Approach to analyzing executable code
based on the software architecture recovery

D.S. Kononov <dspr2@yandex.ru>
Federal State Unitary Enterprise «18 CSRI», Ministry of Defence of RF,
4 Svobodny prospect, Moscow, Russia, 111123

Abstract. The article discusses a new approach to obtaining additional information about the
software module under study based on the preliminary software architecture recovery during
the executable code analysis. As a result, it is possible to reduce the requirements for the
resources spent by limiting the field of research, rational choice of priorities, and abstraction
from secondary elements. The paper demonstrates the feasibility of restoring the software
architecture in a two-step process: first, the separate components are isolated, and then their
purposes and relationships are determined. An automated method for decomposing a software
module is proposed, which allows allocating components corresponding to static libraries,
classes, and their groups. This method is based on the functions clustering by the distances
between them in the address space and on the call graph. A description of the implementation
of the developed method as a plug-in for the IDA disassembler is given.

Keywords: executable code analysis; software architecture; clustering; call graph; distance
between functions; software module; decomposition

DOI: 10.15514/ISPRAS-2018-30(5)-4

For citation: Kononov D.S. Approach to analyzing executable code based on the software
architecture recovery. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 75-88. DOI:
10.15514/ISPRAS-2018-30(5)-4

1. Introduction

The need to analyze the executable code is widely encountered in practice when
addressing issues related to the protection of intellectual property, the search for
software backdoors and vulnerabilities, the analysis of computer viruses, certification
of compilers, and software development. It should be noted that despite all the
achievements in this area, the task in question is still far from being solved. This is
due to the fundamental limitations expressed in the extreme complexity of
formalizing and automating the analysis of executable code [1]. If, when searching
for vulnerabilities, there are still effective automatic methods (fuzzing, symbolic
execution), then, when restoring the executable code algorithm, the result of the study
is largely determined by the quality of expert analysis. In this case, automation is
limited to local signature or statistical methods that facilitate the search for constants
or a special set of instructions in specific algorithms. Particularly acute shortcomings

75

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

of the modern scientific and methodological apparatus appear when it is impossible
to use dynamic analysis methods. Taking into account the volume of the software
modules under study, which in the case of embedded systems reach tens and hundreds
of thousands of functions, the solution of practical tasks in this area requires
significant investments of both material and time resources and the availability of
substantial human capital.

Thus, it becomes necessary to provide an expert with information about a software
module, important for achieving a positive result. As practice shows, first of all, an
expert needs to understand the logic of the software module [2], since it allows
targeted search through "reverse engineering" [3, p. 27]. In this case, the model of the
expert's work changes: instead of the direct restoration of the algorithms implemented
in the program code, the assumptions regarding their implementations are confirmed
and specific parameters are determined.

One of the important components of the "reverse engineering" approach is the
restoration of the software architecture, information about which is lost during
compilation. Software architecture [3, p. 9] can be described in the framework of a
hierarchical model of the structure of complex systems [4].

2. Hierarchical model of software

The development of complex software requires high-quality software architecture
with well-defined systems and subsystems that solve a specific problem and have
weak coupling [5, . Modern non-specialized programming languages clearly support
such programming paradigm [6]. When examining a software module, it is possible
to break it up into components that correspond to the initially programmed systems
and subsystems (for example, using source code or debugging information [7, 14]).
For definiteness, one can designate such selected subsets of a software module as
components, and the process of breaking up a software module — decomposition.
According to the model used, the set of components is hierarchical, in which the
components located at the upper level consist of a combination of the underlying ones.
As part of the research, the components classification is proposed, presented in Table
1.

Table 1. Classification of components

No. Name Description

1 Software A component that fully incorporates the software under
investigation. Always present in a single instance.

2 File A separate file in the corresponding file system included in the
software. For embedded systems without a file system, all
firmware is considered as a single file.

3 Embedded For systems with multiple processors, there can be several
operating system | embedded operating systems running in parallel within the same
address space.

76

Kononos JI.C. IToaxos K aHaIM3y UCIIONHAEMOT0 KOJIa Ha OCHOBE BOCCTAHOBJICHHS IPOTPAMMHOI apXUTEKTYpPEI. 7pyost

UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

4

Static library

For software modules (including embedded operating systems)
the presence of built-in libraries is typical. For example,
OpenSSL encryption libraries, various drivers, libraries of
standard functions (memcpy, strlen), etc. Components of a
similar size (500-3000 functions) that have a weak connection
(for example, only using API) with the rest of the code also
belong to this level.

Class group

This level corresponds to a group of classes in the object-
oriented programming terminology. Typical size from 100 to
1000 functions. Differ from level 4 in a greater connectivity with
the rest of the code. For example, various classes that implement
the same interface (plug-ins), network protocol handler, etc.

Class

This level corresponds to a class in the object-oriented
programming terminology or an object (compiled) module in the
C language. They have a size of up to 100 functions. Differ from
level 5 in a greater connectivity with the rest of the code. For
example, the implementation of a circular buffer, hash tables,
etc.

Function

Currently, the task of the allocation of automating functions from
executable code is solved and implemented in modern
disassemblers at a sufficient level.

Logical block in
a function

The part of the function consisting of basic units designed to
solve a subtask. For example, inline functions, condition
checking, loops, etc.

Basic unit

A sequence of instructions without transitions automatically
isolated by modern disassemblers (cycle body, the condition
being checked, etc.).

10

Logically
isolated

sequence of
instructions

Part of the basic unit, designed to solve some subtasks. For
example, loading data from memory, untwisted cycle, etc.

11

Instruction

Executable machine instruction. Automatically isolated by
modern disassemblers.

12

Instruction
argument

The executable machine instruction argument. Automatically
isolated by modern disassemblers.

In the modern scientific and methodological apparatus for analyzing executable code,
the information only about levels 1, 2, 3, 7, 9, 11, 12 is used due to the absence of
additional debugging data [8]. The existing significant gap between levels 3 and 7
makes it necessary to analyze software modules consisting of tens and hundreds of
thousands of functions using methods that have exponential computational
complexity (fuzzing, character execution, etc.) [1]. To overcome the existing
limitations, it is necessary to take into account levels 4, 5, 6 [3], which will
significantly reduce the requirement for the resources needed to conduct the software
module investigation [2]. Thus, existing methods with high computational complexity

71

can be scaled for software modules with a volume of more than 10,000 functions due
to their decomposition into components with a characteristic size falling within the
range of effective application of the corresponding methods. For embedded systems,
this process is, in fact, analogous to isolating dynamic libraries and programs from
the general-purpose operating system (OS) and examining them separately. At the
same time, to implement the considered approach, it is necessary that the separated
integral parts have a specific isolated functionality, that is, they would be components
according to the terminology adopted in the paper.

There are a large number of software architecture definitions [9, 10]. The conceptual
apparatus of the research is based on the IEEE 1471 standard [11, p. 9]: software
architecture is the fundamental organization of the system, embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution. Thus, from the definition, it follows that
the restoration of the disassembled software module architecture [3, p. 30] should be
carried out in two stages. The first is the decomposition of the disassembled software
module into levels 3-6 components, and the second is the determination of the
functionality of the selected components and the restoration of their relationships with
each other and with the environment.

3. Analysis of the executable code, taking into account the
software architecture

In the modern scientific and methodological apparatus, the main element of the
research is the function, which leads to the need to analyze and restore the algorithms
of a large number of interrelated functions to determine their common purpose. In
contrast, the preliminary decomposition of a software module allows determining the
role of a specific component in the architecture by analyzing only a few of its
functions (in some cases just one) or the data and strings used in it. As a result, based
on the described approach, a reasoned conclusion is made on the assignment of
hundreds and thousands of functions that form the corresponding component by
analyzing a small amount of data. Furthermore, additional information about the
purpose of the components is provided by an analysis of their relationships.

Knowledge of the software architecture makes it possible to rationally prioritize the
research within the framework of solving a specific practical problem. For example,
if it is necessary to restore the network interaction protocol of the botnet, then the
emphasis in the study should be placed on the appropriate handler. One of the features
of this approach to restoring the executable code algorithm is the ability to limit the
study of functions from non-priority components to the conceptual level. As an
example, one can cite the situation when the algorithm of the bootloader is
investigated and the component of interaction with flash memory is isolated.
In this case, one should not restore the entire algorithm for writing or reading flash
memory, but logically assign the values "write" or "read" to the component functions
called from the bootloader. In addition, the joint analysis of a single software module

78

Kononos /1.C. IToaxo/ k aHAIM3Y UCIOJIHIAEMOTO KOJIa Ha OCHOBE BOCCTAHOBJICHHS IPOTPAMMHOIT apXUTEKTYPBL. Tpyost
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

by several experts is significantly simplified due to the rational differentiation of the
studied areas into separate components.

Information about the software module architecture is also required when conducting
dynamic analysis. Thus, the lack of information about the components used
significantly complicates the analysis of execution routes and slicing [12]. Even when
examining programs for the Windows OS family under the x86 architecture, it is
difficult to draw an unequivocal conclusion about the algorithm being performed and
its purpose without separating the called functions by the system API. In the case of
embedded OS («firmwarey), this problem is only aggravated.

In the framework of «fuzzingy, it is impossible to correctly emphasize its direction
without knowing the architecture of the software module. The cases of work only
within one component from the study of their entirety are indistinguishable. The
availability of information about the software architecture makes it possible to
rationally select the area of study, excluding components that are not interesting in
the current context. This leads to the possibility of multiple reductions in
computational costs. For example, by isolating the component of working with strings
or with memory, one can prevent loop traversal in the functions of copying memory
or comparing strings, replacing them with appropriate heuristics.

Despite all the advantages described, in modern scientific and methodological
apparatus for analyzing executable code in the absence of debugging data, there are
no effective automated methods not only for restoring the software architecture but
also for decomposing a software module into components. As a result, such an
approach is not used in practice in the overwhelming majority of cases, since the time
and cost of resources do not pay off in the current realities. This situation significantly
limits the ability to analyze executable code.

4. Method of the software module decompaosition

As the applied methods for decomposing a software module into components, apart
from the expert one, one can single out various modifications of the task of finding
strongly connected components [13, of the call graph and various imaging
techniques. However, due to limited disassembling capabilities [8], low call graph
density, and the presence of widely used functions (for example, working with strings
and memory) that are called from almost anywhere, there are low informative results
that do not allow the software module decomposition
[3, . Dynamic analysis methods simplify this process insignificantly [2], but they
themselves are not applicable in the general case and work for relatively small
amounts of code due to the coverage problem [1, 12]. In this regard, similar
approaches to the analysis of executable code are practically not used, although they
are quite widespread for the source code [14, 15].

At the same time, the experience of software research has shown that often
interrelated functions are located nearby in the address space. This arrangement is
explained both by the optimization for the hardware architecture and by the
simplification of compiler development. For example, with paging memory, a speed

79

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

gain occurs when finding jointly called functions within a single page [16. On the
other hand, the simplest implementation of the linker involves the sequential addition
of object modules [18, , and shuffling the functions between them implies some
optimization. As a rule, an object module corresponds to a separate source code file
(a class in object-oriented programming) and, therefore, is a component by definition
in software with a well-developed architecture. Thus, to carry out the decomposition
of the software module, it is proposed to perform clustering of functions based on
distances both in the address space and on the call graph. It should be noted, however,
that the interrelated functions are absolutely not obliged to be located near each other
in the address space, but these cases are associated either with a significant level of
optimization or with the use of some protection measures (for example, small granular
randomization of address space allocation during compilation [19]).

As the distance between two functions in the address space, it is proposed to use the
number of positions enclosed between them in the list of functions sorted by starting
address. Such a choice is explained by the need to eliminate the dependence of the
distance on the size of the functions and the data placement order. However, it should
be taken into account that there is a certain selected size of a component of a certain
level (for example, 1000-3000 functions in the case of static libraries), and, at the
same time, it is necessary to consider the interaction of all functions in the software
module under study. Based on these prerequisites, in order to obtain the final distance
in the address space, an increasing step function was chosen corresponding to the
estimated sizes of the components at various levels
(see Table 1).

d(fuf;) =1G =D
(0,x=1r,=0
k;,0 <x<ny
l(x) = kyrn Sx<nmy)

kg, g Sx <00
kiy1 > kirip > 1

ki T eEN
where f; is a function with a sequence number i in the list of functions, sorted in order
of increasing starting addresses; k; — step function coefficient for the i-th range; 1; —
limit of the i-th range; K — the number of ranges in the step function.
Then each edge of the call graph is assigned a weight equal to the distance d (fi, f])
between the functions in the address space (1). As a result, the distance between
functions on the call graph is defined as the minimum sum of edge weights that form
the path from one function to another. It is necessary to clarify that the call graph, in
this case, is considered as an undirected graph, that is, there is a path in the graph
from the calling function to the called one, and vice versa. It should also be borne in
mind that with an arbitrary choice of the step function, it is possible that the distance

80

Kononos /1.C. IToaxo/ k aHAIM3Y UCIOJIHIAEMOTO KOJIa Ha OCHOBE BOCCTAHOBJICHHS IPOTPAMMHOIT apXUTEKTYPBL. Tpyost
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

calculated from the call graph will be less than the corresponding value of the step
function. The simplest example of this kind is

0,x=0
Ix)=] 1,x=1 (2
400, x >1

To eliminate this inconsistency, it is necessary to ensure that the selected step function
satisfies the condition: the coefficient value for each interval of the step function must
be less than or equal to the sum of the coefficient values for the previous interval and
the minimum possible edge weight (i.e., the coefficient of the first interval). Indeed,
consider the first point of any interval and draw an edge to it from the previous point
(located in the previous interval, respectively). Then if the difference between
adjacent intervals is greater than the minimum coefficient of the step function, then
the length of the edge from the origin to the selected point will be greater than the
length of the path through the immediately preceding point. The formally described
condition can be expressed by the formula (3).

kivy < ki+ky (3)
Since the weight of the edge in this problem is non-negative, it is possible to use the
Dijkstra algorithm to find the distances between all the functions [20, p. 595]. Then
the computational complexity of finding the distances from the current function to all
the others will be 0(n? + m), where n is the number of nodes (functions) on the call
graph, and m is the number of edges (calls). Given that clustering requires the
calculation of the distance matrix between all functions, then the total computational
complexity will be O(n® + nm). Using the binary heap in Dijkstra’s algorithm can
reduce the computational complexity to 0(n? logn + nmlogn). At the same time, it
is necessary to consider that m = 0(n?). However, in practice, the call graphs of real
programs are strongly sparse: the density of call graphs for all checked software
modules with volumes from a few hundred to tens of thousands of functions tends to
0. The latter is explained by the decrease in connectivity between subsystems with
increasing software scale. The calculated values of the ratio m/n (the average number
of edges per node) for the studied software modules did not exceed 4 and tends to
decrease with an increase in the module volume. Consequently, in the analysis of the
executable code, the relationship for the call graph is satisfied m = 0(n) and the
evaluation can be used for the computational complexity of constructing the distance
matrix 0(n?logn).
In the framework of the experiments, it was found that the parameters of the step
function can be specified considering the expected sizes of the components within
fairly wide limits. Thus, the proposed method for decomposing a software module is
robust. Additionally, this conclusion is confirmed by the fact that the experiments
were conducted under the conditions of the existing limitations of modern means of
disassembling (IDA software) to restore the call graph. As a result, one can conclude
that the information about the original software architecture is stored in the executable
code and can be restored.

81

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

5. Practical implementation

Currently, interactive clustering is implemented based on the creation of a heat map

for the distance matrix. In the distance matrix, functions are sorted in ascending order

of their starting addresses. In this case, no additional computational costs are required
apart from converting the calculated matrix into a graphic image in the BMP format.

An example of such an image ("code map") is shown in Fig. 1; the darker the point,

the smaller the distance between the functions.

Interactive clustering is performed by manually selecting rectangular blocks visually

different from adjacent areas. As a result, a hierarchical structure is formed on the

"code map" consisting of a number of square blocks located on the diagonal, which

either do not intersect or are nested in another block. This structure corresponds to

the software architecture of the module under study, and the diagonal blocks
themselves corresponds directly with the components of different levels. Blocks
outside the diagonal determine the degree of interaction between the components.

Also, for additional confirmation of the decision on the correctness of the components

selection and the initial assessment of their assignment, strings and other data, which

are used in the functions from the block selected on the "code map", are automatically
displayed on request for the operator.

The following optimizations are added during implementation:

1) individual disconnected components of the call graph are excluded if the number
of nodes is less than the threshold (the recommended value is 20);

2) individual disconnected call graph components having a diameter [13, p. 249]
less than the threshold are excluded (the recommended value of 3, excluding
graphs with the star topology);

3) excluded functions that are called only from a single function and do not call
anything;

4) springboard functions (mediating long-distance calls) are excluded from the
distance matrix by signature, but are taken into account when constructing routes;

5) stub functions and imported functions are excluded.
The program for calculating the distance matrix and interactive clustering is
implemented as a plug-in for the IDA disassembler. The minimum input data is the
call graph and start addresses of functions, which allows analyzing the executable
modules for unsupported IDA processors upon independent receipt of the specified
data. Information about the selected components is stored in the IDB file and is used
to display functions in the form of a tree-like list, similar to that used when displaying
projects in modern integrated software development environments.

The PC with average computing capabilities was used as a test bench: dual-core

processor with a frequency of 3.1 GHz (Core i3 2100), 8 GB RAM, SSD drive. In the

study of software modules of up to 10,000 functions, the calculation and construction
of the "code map" takes place within a minute. Such delays are insignificant in the
context of the study of the program code for the operator. The applied step distance

function is given by the formula 4:

82

Kononos /1.C. IToaxo/ k aHAIM3Y UCIOJIHIAEMOTO KOJIa Ha OCHOBE BOCCTAHOBJICHHS IPOTPAMMHOIT apXUTEKTYPBL. Tpyost
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

0,x=0
1,0 <x<100
2,100 < x <400)
3,400 < x <800
4,800 < x <1600
5,1600 <x
The experiments performed using the example of Nmap software version 7.10 x86
for Windows OS! [21] showed that the selected components in the executable code
correspond to specific subsystems and classes in the source code (fig. 1). In addition,
the dependence of the isolation degree of the components on their level and on the
size of the software module was confirmed, which is fully consistent with the need to
improve the quality of the software architecture while increasing the size and
complexity of the project. In turn, the high quality of the latter is provided mainly by
strengthening the cohesion of the components and weakening the coupling between
them.
It should be noted that in the process of decomposition, the specific features of the
software module (including those introduced by the compiler) are revealed, the
information on which allows simplifying and automating the study of the executable
code. Due to the additional analysis, functions of the main cycles, standard service
functions of working with memory and strings, error handling functions, springboard
functions, designed to link the high-level components to each other are determined.

I(x) =

6. Areas for further research

For the full implementation of the approach to analyzing the executable code
considered in the article, it is necessary to develop automatic methods for restoring
the software architecture, making it possible to explore the entire existing range of
sizes of software modules. In addition, these methods should be universal both in
terms of hardware architecture and the technologies, languages, and programming
paradigms used. To achieve these properties, it is required to work out the issues of
the restoration of components interconnections and effective hierarchical clustering,
including the case of random allocation of address space.

In the near future, the proposed method for decomposing a software module will be
developed. It is planned to implement automatic clustering methods; to take into
account the relationship graph of functions based on the using data in addition to the
call graph; to perform software modules classification based on the characteristics
that affect the decomposition process (hardware architecture, programming
paradigms, code size, etc.); to optimize the parameters of the step function of the
distance for the extracted classes of modules.

1 nmap.exe module disassembled in IDA Pro 7.0 environment contains 3436 functions, 3082 functions were allocated
after the use of heuristics.

83

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

It should be noted that the result is influenced by the quality of the call graph recovery
and, accordingly, the improvement of this indicator is also one of the directions of the
described approach development.

Nmap 7.10 Windows x86 OcHOBHAR GYHKUMOHANEHOCTL

.

Fig. 1 — Code map of the Nmap.exe software module version 7.10 x86 for Windows OS after
contrast correction. The components corresponding to the classes and their groups in the
source code are partially labeled. Small parts are not displayed due to scale limitations

7. Conclusion

Knowledge of the software architecture makes it possible to significantly reduce the
requirements for consumed resources during the analysis of executable code by
limiting the field of research, rational choice of priorities, abstraction from secondary
elements, and joint analysis. As a result, the software module under study is divided
into separate components with a characteristic size of several thousand functions,
which, in fact, leads to a decrease in the dimension of the original problem. Moreover,
there is an additional way of expansion of the obtained intermediate results of the
analysis for the entire software module. To achieve the indicated advantages, it is
necessary to restore the software architecture of the executable code.

It is proposed to carry out this process in two stages:
1) decomposition of the disassembled software module into separate components;
2) the definition of the functionality of the selected components and their
relationships. To perform the first stage, an automated method has been developed
that allows selecting components corresponding to static libraries, classes, and their
groups. This method is based on the functions clustering by the distances between
them in the address space and on the call graph. Currently, interactive heat map
clustering for the distance matrix is implemented as a plug-in for the IDA
disassembler. The conducted experiments confirmed the possibility of restoring the
software architecture only by the software module, which made it possible to

84

Kononos /1.C. IToaxo/ k aHAIM3Y UCIOJIHIAEMOTO KOJIa Ha OCHOBE BOCCTAHOBJICHHS IPOTPAMMHOIT apXUTEKTYPBL. Tpyost
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

demonstrate in practice the advantages of the approach to the analysis of executable
code considered in the article.

References

[1]. Kaushan V.V., Markin Yu.V., Padaryan V.A., Tikhonov A.Yu. Methods for Finding
Errors in a Binary Code. Technical Report. ISP RAS, Moscow, 2013 (in Russian).

[2]. Quist D.A., Liebrock L.M. Visualizing Compiled Executables for Malware Analysis.
Proc. of the International Workshop on Visualization for Cyber Security (VisSec09),
2009, pp. 27-32.

[3]. Streekmann N. Clustering-Based Support for Software Architecture Restructuring.
Springer, 2012, 241 p.

[4]. Kosyakov A., Svit U. Systems Engineering. Principles and Practice. 2nd ed. Moscow:
DMK Press, 2014, 624 p. (in Russian).

[5].- McConnell S. Code Complete. Workshop. 2nd ed. Moscow: Russian edition, 2010, 896 p.
(in Russian).

[6]. Microsoft Corp. ECMA-334 C# Language Specification. Ecma International. 2006.
Available at: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-
334.pdf, accessed 13.10.2017.

[7]. Ebert J., Riediger V., Winter A. Graph Technology in Reverse Engineering. The TGraph
Approach, Proc. of the 10th Workshop Sowtware Reengineering (WSR 2008), vol. 126,
2008, pp. 67-81.

[8]. Meng X., Miller B.P. Binary Code Is Not Easy. Proc. of the 25th International Symposium
on Software Testing and Analysis (ISSTA16), Saarbrucken, Germany, 2016, pp. 24-35.

[9]. Clements P., Bachmann F., Bass L. et al. Documenting Software Architectures: Views
and Beyond. 2nd ed. Addison-Wesley Professional, 2010, 517 p.

[10]. Ian G. Essential Software Architecture, 2nd ed. Springer, 2011, 242 p.

[11]. ANSI/IEEE Standard 1471-2000 Recommended Practice for Architectural Description of
Software-Intensive Systems.

[12]. Padaryan V.A., Getman A.L. et al. Methods and Software Supporting the Combined
Analysis of a Binary Code. Programming and Computer Software, vol. 40, issue 5, 2014,
pp- 276-287.

[13]. Novikov F.A. Discrete Mathematics for Programmers: Textbook for Universities, 3rd ed.
Piter, 2009, 384 p. (in Russian).

[14]. Bohnet J., Dollner J. Visual Exploration of Function Call Graphs for Feature Location in
Complex Software Systems. Proc. of the 2006 ACM Symposium on Software
Visualization, 2006, pp. 95-104.

[15]. Kienle H.M., Muller H.A. Rigi — An Environment for Software Reverse Engineering,
Exploration, Visualization and Redocumentation. Science of Computer Programming,
vol. 75, issue 4, 2010, pp. 247-263.

[16]. Eagle C. IDA Pro Book, 2nd ed. No Starch Press, 2011, 672 p.

[17]. Nurmukhametov A.R., Zhabotinsky E.A., Kurmangaleev S.F., Gaisaryan S.S.,
Vishnyakov A.V. Fine-grained address space layout randomization on program load. .
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017, pp. 163-182 (in Russian). DOI:
10.15514/ISPRAS-2017-29(6)-9

[18]. Bryant R.E., O'Hallaron D.R. Computer Systems: A Programmer's Perspective. 3rd ed.
Pearson, 2016, 1084 p.

85

Kononov D.S. Approach to analyzing executable code based on the software architecture recovery. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 5, 2018. pp. 75-88

[19]. Nurmukhametov A.R., Kurmangaleev S.F., Kaushan V.V., Gaisaryan S.S. Compiler
protection techniques against software vulnerabilities exploitation. Trudy ISP RAN/Proc.
ISP RAS, vol. 26, issue 3, 2014, pp. 113-126 (in Russian). DOI: 10.15514/ISPRAS-2014-
26(3)-6

[20]. Kormen T. Kh., Leyzerson Ch.I., Rivest R.L., Stein K. Algorithms: Construction and
Analysis, 3rd ed. Williams LLC, 2013, 1328 p. (in Russian).

[21]. Nmap: the Network Mapper, 2016. Available at: https://nmap.org/dist/nmap-7.10-
win32.zip, accessed 21.08.2018.

MoaxoAa K aHanu3y UCNOSTHAEMOro KoAa Ha OCHoBe
BOCCTaHOBIeHUSA NPOrPaMMHON apXUTEKTYpbl

/1.C. Kononos <dspr2@yandex.ru>
OI'VII «18 [THUH» MO P®,
111123, Poccus, e. Mockea, Ce0600Hblil npocnekm, 0. 4.

AHHOTammsA. B crathe paccMaTpuBarOTCS HOBBIM IOAXOJ K IOIYYEHHUIO JONOIHUTEIBHOMN
uHpopManuu 00 HCCIeAyeMOM MPOrpaMMHOM MOJYJIE€ HAa OCHOBE NPEIBapHTEIBHOTO
BOCCTAHOBJICHUSI MPOTPAMMHOM apXUTEKTyphl B XOJ€ aHalM3a HCIONHSIEeMOro kojga. B
pe3ynbTaTe MOSIBIAETCS BO3MOXKHOCTh COKPATHTh TPEOOBAHMS K 3aTPadMBAEMBIM PECYPCaM 3a
cuéT oOorpaHMYeHHs OONACTH WCCIEJOBAHUS, pPAIHMOHAIBHOTO BBIOOpAa IPHOPHUTETOB,
abCcTparupoBaHHs OT BTOPOCTENEHHBIX JJIEMEHTOB. B pabore nemoHcTpupyercs
OCYILIECTBUMOCTb BOCCTAHOBJICHHUS IPOIPAaMMHOM apXUTEKTYpbl B paMKax JABYX3TaIlHOTO
Iporecca: BHAdaje IPOBOJIUTCS BEHIJEICHHE OOOCOOIEHHBIX KOMIIOHEHTOB, a 3aTeM
OIpEJEIIAI0TCS X Ha3HAuUCHUs M B3auMOOTHolueHus. IIpeiiaraercss aBTOMaTU3MpOBAaHHbII
METO/l JICKOMIIO3UIMM IPOrPpaMMHOIO MOJIYJIS, MO3BOJLIOIIUM BBLAEIATH KOMIIOHEHTSHI,
COOTBETCTBYIOIINE CTAaTHYECKHMM OHONHOTEKaM, KjlaccaM M HMX Tpynmam. JlaHHbBIH MeTox
GasupyeTcs Ha KiacTepu3anud (QyHKIUH MO PacCTOSHUAM MEXKAY HUMHU B aJpEeCHOM
MIpoCTpaHCTBE M Ha Tpade BBI30BOB. [IpuBeneHO ommcaHwme peanu3anuy pa3pabOTaHHOTO
METOZa B BHJIE IUTaruHa Ut auzaccembiepa IDA.

KnroueBble cj10Ba: aHAN3 UCTIOIHSEMOTO KoJa; [IporpaMMHasi apXUTEKTypa; KilaCTepu3anus;
rpaq) BBI3OBOB; paCCTOAHNUEC MEKIAY (1)yHKL[I/I$[MI/I; HpOI‘paMMHBIﬁ MOAYJIb; JCKOMIIO3UIIUS.

DOI: 10.15514/ISPRAS-2018-30(5)-4

Juasi uutupoBanusi: Kononos [[.C. Iloxxon k aHanu3y HCIOJHAEMOro KOjJa Ha OCHOBE
BOCCTaHOBJICHUS IporpaMMHOi apxutektypsl. Tpynst UCII PAH, tom 30, Bem. 5, 2018 1.,
cTp. 75-88 (na anrnuiickom s3bike).. DOI: 10.15514/ISPRAS-2018-30(5)-4

Cnucok nutepartypbl

[1]. Kayman B.B., Mapxkus 10.B., [Tagapsu B.A., TuxoHoB A.JO. Mertozs! morcka ommook B
OouHapHOM Koje, Texundeckuit otuer, ICIT PAH, Mocksa, 2013.

[2]. Quist D.A., Liebrock L.M. Visualizing Compiled Executables for Malware Analysis.
Proc. of the International Workshop on Visualization for Cyber Security (VisSec09),
2009, pp. 27-32.

[3]. Streekmann N. Clustering-Based Support for Software Architecture Restructuring.
Springer, 2012, 241 p.

86

Kononos /1.C. IToaxo/ k aHAIM3Y UCIOJIHIAEMOTO KOJIa Ha OCHOBE BOCCTAHOBJICHHS IPOTPAMMHOIT apXUTEKTYPBL. Tpyost
UCII PAH, tom 30, Beim. 5, 2018 1., cTp. 75-88

[4].
[5].
[6].

[7].

[13].

[14].

[15].

[16].
[17].

[18].

[19].

[20].

[21].

Kocsxos A., Cur V. CucteMHas urkenepus. [IpuHnuns! u npakTuka. 2-e u3a. Mocksa:
JMK TIlpecc, 2014. 624 c.

Maxkonnenn C. CosepuieHHBIH koa. Macrep-kiace. 2-e u3a. Mocksa: M3narenscTBo
«Pycckas pegakuus», 2010. 896 c.

Microsoft Corp. ECMA-334 C# Language Specification. Ecma International. 2006. URL:
http://www.ecma-international.org/publications/filess ECMA-ST/Ecma-334.pdf (mata
obpamenus: 13.0xta0ps.2017).

Ebert J., Riediger V., Winter A. Graph Technology in Reverse Engineering. The TGraph
Approach, Proc. of the 10th Workshop Sowtware Reengineering (WSR 2008), vol. 126,
2008, pp. 67-81.

. Meng X., Miller B.P. Binary Code Is Not Easy. Proc. of the 25th International Symposium

on Software Testing and Analysis (ISSTA16), Saarbrucken, Germany, 2016, pp. 24-35.

. Clements P., Bachmann F., Bass L. et al. Documenting Software Architectures: Views

and Beyond. 2nd ed. Addison-Wesley Professional, 2010, 517 p.

. Ian G. Essential Software Architecture, 2nd ed. Springer, 2011, 242 p.
. ANSI/IEEE Standard 1471-2000 Recommended Practice for Architectural Description of

Software-Intensive Systems.

. IMapapsa B.A., T'erbman AM. u gp. MeTtogsl M IporpaMMHBIE CPEACTBA

TIOJIJIep>KUBalOIIie KOMOMHUPOBAHHBIHN aHanu3 ouHapHoro koza. Tpyxnsr ICITI PAH, Tom
26, Beim. 1, 2014 1., ctp. 251-276. DOIL: 10.15514/ISPRAS-2014-26(1)-8

HoBukoB @.A. JluckpeTHas MaTeMaTHKa Ui IPOrPaMMUCTOB: Y4eOHUK [UIS BY30B. 3-€
u3g. CII6: IMurep, 2009. 384 c.

Bohnet J., Dollner J. Visual Exploration of Function Call Graphs for Feature Location in
Complex Software Systems. Proc. of the 2006 ACM Symposium on Software
Visualization, 2006, pp. 95-104.

Kienle H.M., Muller H.A. Rigi — An Environment for Software Reverse Engineering,
Exploration, Visualization and Redocumentation. Science of Computer Programming,
vol. 75, issue 4, 2010, pp. 247-263.

Eagle C. IDA Pro Book, 2nd ed. No Starch Press, 2011, 672 p.

HypmyxametroB A.P., XabGorunckuii E.A., Kypmanranees II.®., Taiicapsa C.C.,
BumnskoB A.B. MenkorpanynspHas paHIOMHU3aLUs aIpPECHOTO IPOCTPAHCTBA
mporpamMmsel mpu 3amycke. Tpyasr UCIT PAH. tom 29, Beim. 6, ctp. 163-182. DOI:
10.15514/ISPRAS-2017-29(6)-9

Bryant R.E., O'Hallaron D.R. Computer Systems: A Programmer's Perspective. 3rd ed.
Pearson, 2016, 1084 p.

HypmyxameroB A.P., Kypmanranees II.d., Kayman B.B., C.C. I'. Ilpumenenue
KOMITWJIITOPHBIX IPeoOpa3oBaHUM U1 NMPOTHBOACHCTBHUS SKCILUIyaTallMH ysS3BHMOCTEH
nporpamMmHoro obecneuenus. Tpyasl MCII PAH, Tom 26, Bem. 3, ctp. 113-126. DOI:
10.15514/ISPRAS-2014-26(3)-6

Kopmen T.X., Jlefizepcon Y.U., Pusect P.JI., Illtaitn K. Anroput™msl: mocTpoeHue u
ananu3. 3-e uzn. Mocksa: OOO «W.J1. Bunbsimey, 2013. 1328 c.

Nmap.org. Nmap: the Network Mapper 2016. URL: https://nmap.org/dist/nmap-7.10-
win32.zip (zata obpamenus: 21.08.2018).

87

