modeled as the network
of timed automata (TA). In the second, it is modeled as a set of live sequence charts
(LSCs) and requirements in the form of a separate LSC diagram to analyze. The
authors of the article have developed temporal extensions for a subset of the core of
the LSC language and defined its semantics based on tracing. The analyzed LSC
diagram is transformed to its behavioral equivalent in the notation of the TA diagram.
The correctness verification of a model is carried out by modeling the TA diagram in
real time using Computational Tree Logic (CTL) followed by the comparison of the
obtained result with the standard. Both methods are implemented with the tools of
UPPAAL.
The paper [20] describes the method for generating unit cases based on the
architecture of a model presented in the form of UML activity diagrams. The tests are
created with the SMT/SAT solvers, which analyze the control flow graph of a
program presented in A Modeling Language for Mathematical Programming
(AMPL). This paper proposes test coverage criteria based on control flow analysis.
Particular attention is paid to mixed integer nonlinear programming, as well as to the
construction of logical formulas for OCL (Object Constraint Language) constraints.
One of the serious disadvantages of modern approaches is the lack of ability to take
into account the composition and structure of designed systems, as well as to establish
and synchronize the relations between system requirements and design elements. To
eliminate these disadvantages, the paper [21] proposes to make a system design based
on SysML behavioral diagrams. To verify automatically the project created in this
way, it is proposed to use the following methods:

 transformation of SysML activity diagrams to modular Petri nets presented
in PNML (Petri Net Markup Language);

 mathematics and such tools as CPN Tools and SPIN for analyzing Petri nets;
 algorithm for verifying the time requirements in SysML activity diagrams,

which are pre-converted to formulas of Linear Temporal Logic (LTL) using
Active Temporal Requirement Language (AcTRL) developed by the
authors.

To create tools for the dynamic verification and validation of project behavioral
models, it is proposed to use Executable Domain-specific Modeling Languages
(xDSMLs) in [22]. Means based on them make it possible to monitor the states of
analyzed models (transitions, events, variable values) during their execution. The new
generative approach based on a multidimensional and domain-specific trace
metamodel is proposed. This method helps to construct and manage execution traces
for models corresponding to a specified xDSML. According to the authors of this
paper, this method has higher performance compared to the standard UML

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

130

metamodel due to the ability to exclude redundant data from processing (for example,
analyzed traces) using the mechanisms of the corresponding xDSML.
To conclude the analysis of publications and the solutions presented in them, the
following ideas can be summarized:

 main efforts of researchers are aimed at developing methods and tools for
the automated generation and verification of software implementations of
CSHS [13] [14] [15] [17] [18] [20]; fewer efforts are aimed at automating
the development and verification of design solutions [11] [19] [20] [22];
there are practically no solutions for the automated formation and
verification of a set of requirements;

 mathematics and analysis of Petri nets, SMT/SAT solvers, such modeling
languages as AADL, UML, fUML, SysML and domain-specific languages
(xDSMLs) developed on their basis are used as the basic mathematical
models and tools for automatic verification based on these models.

In this regard, the main purpose of research and papers, the results of which are
presented in this article, was to develop a model, algorithmic and methodical support
of the processes of building and verifying formal models of requirements and the
architecture of CSHS used in state CII objects.
For create unified conceptual, language and instrumental environment for the
development and verification of analysis models and the architecture, it is proposed
to use:

 UML, OCL, fUML and ALF modeling languages;

 VM fUML, SPIN (Promela), Rodin (Event-B), SMT-Lib, Z3, CVC-4, Alt-
ERGO;

 environment, libraries and software products implemented within the
Eclipse project: Eclipse Modeling Framework, Graphical Editing
Framework, Papyrus, Moka.

The choice of these models, languages and tools is conditioned by the following
circumstances. First, their development is actively supported by leading development
enterprises and consumer organizations of CSHS. The second is that both the
technologies and means based on them are open and available for study, application,
and improvement.

3. Models and Algorithms of Formal Description of the
Requirements for a System Based on the Original Informal
Representation
To solve the problem of building a formal description of the requirements for
automated systems and software, you must perform the following operations and
procedures:

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

131

1. First, additional content control elements are developed and installed in a
text editor (MS Word or Writer). These elements are XML schemas
(tz_as.xsd, tz_sw.xsd.) based on a universal Requiment Interchage Format
(ReqIF). XML schemas describe the composition and structure of
requirements for automated systems and software defined in the relevant
normative-methodical documents.

2. Then in the environment of a text editor in accordance with the established
in the previous step xml schemas (tz_as.xsd and tz_sw.xsd) structured text
documents are developed containing requirements to the system.

3. The next step is the automatic generation of the first version of the formal
model of the set of requirements. to implement this procedure, use the
metamodel shown in the Fig. 1. This metamodel is a conceptual and logical
union of a use case diagram and a class diagram.

Fig.1. Comprehensive model of the use case diagram and class diagram

To develop this metamodel, the official specifications of these diagrams on the OMG
website and the models proposed in publications [16] [22] [23] were used. In addition
to the explicit establishment of relationships between diagram elements of these
diagrams, the proposed model includes the new class “Sentence” and excludes two
classes “Subject” and “Agent”. The program implementing the generation
procedure uses the xmi representation of this metamodel and developed before
structured text documents containing requirements to the system.
Each i-th use case is a functional requirement and is described as follows:

),,,(jikii blockfunctionactornameucuc ,

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

132

where nameuci – use case name iuc ;

kactor – user or external system that initiates uci;

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 – system function that implements iuc ;

jblock – system component that implements resultoperation,input,functioni ,

where input – input data;

operation – algorithm that implements ifunction ;

result – result of the implementation of ifunction .

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = (𝑏𝑎𝑠𝑖𝑐𝑓𝑙𝑜𝑤, 𝑎𝑙𝑡𝑒𝑟𝑓𝑙𝑜𝑤) ,
where
𝑏𝑎𝑠𝑖𝑐𝑓𝑙𝑜𝑤 – algorithm that implements the main flow of the function;
𝑎𝑙𝑡𝑒𝑟𝑠𝑓𝑙𝑜𝑤 – algorithms that implements alternative flows of the function.
The class construction is developed for each functional block (module) and
information object. Its attributes, operations (methods), restrictions and semantics are
specified. The sets of interacting classes are combined into class diagrams d_class.
Formally, a class diagram can be described as follows:
𝑑_𝑐𝑙𝑎𝑠𝑠 = (𝐶𝑙𝑎𝑠𝑠𝑒𝑠, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠),
where 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 = { 𝑐𝑙𝑎𝑠𝑠} 𝑖 = 1, … , 𝐼 – diagram classes;

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 class relationships;
𝑐𝑙𝑎𝑠𝑠 = (𝑛𝑎𝑚𝑒𝑐𝑙𝑎𝑠𝑠, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠, 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠),

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = {𝑅௦, 𝑅, 𝑅, 𝑅ௗ , 𝑅௦, 𝑅} relations between classes of the
following six types;
Ras associations;

Rin inheritances;
Rag aggregations;

Rde dependences;
Rsp specializations;

Rre realizations.
The next step in building a requirements model is to develop non-functional
requirements specifications for each system function:

 ...,,,_ 4321
iiii ffff rrrrreqsd ,

where ifr1 – requirements for the efficiency of execution of if ;

 ifr2 – performance requirements (for example, the amount of data stored, processed

and transmitted, the number of users, the number and size of requests per unit of time,
etc.);

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

133

 ifr3 – requirements for reliability (availability rate, uptime, recovery time, etc.);

ifr4 – security requirements.

The model built in this way is preliminary, and it is used as input data for the
algorithm for building a model formal requirements in the fUML language which
described in the next section.

4. Algorithm for Building a Formal Model Requirements

The scheme of the algorithm that implements the second stage of the procedure of
building a formal requirements model using the fUML language is shown in Fig. 2.
Use case diagrams (UCDs) – d_uc, class diagram (CDs) – d_class and requirements
diagrams (RDs) – d_reqs are used as initial data. The analyst and future system user
develop an interaction overview diagram (IOD) d_io for each UCD (d_uc). In this
diagram, the functions implemented by the system are described from the user's point
of view in more detail using activity diagrams, sequence diagrams, and statechart
diagrams. Formally, an interaction overview diagram can be represented as follows:

 j
fi

iki blockioactoriod ,,_ , where fi
iio (𝑖𝑜

, 𝑖𝑜

) describes the algorithm for

implementing the function by the j-th block (class) of the designed software, which

includes the description of main (𝑖𝑜
) and alternative (fia

iio) flows.

Alternate flows describe the operation of programs in case of abnormal situations,
such as erroneous user actions, unexpected influences from the external environment,
etc. The main and alternative flows can have subordinate flows, which are described
in IOD using frames with “ref”. The subordinate IOD flows show the work of a
program from the user's point of view and can be represented with activity diagrams,
sequence diagrams or statechart diagrams depending on the features of the
functioning of CSHS and ways of the interaction with the user and environment. To
describe the procedure and possibility of realization of those or other threads are used
pre - and post- condition.
the model of requirements constructed in this way should be subjected to validation
and verification procedures. The validation procedure is to assess the completeness
and correctness of the set of requirements. It is carried out both by software tools and
by the informal expertise of specialists in a particular subject area. Such properties of
a model as consistency, systematicity, non-redundancy, security, liveliness, absence
of deadlocks, impossible operations, looping are checked during verification. The
verification of the requirements model is carried out through its execution and testing
in the fUML virtual machine environment and analysis using SAT/SMT solvers.

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

134

Fig.2. Construction algorithm of the technical project model

The description of these methods and tools is provided in sections 5 and 6.

5. Algorithm for Building a formal model of architecture of CSHS
The architecture development of CSHS is implemented in accordance with the
algorithm shown in Fig. 3

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

135

The initial data are the interaction overview diagram d_io, diagrams of quality
requirements for the implementation of functions d_reqs, class diagrams d_class
and the requirements for development technologies and operating environment.

Fig.3. Algorithm of the architecture model development

In each interaction overview diagram (d_io) searches for a reference to activity
diagrams (ref_act), sequence diagrams (ref_seq) and statechart diagram (ref_sm). If
such references are found, the architect is asked to build or modify the corresponding
diagrams. Activity diagrams are described using control nodes (control_node:
decision node, merge node, fork node, join node, interaction, interaction use); object
nodes (object_node); pre-conditions and post-conditions.
When constructing sequence diagrams, the additional boundary, control, and entity
classes are first created, which perform the functions of intermediate (boundary)
classes, control, and information objects, respectively. Then the lifelines are defined
corresponding to classes that exchange messages. Messages are defined by the

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

136

conditions and limitations of their transmission and reception, and the actions that are
performed (do action). When developing state diagrams, the S ={𝑠𝑚} states and T =
{𝑡𝑛} transitions between them are defined. Each 𝑠𝑚 state consists of a description of
the attributes - val_var, as well as the actions performed: entry at the entrance,
do_inter internal, exit at the exit.

The 𝑡𝑛 transitions include descriptions of the event initiating this transition event,
the pre- and post- implementation conditions guard_cond and actions that must be
performed before the actions of a new state t_action).
The constructed diagrams are added to the database. To obtain a consistent and bound
set of CSHS technical project (architecture) diagrams, class diagrams (d_class) and
requirements diagrams (d_regs) are refined by establishing relations with new
activity, sequences and statechart diagrams that were developed or modified. Fig. 4
shows the diagram illustrating the relationships between class and activity diagrams.
Each d_acti has a relationship with a specific class by describing the algorithm for
implementing the corresponding class method.

Fig. 4. Relationships and dependencies between the main components of the technical project
model: class and activity

To implement the architecture model verification procedure in the virtual machine
environment, fUML sequence diagrams (d_seq) and statechart diagrams (d_sm) are
transformed to activity diagrams (d_act), which are then described in the language
ALF (Action Language for Foundational UML).
Fig. 5 presents the diagram illustrating the verification procedure of the formal fUML
model of the CSHS architecture in a virtual machine environment consisting of three
components: ExecutionFactory, Executor and Locus.
ExecutionFactory is used to create instances of the visitor semantic classes
corresponding to the executable elements of the fUML model. The Executor class is
a top-level abstraction for the executable fUML model and provides three operations:

 evaluate – evaluate a value specification, returning the specified value

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

137

 execute – synchronously execute a behavior, given values for its input
parameters and returning values for its output behaviors;

 start – asynchronously start the execution of a stand-alone or classifier
behavior, returning a reference to the instance of the executing behavior or
of the behaviored classifier.

Each execution is performed on a specific VM (Locus), which is the abstraction of a
physical or virtual computer capable of executing and verifying fUML models.

Fig.5. Scheme of executable fUML-model verification

The following basic requirements are imposed on the software architecture of CSHS:

 completeness of the implementation of functional requirements defined in
the interaction overview diagrams – d_io;

 completeness and correctness of the implementation of non-functional
requirements defined in requirements diagrams – d_reqs;

 coherence and consistency of all model diagrams;
 lack of redundancy.

Testing the architecture model in the fUML virtual machine environment also makes
it possible to detect defects that can lead to security and liveliness violations, the
occurrence of deadlocks, impracticable operations, and loops. In addition, it is
advisable to use SAT/SMT solvers to verify the architecture model. The description
of their application is presented in the next section of the article.

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

138

6. Methods for Constructing Test Scenarios to Verify Models of
Requirements, Architecture and Implementation of CSHS using
SAT/SMT solvers
The main stages of the process of constructing test scenarios to verify models of
requirements, architecture, and implementation of CSHS are presented in Fig. 6:
– building a control flow graph (CFG);
– description of CFG in language ALF;
– generation of test scenarios (TSs) for verification of a set of requirements and
technical project (architecture);
– generation of TSs for implementation verification;
– adding test scenarios to database (DB).

Fig.6. Generalized algorithm of test scenarios development for verification of requirement,
architecture and implementation models

With the help of this algorithm, the requirements model and the architecture model
can be verified. The original format for representing these models is .xmi. Based on
these descriptions, the corresponding verifiable CFG model is built, in which both
functional and non-functional requirements for the system being developed are taken
into account. To represent non-functional requirements, Object Constraint Language
(OCL) is used. A SMT/SAT solver checks CFG for defects and, if they are found,
creates counterexamples. Using them, the developer determines the causes of defects
and makes the necessary corrections to the analyzed artifact. To implement this

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

139

approach, it is proposed to use the ALT-ERGO, CVC4 and Z3 solvers, integrated into
the Frama-C framework [24] [25].

Fig. 7. Detailed algorithm of test scenarios development for verification models of
requirement, architecture and implementation

Concluding the presentation of the developed models and algorithms, let us present a
generalized scheme for the implementation of software-controlled process of
development and verification of formal models of requirements and architecture of
CSHS, which provides end-to-end quality control of all artifacts of the life cycle of
CSHS (Fig. 8).

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

140

Fig.8. Stages of implementation of software-controlled of the process of development and
verification of software and hardware systems

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

141

The main stages of the implementation of this approach are:
1. Construction of a preliminary formal model of requirements for CSHS in the

form of a set of interrelated use case diagrams, class diagrams, and
requirements diagrams.

2. Development of a formal requirements model in the form of a set of
interrelated use case diagrams, overview interaction diagrams, class
diagrams, and requirements diagrams.

3. Development and verification of the formal model of the architecture of
CSHS through testing in the fUML virtual machine environment and analysis
using SAT/SMT solvers ALT-ERGO, CVC4 and Z3.

4. Development and verification of the software implementation.

7. Conclusion
One of the most important directions of improving the development processes and
achieving the required quality indicators of complex software and hardware systems
is the creation and implementation in practice of their industrial development of
model-based technologies for justifying requirements, design, and implementation
followed by the procedures of their formal verification and semi-formal validation.
Currently, the most problematic issues are related to the verification of requirements
and the CSHS architecture. To solve these problems, it is proposed to implement the
approach described in this article. The distinctive features of this approach are:

 formation and use of a single model-language and information-software
environment for the development and verification of formal models of
requirements, architecture and software implementation based on the
necessary and sufficient set of interrelated fUML diagrams and the model of
internal and inter-model relations developed for them;

 implementation of the software-controlled development process of CSHS in
accordance with the developed algorithm that performs sequential-iterative
operations of generating and transforming formal models of requirements
and architecture presented in fUML, XMI, ALF, and that also performs their
verification in the fUML virtual machine environment and SMT/SAT
solvers.

To implement the proposed approach, the following models, algorithms, and methods
were developed:

 algorithm of a formal description of the requirements for the developed
system based on the initial informal representation;

 fUML diagram models that are necessary and sufficient to develop
complete, correct and consistent formal models of requirements and
architecture;

 models, algorithms and guidelines for the development of formal models
requirements and the architecture in languages fUML, XMI and ALF;

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

142

 verification algorithms for models of requirements and the architecture of
CSHS in the environment of fUML virtual machine;

 verification of the formal model of the architecture and program
implementation through the analysis using the SAT/SMT solvers.

Currently, work is underway to create a set of software tools to ensure the
implementation of this approach. The development tools, libraries, and applications
implemented in the Eclipse project (EMF, GMP, RCP, Papyrus, Moka, Titan) are
used as a development environment and prototypes. The implementation of this
software package in the relevant technological processes at companies will ensure the
most complete accounting and correct implementation of requirements for functional
and operational characteristics, environment and conditions for the use of CSHS. It
will also significantly reduce the cost of finding and eliminating the most critical and
resource-intensive defects made at the stages of the formation of requirements and
design of their architecture.

References

[1]. Federal law "On security of critical information infrastructure of the Russian Federation".
12.07.2017 (in Russian)

[2]. Systems Engineering and Software Engineering,
https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.
(accessed 25.07.2018).

[3]. Laura. Introduction To Model-Based System Engineering (MBSE) and
SysML.https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-
incose-30-july-2015.pdf. (accessed 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-
papers/chaos-report.pdf. (accessed 25.08.2018).

[5]. Dragan Milicev. Model-Driven Development with Executable UML. John Wiley & Sons,
2009, 720 p.

[6]. Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

[7]. Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Addison-Wesley Professional, 2013, 304 p.

[8]. Kovalev S.P. Theoretical and categorical approach to metaprogramming. M., IPU Russian
Academy of Sciences, 2014, 112 p. (in Russian)

[9]. Kovalev S.P. Category-Theoretic Approach to Software Systems Design. Journal of
Mathematical Sciences, vol. 214, issue 6, 2016, pp. 814–853.

[10]. Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
2012, 480 p.

[11]. D.V., Buzdalov, S.V. Zelenov, E.V. Kornykhin, A.K. Petrenko, V.A. Fear, A.A.
Ognenko, A.V. Khoroshilov. Design tools for integrated modular avionics systems. Trudy
ISP RAN/Proc. ISP RAS, vol. 26, issue 1, 2014, pp. 201-230. DOI: 10.15514/ISPRAS-
2014-26(1)-6 (in Russian)

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

143

[12]. S.V. Zelenov, S.A. Zelenova, Modeling of hardware and software systems and analyze
their security. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 257-282. DOI:
10.15514/ISPRAS-2017-29(5)-13 (in Russian)

[13]. http://www.ispras.ru/technologies/unitesk (accessed 17.10.2018) (in Russian)
[14]. Markov, A.V., automation of design and analysis software using UML and Petri nets. PhD

Thesis, NSTU, Novosibirsk, 2015 (in Russian).
[15]. Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case

Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.
[16]. Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with Model

Transformation Technology. In Proc. of the International MultiConference of Engineers
and Computer Scientists, IMECS 2014, vol I

[17]. Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web Software
based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th International
Conference on Computer and Information Science (ICIS).

[18]. Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with
ALF. The Second International Conference on Advances and Trends in Software
Engineering, vol I, IARIA, 2016. pp .10-15.

[19]. Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems using
Uppaal. Formal Methods in System Design, vol. 37, Issue 2–3, 2010, pp 200–264

[20]. Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using the
AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of
Technology (TUHH), 2014.

[21]. Messaoud Rahim, Malika Boukala-Ioualalen, Ahmed Hammad. Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity Diagrams.
PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-
248.

[22]. Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and
efficient execution trace management for executable domain-specific modeling
languages. Software & Systems Modeling, 2017,
https://link.springer.com/article/10.1007/s10270-017-0598-5 (accessed 20.07.2018)

[23]. D. Savic, S. Vlajic, S. Lazarevic. Use Case specification using the SilabReq domain
specific language. Computing and Informatics, vol. 34, 2015, 877–910.

[24]. Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using
Conflict-Driven Learning. In Proc.b of 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’18). ACM, New York, NY,
USA, 16 p.

[25]. Efremov D. V., Mandrykin M. U. Formal verification of Linux kernel library functions.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 49-76. DOI:
10.15514/ISPRAS-2017-29(6)-3 (in Russian)

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

144

Методика и средства разработки и верификации
формальных fUML моделей требований и архитектуры

сложных программно-технических систем
А.В.Самонов <a.samonov@mail.ru>

Г.Н.Самонова <g.samonova@mail.ru>
Военно-космическая академия имени А.Ф. Можайского,
197088, Россия, Санкт-Петербург, ул. Ждановская, д.13

Аннотация. В статье представлены модели и алгоритмы обеспечения сквозного
контроля качества сложных программно-технических систем (СПТС) посредством
реализации программно-управляемого процесса разработки и верификации формальных
моделей требований и архитектуры СПТС. Дан анализ научных публикаций и
нормативно-методической базы в области разработки и применения на практике
модельно-ориентированного подхода. Установлено, что наименее обеспеченными
модельными, алгоритмическими и программными решениями являются вопросы,
связанные с разработкой полного и корректного набора требований, а также с
формализацией и верификацией технических проектов СПТС. Предложены способы
решения существующих проблем посредством формирования единой модельно-
языковой и информационно-программной среды разработки и верификации
формальных моделей требований и архитектуры СПТС, построенных на основе
оптимального набора взаимосвязанных fUML диаграмм, представленных в нотации
языка ALF и верифицируемых в среде виртуальной машины fUML и с помощью
SAT/SMT решателей.

Ключевые слова: верификация и валидация; диаграммы активности; диаграммы
классов; жизненный цикл автоматизированных систем; модели архитектуры; модели
требований; проектирование и реализация; программно-технические системы.

DOI: 10.15514/ISPRAS-2018-30(5)-8

Для цитирования: Самонов А.В., Самонова Г.Н. Методика и средства разработки и
верификации формальных fUML моделей требований и архитектуры сложных
программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г., стр. 123-146
(на английском языке). DOI: 10.15514/ISPRAS-2018-30(5)-8

Список литературы

[1]. Федеральный закон «О безопасности критической информационной
инфраструктуры Российской Федерации». 12.07.2017 г.

[2]. Systems Engineering and Software Engineering
https://www.sebokwiki.org/wiki/Systems_Engineering_and_Software_Engineering.
(дата обращения 25.07.2018).

[3]. Laura E. Hart. Introduction to Model-Based System Engineering (MBSE) and SysML
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-
july-2015.pdf. (дата обращения 21.06.2018).

[4]. The Standish Group Report CHAOS. https://www.projectsmart.co.uk/white-
papers/chaos-report.pdf. (дата обращения 25.08.2018).

Самонов А.В., Самонова Г.Н. Методика и средства разработки и верификации формальных FUML моделей
требований и архитектуры сложных программно-технических систем. Труды ИСП РАН, том 30, вып. 5, 2018 г.,
стр. 123-146

145

[5]. Dragan Milicev. Model-Driven Development with Ex ecutable UML. John Wiley &
Sons, 2009, 720 p.

[6]. Sanford Friedenthal, Alan Moore, Rick Steiner. A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann, 3 edition, 2014, 630 p.

[7]. Lenny Delligatti. SysML Distilled: A Brief Guide to the Systems Modeling Language.
Addison-Wesley Professional, 2013, 304 p.

[8]. Ковалёв С.П. Теоретико-категорный подход к метапрограммированию. М., ИПУ
РАН, 2014, 112 стр.

[9]. Ковалeв С. П. Теоретико-категорный подход к проектированию программных
систем. Фундаментальная и прикладная. математика, том 19, вып. 3, 2014, стр. 111–
170.

[10]. Peter H. Feiler, David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Professional,
2012, 480 p.

[11]. Д.В. Буздалов, С.В. Зеленов, Е.В. Корныхин, А.К. Петренко, А.В. Страх, А.А.
Угненко, А.В. Хорошилов. Инструментальные средства проектирования систем
интегрированной модульной авионики. Труды ИСП РАН, том 26, вып. 1, 2014, стр.
201-230. DOI: 10.15514/ISPRAS-2014-26(1)-6

[12]. Зеленов С.В., Зеленова С.А. Моделирование программно-аппаратных систем и
анализ их безопасности. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 257-282. DOI:
10.15514/ISPRAS-2017-29(5)-13

[13]. http://www.ispras.ru/technologies/unitesk (дата обращения 17.10.2018)
[14]. Марков А.В. Автоматизация проектирования и анализа программного обеспечения

с использованием языка UML и сетей Петри. Канд. дис., Новосибирск, НГТУ, 2015.
[15]. Saswat Anand et al. An Orchestrated Survey on Automated Software Test Case

Generation. Journal of Systems and Software, vol. 86, Issue 8, 2013, pp. 1978-2001.
[16]. Yachai Limpiyakorn, Photchana Sawprakhon. Sequence Diagram Generation with Model

Transformation Technology. In Proc. of the International MultiConference of Engineers
and Computer Scientists, IMECS 2014, vol I,

[17]. Liping Li, Honghao Gao, Tang Shan. An Executable Model and Testing for Web Software
based on Live Sequence Charts. In Proc. of the 2016 IEEE/ACIS 15th International
Conference on Computer and Information Science (ICIS).

[18]. Thomas Buchmann and Alexander Rimer. Unifying Modeling and Programming with
ALF. The Second International Conference on Advances and Trends in Software
Engineering, vol I, IARIA, 2016. pp .10-15.

[19]. Shuhao Li, Sandie Balaguer et al. Scenario-based verification of real-time systems using
Uppaal. Formal Methods in System Design, vol. 37, Issue 2–3, 2010, pp 200–264

[20]. Felix Kurth. Automated Generation of Unit Tests from UML Activity Diagrams using the
AMPL Interface for Constraint Solvers. Master Thesis, Hamburg University of
Technology (TUHH), 2014.

[21]. Messaoud Rahim, Malika Boukala-Ioualalen, Ahmed Hammad. Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity Diagrams.
PNSE'14, a satellite event of Petri Nets 2014 and ACSD 2014, Tunis, Tunisia, pp 233-
248.

[22]. Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, Benoit Baudry. Advanced and
efficient execution trace management for executable domain-specific modeling
languages. Software & Systems Modeling, 2017,

Samonov A.V. , Samonova G.N. Methodology and Tools for Development and Verification of formal fUML models of
Requirements and Architecture for complex software and hardware systems. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 5, 2018, pp. 123-146

146

https://link.springer.com/article/10.1007/s10270-017-0598-5 (дата обращения
20.07.2018)

[23]. D. Savic, S. Vlajic, S. Lazarevic. Use Case specification using the SilabReq domain
specific language. Computing and Informatics, vol. 34, 2015, 877–910.

[24]. Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis using
Conflict-Driven Learning. In Proc. of 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’18). ACM, New York, NY, USA, 16 p.

[25]. Ефремов Д.В, Мандрыкин М.У. Формальная верификация библиотечных функций
ядра Linux. Труды ИСП РАН, том 29, вып. 6, 2017 г., стр. 49-76. DOI:
10.15514/ISPRAS-2017-29(6)-3

