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Abstract. The article discusses a new approach to obtaining additional information about the 
software module under study based on the preliminary software architecture recovery during 
the executable code analysis. As a result, it is possible to reduce the requirements for the 
resources spent by limiting the field of research, rational choice of priorities, and abstraction 
from secondary elements. The paper demonstrates the feasibility of restoring the software 
architecture in a two-step process: first, the separate components are isolated, and then their 
purposes and relationships are determined. An automated method for decomposing a software 
module is proposed, which allows allocating components corresponding to static libraries, 
classes, and their groups. This method is based on the functions clustering by the distances 
between them in the address space and on the call graph. A description of the implementation 
of the developed method as a plug-in for the IDA disassembler is given. 
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1. Introduction 
The need to analyze the executable code is widely encountered in practice when 
addressing issues related to the protection of intellectual property, the search for 
software backdoors and vulnerabilities, the analysis of computer viruses, certification 
of compilers, and software development. It should be noted that despite all the 
achievements in this area, the task in question is still far from being solved. This is 
due to the fundamental limitations expressed in the extreme complexity of 
formalizing and automating the analysis of executable code [1]. If, when searching 
for vulnerabilities, there are still effective automatic methods (fuzzing, symbolic 
execution), then, when restoring the executable code algorithm, the result of the study 
is largely determined by the quality of expert analysis. In this case, automation is 
limited to local signature or statistical methods that facilitate the search for constants 
or a special set of instructions in specific algorithms. Particularly acute shortcomings 
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of the modern scientific and methodological apparatus appear when it is impossible 
to use dynamic analysis methods. Taking into account the volume of the software 
modules under study, which in the case of embedded systems reach tens and hundreds 
of thousands of functions, the solution of practical tasks in this area requires 
significant investments of both material and time resources and the availability of 
substantial human capital. 
Thus, it becomes necessary to provide an expert with information about a software 
module, important for achieving a positive result. As practice shows, first of all, an 
expert needs to understand the logic of the software module [2], since it allows 
targeted search through "reverse engineering" [3, p. 27]. In this case, the model of the 
expert's work changes: instead of the direct restoration of the algorithms implemented 
in the program code, the assumptions regarding their implementations are confirmed 
and specific parameters are determined. 
One of the important components of the "reverse engineering" approach is the 
restoration of the software architecture, information about which is lost during 
compilation. Software architecture [3, p. 9] can be described in the framework of a 
hierarchical model of the structure of complex systems [4]. 

2. Hierarchical model of software 
The development of complex software requires high-quality software architecture 
with well-defined systems and subsystems that solve a specific problem and have 
weak coupling [5, . Modern non-specialized programming languages clearly support 
such programming paradigm [6]. When examining a software module, it is possible 
to break it up into components that correspond to the initially programmed systems 
and subsystems (for example, using source code or debugging information [7, 14]). 
For definiteness, one can designate such selected subsets of a software module as 
components, and the process of breaking up a software module – decomposition. 
According to the model used, the set of components is hierarchical, in which the 
components located at the upper level consist of a combination of the underlying ones. 
As part of the research, the components classification is proposed, presented in Table 
1. 
Table 1. Classification of components  

No. Name Description 
1 Software A component that fully incorporates the software under 

investigation. Always present in a single instance. 
2 File A separate file in the corresponding file system included in the 

software. For embedded systems without a file system, all 
firmware is considered as a single file. 

3 Embedded 
operating system 

For systems with multiple processors, there can be several 
embedded operating systems running in parallel within the same 
address space. 



Кононов Д.С. Подход к анализу исполняемого кода на основе восстановления программной архитектуры. Труды 
ИСП РАН, том 30, вып. 5, 2018 г., стр. 75-88 

77 

4 Static library For software modules (including embedded operating systems) 
the presence of built-in libraries is typical. For example, 
OpenSSL encryption libraries, various drivers, libraries of 
standard functions (memcpy, strlen), etc. Components of a 
similar size (500-3000 functions) that have a weak connection 
(for example, only using API) with the rest of the code also 
belong to this level. 

5 Class group This level corresponds to a group of classes in the object-
oriented programming terminology. Typical size from 100 to 
1000 functions. Differ from level 4 in a greater connectivity with 
the rest of the code. For example, various classes that implement 
the same interface (plug-ins), network protocol handler, etc. 

6 Class This level corresponds to a class in the object-oriented 
programming terminology or an object (compiled) module in the 
C language. They have a size of up to 100 functions. Differ from 
level 5 in a greater connectivity with the rest of the code. For 
example, the implementation of a circular buffer, hash tables, 
etc. 

7 Function Currently, the task of the allocation of automating functions from 
executable code is solved and implemented in modern 
disassemblers at a sufficient level. 

8 Logical block in 
a function 

The part of the function consisting of basic units designed to 
solve a subtask. For example, inline functions, condition 
checking, loops, etc. 

9 Basic unit A sequence of instructions without transitions automatically 
isolated by modern disassemblers (cycle body, the condition 
being checked, etc.). 

10 Logically 
isolated 
sequence of 
instructions 

Part of the basic unit, designed to solve some subtasks. For 
example, loading data from memory, untwisted cycle, etc. 

11 Instruction Executable machine instruction. Automatically isolated by 
modern disassemblers. 

12 Instruction 
argument 

The executable machine instruction argument. Automatically 
isolated by modern disassemblers. 

In the modern scientific and methodological apparatus for analyzing executable code, 
the information only about levels 1, 2, 3, 7, 9, 11, 12 is used due to the absence of 
additional debugging data [8]. The existing significant gap between levels 3 and 7 
makes it necessary to analyze software modules consisting of tens and hundreds of 
thousands of functions using methods that have exponential computational 
complexity (fuzzing, character execution, etc.) [1]. To overcome the existing 
limitations, it is necessary to take into account levels 4, 5, 6 [3], which will 
significantly reduce the requirement for the resources needed to conduct the software 
module investigation [2]. Thus, existing methods with high computational complexity 
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can be scaled for software modules with a volume of more than 10,000 functions due 
to their decomposition into components with a characteristic size falling within the 
range of effective application of the corresponding methods. For embedded systems, 
this process is, in fact, analogous to isolating dynamic libraries and programs from 
the general-purpose operating system (OS) and examining them separately. At the 
same time, to implement the considered approach, it is necessary that the separated 
integral parts have a specific isolated functionality, that is, they would be components 
according to the terminology adopted in the paper. 
There are a large number of software architecture definitions [9, 10]. The conceptual 
apparatus of the research is based on the IEEE 1471 standard [11, p. 9]: software 
architecture is the fundamental organization of the system, embodied in its 
components, their relationships to each other, and to the environment, and the 
principles guiding its design and evolution. Thus, from the definition, it follows that 
the restoration of the disassembled software module architecture [3, p. 30] should be 
carried out in two stages. The first is the decomposition of the disassembled software 
module into levels 3-6 components, and the second is the determination of the 
functionality of the selected components and the restoration of their relationships with 
each other and with the environment. 

3. Analysis of the executable code, taking into account the 
software architecture 
In the modern scientific and methodological apparatus, the main element of the 
research is the function, which leads to the need to analyze and restore the algorithms 
of a large number of interrelated functions to determine their common purpose. In 
contrast, the preliminary decomposition of a software module allows determining the 
role of a specific component in the architecture by analyzing only a few of its 
functions (in some cases just one) or the data and strings used in it. As a result, based 
on the described approach, a reasoned conclusion is made on the assignment of 
hundreds and thousands of functions that form the corresponding component by 
analyzing a small amount of data. Furthermore, additional information about the 
purpose of the components is provided by an analysis of their relationships.  
Knowledge of the software architecture makes it possible to rationally prioritize the 
research within the framework of solving a specific practical problem. For example, 
if it is necessary to restore the network interaction protocol of the botnet, then the 
emphasis in the study should be placed on the appropriate handler. One of the features 
of this approach to restoring the executable code algorithm is the ability to limit the 
study of functions from non-priority components to the conceptual level. As an 
example, one can cite the situation when the algorithm of the bootloader is 
investigated and the component of interaction with flash memory is isolated.  
In this case, one should not restore the entire algorithm for writing or reading flash 
memory, but logically assign the values "write" or "read" to the component functions 
called from the bootloader. In addition, the joint analysis of a single software module 
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by several experts is significantly simplified due to the rational differentiation of the 
studied areas into separate components.  
Information about the software module architecture is also required when conducting 
dynamic analysis. Thus, the lack of information about the components used 
significantly complicates the analysis of execution routes and slicing [12]. Even when 
examining programs for the Windows OS family under the x86 architecture, it is 
difficult to draw an unequivocal conclusion about the algorithm being performed and 
its purpose without separating the called functions by the system API. In the case of 
embedded OS («firmware»), this problem is only aggravated. 
In the framework of «fuzzing», it is impossible to correctly emphasize its direction 
without knowing the architecture of the software module. The cases of work only 
within one component from the study of their entirety are indistinguishable. The 
availability of information about the software architecture makes it possible to 
rationally select the area of study, excluding components that are not interesting in 
the current context. This leads to the possibility of multiple reductions in 
computational costs. For example, by isolating the component of working with strings 
or with memory, one can prevent loop traversal in the functions of copying memory 
or comparing strings, replacing them with appropriate heuristics. 
Despite all the advantages described, in modern scientific and methodological 
apparatus for analyzing executable code in the absence of debugging data, there are 
no effective automated methods not only for restoring the software architecture but 
also for decomposing a software module into components. As a result, such an 
approach is not used in practice in the overwhelming majority of cases, since the time 
and cost of resources do not pay off in the current realities. This situation significantly 
limits the ability to analyze executable code. 

4. Method of the software module decomposition 
As the applied methods for decomposing a software module into components, apart 
from the expert one, one can single out various modifications of the task of finding 
strongly connected components [13,  of the call graph and various imaging 
techniques. However, due to limited disassembling capabilities [8], low call graph 
density, and the presence of widely used functions (for example, working with strings 
and memory) that are called from almost anywhere, there are low informative results 
that do not allow the software module decomposition 
[3, . Dynamic analysis methods simplify this process insignificantly [2], but they 
themselves are not applicable in the general case and work for relatively small 
amounts of code due to the coverage problem [1, 12]. In this regard, similar 
approaches to the analysis of executable code are practically not used, although they 
are quite widespread for the source code [14, 15]. 
At the same time, the experience of software research has shown that often 
interrelated functions are located nearby in the address space. This arrangement is 
explained both by the optimization for the hardware architecture and by the 
simplification of compiler development. For example, with paging memory, a speed 
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gain occurs when finding jointly called functions within a single page [16. On the 
other hand, the simplest implementation of the linker involves the sequential addition 
of object modules [18, , and shuffling the functions between them implies some 
optimization. As a rule, an object module corresponds to a separate source code file 
(a class in object-oriented programming) and, therefore, is a component by definition 
in software with a well-developed architecture. Thus, to carry out the decomposition 
of the software module, it is proposed to perform clustering of functions based on 
distances both in the address space and on the call graph. It should be noted, however, 
that the interrelated functions are absolutely not obliged to be located near each other 
in the address space, but these cases are associated either with a significant level of 
optimization or with the use of some protection measures (for example, small granular 
randomization of address space allocation during compilation [19]). 
As the distance between two functions in the address space, it is proposed to use the 
number of positions enclosed between them in the list of functions sorted by starting 
address. Such a choice is explained by the need to eliminate the dependence of the 
distance on the size of the functions and the data placement order. However, it should 
be taken into account that there is a certain selected size of a component of a certain 
level (for example, 1000-3000 functions in the case of static libraries), and, at the 
same time, it is necessary to consider the interaction of all functions in the software 
module under study. Based on these prerequisites, in order to obtain the final distance 
in the address space, an increasing step function was chosen corresponding to the 
estimated sizes of the components at various levels  
(see Table 1). 
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where ݂  is a function with a sequence number ݅ in the list of functions, sorted in order 
of increasing starting addresses; ݇ – step function coefficient for the ݅-th range; ݎ – 
limit of the ݅-th range; ܭ – the number of ranges in the step function. 
Then each edge of the call graph is assigned a weight equal to the distance ݀൫ ݂, ݂൯ 
between the functions in the address space (1). As a result, the distance between 
functions on the call graph is defined as the minimum sum of edge weights that form 
the path from one function to another. It is necessary to clarify that the call graph, in 
this case, is considered as an undirected graph, that is, there is a path in the graph 
from the calling function to the called one, and vice versa. It should also be borne in 
mind that with an arbitrary choice of the step function, it is possible that the distance 
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calculated from the call graph will be less than the corresponding value of the step 
function. The simplest example of this kind is 

݈ሺݔሻ ൌ ൝
0, ݔ ൌ 0
1, ݔ ൌ 1
∞, ݔ  1

 (2) 

To eliminate this inconsistency, it is necessary to ensure that the selected step function 
satisfies the condition: the coefficient value for each interval of the step function must 
be less than or equal to the sum of the coefficient values for the previous interval and 
the minimum possible edge weight (i.e., the coefficient of the first interval). Indeed, 
consider the first point of any interval and draw an edge to it from the previous point 
(located in the previous interval, respectively). Then if the difference between 
adjacent intervals is greater than the minimum coefficient of the step function, then 
the length of the edge from the origin to the selected point will be greater than the 
length of the path through the immediately preceding point. The formally described 
condition can be expressed by the formula (3). 

݇ାଵ  ݇୧  ݇ଵ (3) 
Since the weight of the edge in this problem is non-negative, it is possible to use the 
Dijkstra algorithm to find the distances between all the functions [20, p. 595]. Then 
the computational complexity of finding the distances from the current function to all 
the others will be ܱሺ݊ଶ  ݉ሻ, where ݊ is the number of nodes (functions) on the call 
graph, and ݉ is the number of edges (calls). Given that clustering requires the 
calculation of the distance matrix between all functions, then the total computational 
complexity will be ܱሺ݊ଷ  ݊݉ሻ. Using the binary heap in Dijkstra’s algorithm can 
reduce the computational complexity to ܱሺ݊ଶ log ݊  ݊݉ log ݊ሻ. At the same time, it 
is necessary to consider that ݉ ൌ ܱሺ݊ଶሻ. However, in practice, the call graphs of real 
programs are strongly sparse: the density of call graphs for all checked software 
modules with volumes from a few hundred to tens of thousands of functions tends to 
0. The latter is explained by the decrease in connectivity between subsystems with 
increasing software scale. The calculated values of the ratio ݉ /݊ (the average number 
of edges per node) for the studied software modules did not exceed 4 and tends to 
decrease with an increase in the module volume. Consequently, in the analysis of the 
executable code, the relationship for the call graph is satisfied ݉ ൌ ܱሺ݊ሻ and the 
evaluation can be used for the computational complexity of constructing the distance 
matrix ܱሺ݊ଶ log ݊ሻ. 
In the framework of the experiments, it was found that the parameters of the step 
function can be specified considering the expected sizes of the components within 
fairly wide limits. Thus, the proposed method for decomposing a software module is 
robust. Additionally, this conclusion is confirmed by the fact that the experiments 
were conducted under the conditions of the existing limitations of modern means of 
disassembling (IDA software) to restore the call graph. As a result, one can conclude 
that the information about the original software architecture is stored in the executable 
code and can be restored. 
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5. Practical implementation 
Currently, interactive clustering is implemented based on the creation of a heat map 
for the distance matrix. In the distance matrix, functions are sorted in ascending order 
of their starting addresses. In this case, no additional computational costs are required 
apart from converting the calculated matrix into a graphic image in the BMP format. 
An example of such an image ("code map") is shown in Fig. 1; the darker the point, 
the smaller the distance between the functions. 
Interactive clustering is performed by manually selecting rectangular blocks visually 
different from adjacent areas. As a result, a hierarchical structure is formed on the 
"code map" consisting of a number of square blocks located on the diagonal, which 
either do not intersect or are nested in another block. This structure corresponds to 
the software architecture of the module under study, and the diagonal blocks 
themselves corresponds directly with the components of different levels. Blocks 
outside the diagonal determine the degree of interaction between the components. 
Also, for additional confirmation of the decision on the correctness of the components 
selection and the initial assessment of their assignment, strings and other data, which 
are used in the functions from the block selected on the "code map", are automatically 
displayed on request for the operator. 
The following optimizations are added during implementation: 
1) individual disconnected components of the call graph are excluded if the number 

of nodes is less than the threshold (the recommended value is 20); 
2) individual disconnected call graph components having a diameter [13, p. 249] 

less than the threshold are excluded (the recommended value of 3, excluding 
graphs with the star topology); 

3) excluded functions that are called only from a single function and do not call 
anything; 

4) springboard functions (mediating long-distance calls) are excluded from the 
distance matrix by signature, but are taken into account when constructing routes; 

5) stub functions and imported functions are excluded. 
The program for calculating the distance matrix and interactive clustering is 
implemented as a plug-in for the IDA disassembler. The minimum input data is the 
call graph and start addresses of functions, which allows analyzing the executable 
modules for unsupported IDA processors upon independent receipt of the specified 
data. Information about the selected components is stored in the IDB file and is used 
to display functions in the form of a tree-like list, similar to that used when displaying 
projects in modern integrated software development environments. 
The PC with average computing capabilities was used as a test bench: dual-core 
processor with a frequency of 3.1 GHz (Core i3 2100), 8 GB RAM, SSD drive. In the 
study of software modules of up to 10,000 functions, the calculation and construction 
of the "code map" takes place within a minute. Such delays are insignificant in the 
context of the study of the program code for the operator. The applied step distance 
function is given by the formula 4: 
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The experiments performed using the example of Nmap software version 7.10 x86 
for Windows OS1 [21] showed that the selected components in the executable code 
correspond to specific subsystems and classes in the source code (fig. 1). In addition, 
the dependence of the isolation degree of the components on their level and on the 
size of the software module was confirmed, which is fully consistent with the need to 
improve the quality of the software architecture while increasing the size and 
complexity of the project. In turn, the high quality of the latter is provided mainly by 
strengthening the cohesion of the components and weakening the coupling between 
them. 
It should be noted that in the process of decomposition, the specific features of the 
software module (including those introduced by the compiler) are revealed, the 
information on which allows simplifying and automating the study of the executable 
code. Due to the additional analysis, functions of the main cycles, standard service 
functions of working with memory and strings, error handling functions, springboard 
functions, designed to link the high-level components to each other are determined. 

6. Areas for further research 
For the full implementation of the approach to analyzing the executable code 
considered in the article, it is necessary to develop automatic methods for restoring 
the software architecture, making it possible to explore the entire existing range of 
sizes of software modules. In addition, these methods should be universal both in 
terms of hardware architecture and the technologies, languages, and programming 
paradigms used. To achieve these properties, it is required to work out the issues of 
the restoration of components interconnections and effective hierarchical clustering, 
including the case of random allocation of address space. 
In the near future, the proposed method for decomposing a software module will be 
developed. It is planned to implement automatic clustering methods; to take into 
account the relationship graph of functions based on the using data in addition to the 
call graph; to perform software modules classification based on the characteristics 
that affect the decomposition process (hardware architecture, programming 
paradigms, code size, etc.); to optimize the parameters of the step function of the 
distance for the extracted classes of modules. 

                                                           
1 nmap.exe module disassembled in IDA Pro 7.0 environment contains 3436 functions, 3082 functions were allocated 
after the use of heuristics. 
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It should be noted that the result is influenced by the quality of the call graph recovery 
and, accordingly, the improvement of this indicator is also one of the directions of the 
described approach development. 

 
Fig. 1 – Code map of the Nmap.exe software module version 7.10 x86 for Windows OS after 

contrast correction. The components corresponding to the classes and their groups in the 
source code are partially labeled. Small parts are not displayed due to scale limitations 

7. Conclusion 
Knowledge of the software architecture makes it possible to significantly reduce the 
requirements for consumed resources during the analysis of executable code by 
limiting the field of research, rational choice of priorities, abstraction from secondary 
elements, and joint analysis. As a result, the software module under study is divided 
into separate components with a characteristic size of several thousand functions, 
which, in fact, leads to a decrease in the dimension of the original problem. Moreover, 
there is an additional way of expansion of the obtained intermediate results of the 
analysis for the entire software module. To achieve the indicated advantages, it is 
necessary to restore the software architecture of the executable code.  
It is proposed to carry out this process in two stages:  
1) decomposition of the disassembled software module into separate components;  
2) the definition of the functionality of the selected components and their 
relationships. To perform the first stage, an automated method has been developed 
that allows selecting components corresponding to static libraries, classes, and their 
groups. This method is based on the functions clustering by the distances between 
them in the address space and on the call graph. Currently, interactive heat map 
clustering for the distance matrix is implemented as a plug-in for the IDA 
disassembler. The conducted experiments confirmed the possibility of restoring the 
software architecture only by the software module, which made it possible to 
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demonstrate in practice the advantages of the approach to the analysis of executable 
code considered in the article. 
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Подход к анализу исполняемого кода на основе 
восстановления программной архитектуры 
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111123, Россия, г. Москва, Свободный проспект, д. 4. 

Аннотация. В статье рассматриваются новый подход к получению дополнительной 
информации об исследуемом программном модуле на основе предварительного 
восстановления программной архитектуры в ходе анализа исполняемого кода. В 
результате появляется возможность сократить требования к затрачиваемым ресурсам за 
счёт ограничения области исследования, рационального выбора приоритетов, 
абстрагирования от второстепенных элементов. В работе демонстрируется 
осуществимость восстановления программной архитектуры в рамках двухэтапного 
процесса: вначале проводится выделение обособленных компонентов, а затем 
определяются их назначения и взаимоотношения. Предлагается автоматизированный 
метод декомпозиции программного модуля, позволяющий выделять компоненты, 
соответствующие статическим библиотекам, классам и их группам. Данный метод 
базируется на кластеризации функций по расстояниям между ними в адресном 
пространстве и на графе вызовов. Приведено описание реализации разработанного 
метода в виде плагина для дизассемблера IDA. 

Ключевые слова: анализ исполняемого кода; программная архитектура; кластеризация; 
граф вызовов; расстояние между функциями; программный модуль; декомпозиция. 
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