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Abstract. Memory errors in Linux kernel drivers are a kind of serious bugs that can lead to
dangerous consequences but such errors are hard to detect. This article describes static
verification that aims at finding all errors under certain assumptions. Static verification of
industrial projects such as the Linux kernel requires additional effort. Limitations of current
tools for static verification disallow to analyze the Linux kernel as a whole, so we use a
simplified automatically generated environment model. This model introduces inaccuracy, but
provides ability for verification. In addition, we allow absent definitions for some functions
which results in incomplete ANSI C programs. The current work proposes an approach to
reveal issues with memory usage in such incomplete programs. Our static verification
technique is based on Symbolic Memory Graphs (SMG) with extensions aiming to reduce a
false alarm rate. We introduced an on-demand memory conception for simplification of kernel
API models and implemented this conception in static verification tool CPAchecker. Also, we
changed precision of a CPAchecker memory model from bytes to bits and supported structure
alignment similar to the GCC compiler. We implemented the predicate extension for SMG to
improve accuracy of the analysis. We verified of Linux kernel 4.11.6 and 4.16.10 with help of
the Klever verification framework with CPAchecker as a verification engine. Manual analysis
of warnings produced by Klever revealed 78 real bugs in drivers. We have made patches to fix
33 of them.
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1. Introduction

Operating system kernels are often written in the C programming language. This
language is portable and effective, but unfortunately it is not memory safe. Memory
issues can lead to vulnerabilities or unpredictable failures. Common methods such as
testing are unable to find all problems. A probable solution to get an evidence of

* The research was supported by RFBR grant 18-01-00426
143

A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 6, 2018. pp. 143-160

satisfiability of safety properties is formal methods and there are results of
comprehensive formal verification of the seL.4 microkernel [1]. However formal
methods generally require a whole program and a complete model of its environment
to produce an appropriate verdict. For example, Microsoft developed Static Driver
Verifier (SDV) [2] to improve Microsoft Windows stability. SDV contains models of
the kernel and drivers’ environment, and over 60 API usage rules.

The Linux kernel is important open source software. There are many research and
industrial projects for improving kernel quality by verification, testing, bug hunting,
fuzzing and error reports. Coverity [3], Saturn [4], DDVerify [5], Coccinelle [6],
Linux Driver Verification [7] are projects which work on improving Linux stability.
This article considers operating system kernel drivers with automatically generated
environment models as a target for approbation of a memory verification technology.
Main contributions of the paper are connected with extensions of an existed static
memory verification approach to be able to perform Linux kernel drivers verification,
which are described in Section 4.

2. Linux driver verification

The Linux kernel represents an industrial code base with more than 10 million lines

of drivers’ code. A distinctive feature of Linux is instability of internal interfaces. A

high speed of changes with a distributed development process requires an efficient

bug finding strategy.

The research of faults in Linux operating system drivers divides errors into typical

and specific [8]. Specific faults in drivers are described as connected with hardware

and not applicable to other drivers. Typical faults can be specified by some rule which

is true for all or some group of drivers. Typical faults are further divided into:

e Linux specific faults, which correspond to rules of correct usage of the Linux
kernel API;

e races and deadlocks, which are related with parallel execution;

e  generic problems, which are common for C programs such as null pointer
dereference, integer overflow, etc.

Authors show that 29.2% of typical errors fixed in stable branches of the Linux kernel

are generic problems. Statistics of memory problems corresponding to all generic

faults is shown in Table. 1.

Table. 1. Ratio of memory problems corresponding to all generic faults

Type Percentage
NULL pointer dereference 30.4%
Resource: 23.5%
memory leak,
double free,
use after free
Buffer overflow 7.8%
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Uninitialized: 5.9%
uninitialized pointer free,
write to unallocated memory

Total 67.6%

This information shows that the main part of generic faults match memory errors. We
suggest to improve situation with memory safety of the Linux kernel with help of
static verification.

The Linux Driver Verification project (LDV) [7, 9, 10] aims at performing automatic
static driver verification and reporting detected problems. It provides a static
verification framework called Klever [11] for Linux kernel verification including
automated environment model generation [12, 13], rules of correct kernel API usage,
interfaces for storing and visualization of verification results [14]. As a verification
engine Klever includes the CPAchecker [15] verification tool.

In this work, we added several extensions into the CPAchecker verification tool for
memory safety verification and improved Klever environment models to check
memory safety for drivers of the Linux kernel. We have made experimental evaluation
on drivers of Linux kernel 4.11.6 and 4.16.10, analyzed all memory safety problems
reported by the verification tool and classified them into bugs and false alarms. We
prepared bug reports and fixes to the newest kernel versions. Regarding false alarms,
we conclude that automatic environment generation heavily affects verification
results and requires further improvement.

3. Symbolic memory graphs

The symbolic memory graph (SMG) algorithm [16] is a kind of shape analysis. It
works with directional graph representation of a memory state. Nodes are used for
symbolic values, memory regions and abstracted structures representation. Edges
show references between nodes and are divided into point-to edges for pointers and
has-value edges. Each edge and node in SMG has a set of /abels representing size,
offset and allocation status. One symbolic memory graph with abstractions can
represent several memory states called concrete memory images. Set of all concrete
memory images for SMG G is denoted as MI(G).

Our SMG implementation in CPAchecker keeps mapping between global, stack
variables and memory regions. Also, it tracks mapping between symbolic and
concrete values. A memory graph is modified in correspondence with analyzed source
code.

Detailed description of operations on SMG can be found at [16]. Here we provide a
brief overview.

3.1. Read/write data reinterpretation
This operation emulates memory modification with validity checks.
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Modifications: Alevel of details for a memory model allows to take into account such
low level interpretation as unions and provide facility for reinterpretation values even
on the same offset with different types.
Algorithm supports partial values overwrite if memory for corresponding field
intersects. For example:
union {
int 1i;

1

2

3 char c;
4 }ous

5 u.i = 10;

6 u.c = 'A';

After line 5 union u will contain integer value 10 with size 4 byte, but after line 6
from this union we are able to read 1 byte char 'A’ or an undefined 4 byte integer
value.

Checks: For these operations, the algorithm performs checks against null pointer
dereference and read/write within object bounds.

3.2. Join of SMGs

This operation is central one for abstraction and decision whether a current memory
state is covered by another one and vice versa, so the algorithm can drop one of the
states. It takes as input 2 SMGs Gi, G, compares their concrete memory images and
produces join status with summarization SMG G. If MI(G)) [1 MI(G2) and
MI(G)) [ MI(G2) then SMGs are semantically incomparable and their join is
undefined.

Algorithm travels through pair of SMGs and tries to join nodes. It is possible if nodes
have same sizes, validity, and special conditions for join with abstract lists. Abstract
lists are joinable if they have same head, previous and next fields offsets, a join result
will have a number of elements equal to minimum from originals. Also, a result of a
join region with an abstract list become an abstract list. It is possible to insert an empty
list abstraction at any correct position in a graph to increase opportunity of correct
join.

3.3. Summarizing sequences of objects to list abstraction

This operation comes from the shape analysis theory. Ideas for different abstractions
could be found in Sagiv work [17]. SMG uses single and double linked lists as
abstractions.

The algorithm discovers sequences of neighboring objects which could be considered
as list entry candidates and then sequentially adds them into one abstract list and
increases its size. An abstraction size is considered as number of elements necessarily
present in the abstraction.
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3.4. Abstract list materialization

Materialization is an operation for unfolding the abstraction to memory regions on
write/read from abstracted regions.

3.5. Checking equality and inequality of values and pointers
The algorithm supports incomplete checking for equality and inequality of values and
pointers. In some cases, it can fail with different point-to edges from one abstracted
region.
The tool performs stack variables cleaning on function exit and checking for dangling
pointers to allocated memory, which helps identify memory leak errors.
Let's consider analysis of a simple example:

void main () {

1 void *array;
2 long b = 2;
3 long ¢ = 3;
4 array = calloc(l, 16);
5 memcpy (&array[4], &b, 4);
9 memcpy (&array[5], &c, 4);
}
Steps of the algorithm are shown in figs 1-6 below.
Stack
#1; void main();

REGION|army, 4B)
lewgl=0

Luscation: void *amay:

Fig. 1. Modification: allocate the 4 byte memory region on stack for pointer array

Stack

E1: voxl mainik

REGION{b, 4B)| REGION{ amay, 4H)
hevelmly level=ip

Of-28|
r
wl:2

Location; long b = 2;

Fig. 2. Modification: allocate the 4 byte memory region on stack for variable b and
assign it a new value #1 with explicit value 2

Check: a memory region size is sufficient for the assigned value.

147

A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 6, 2018. pp. 143-160

ak

B vid maai |
|

|klll'h i, 4H) RT"III"\u. -III| P:h’.lh'r\|mq:| 4H)
bevk=tl Solen |

Envpl=il

(L] Jiz-2m)
B T
(o) ()
1 Wy ¥, Ny F)

Location; kmg ¢ = 1,
Fig. 3. Modification: allocate the 4 byte memory region on stack for variable ¢ and
assign it a new value #2 with explicit value 3
Check: a memory region size is sufficient for the assigned value
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Fig. 4. Modification: allocate the 16 byte memory region on heap (mark it by tag
calloc_ID3), fill it by NULL values, and assign to array a new point-to-value #4 which points
to 0 offset of region calloc_ID3

Check: a region memory size is sufficient for the assigned value.

ok
Bl vodd mainil
REGEINGb, 4B} | REGIERN I, 4B | RECHE S =y, 1)
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Fig. 5. Modlification: assign 4 byte value #1 by offset 4 of region calloc_ID3
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Check: dereference and assignment are done within allocated memory.
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Fig. 6.Modification: assign 4 byte value #2 by offset 5 of region calloc_ID3, remove
intersecting values, so value at offset 4 of region calloc_ID3 is not defined

Check: dereference and assignment are done within allocated memory.
4. Extensions for SMG

4.1. Bit precise model

The Linux kernel operates on structures with bit fields. We implemented bit fields in
CPAchecker and switched SMG operations granularity from byte to bit precision.
Also, we simulate structure alignment corresponding to GCC compiler memory
usage.

4.2. Predicate extension

We implemented tracking of predicates over symbolic and concrete values stored in
a memory graph. This feature allows filtering infeasible paths. On branching we
perform a predicate satisfiability check to decide which branch is feasible. In addition,
this method allows us to extend memory region over-read and overwrite checks for
arrays using an error predicate check on a data reinterpretation operation.

4.3. On-demand memory

We consider the Linux kernel as trusted code and drivers as untrusted code in
following sense: all structures provided to drivers by the kernel core are controlled by
the kernel. We assume that the kernel recursively initializes all structure/union fields
so drivers do not require to manage these structures. We supported the current point
of view as the on-demand memory (ODM) concept within CPAchecker.

149

A.A. Vasilyev. Static verification for memory safety of Linux kernel drivers. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 6, 2018. pp. 143-160

Allocation of ODM is made by special function void* ext_allocation(). A returned
pointer allows any recursive dereference by any offset and distinguishes values by list
of offsets and pointers from the original pointer. Additionally, any explicitly allocated
memory which is reachable from on-demand memory is considered as automatically
freed on program exit.

SMG implementation of ODM is done by special labels on memory regions and
following behavior rules:

e any first dereference (read/write/free) of ODM pointers assumes that they are not
NULL, ODM function pointers are an address to a pure function which returns
nondeterministic value for non-pointer return value types or a pointer to ODM
for pointer return value types;

e read memory:
o read without previous read or write:
v' valid for any offset;

v’ returns nondeterministic values for non-pointer types and a pointer to
ODM for pointer types;

o read after write:
v valid for any offset;
v’ returns values that were written by write;
o read after read:
v valid for any offset;
v returns the same values that were read previously;
o read after free is not valid.
e  write memory:
o  write:
v valid for any offset;
v' store new values in memory;
write after free is not valid.
free memory:
pointers to ODM are not subjected for memory leaks;

o O O O

pointers to regular memory which are contained in ODM are not subjected
for memory leaks;

free of any ODM offset is valid;
double free of ODM with the same offset is not valid,;
read or write of freed ODM is not valid.
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5. Configurable Program Analysis

The theory of SMG is implemented as Configurable Program Analysis (CPA) [18]
within CPAchecker under the name SMGCPA.

Common CPA has abstract domain, transfer, merge and stop operators:

e  abstract domain describes abstract states which represent sets of concrete states
of the program;

e (ransfer gets one state and a control flow operation as input and returns all states
which appears after applying the operation on the original state;

e merge takes 2 states as input and tries to combine them into one;
e  stop identifies when one state is covered by others and decides whether it is
required to continue analysis with a current state.

CPAchecker allows to combine different CPAs into one composite CPA. It works with
a composite state which includes states of each involved CPAs. Merge produces a
Cartesian product of separate analyses merge results.

SMGCPA fits into CPA conception with the following operators:

e abstract domain has SMG states as abstractions;

e transfer performs SMG transformations corresponding to a current control flow
operation;

e  merge tries to join SMGs from states and returns new SMG if join is successful;

e  stop checks whether MI(G1) € MI(G2) or a state has memory issues.

6. Experimental results

Experiments were performed with the help of Klever static verification
framework [11], that is a part of LDV project [7]. Klever automatically generates
environment models for each separate driver.

We checked memory safety for drivers of Linux 4.11.6 and Linux 4.16.10.

Table 2 and 3 present results of experiments on 6224 and 5215 generated verification
tasks for Linux 4.11.6 and 4.16.10 respectively. We used the 15 minutes CPU time
limit for each verification task. We performed manual analysis of 561 Unsafe verdicts
for Linux 4.11.6 and 266 Unsafe verdicts for Linux 4.16.10 and classified 49 Unsafes
as real memory bugs and 512 as false alarms for Linux 4.11.6 and 29 real bugs and
237 false alarms for Linux 4.16.10.

Table 2. Evaluation on drivers of Linux 4.11.6

Safe 1560

Unknown 4023 Timeouts 2594
Others 1429

Unsafe 641 Bugs 49
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False alarms 512

Without marks 80

Table 3. Evaluation on drivers of Linux 4.16.10

Safe 2093

Unknown 2830 Timeouts 1293
Others 1537

Unsafe 292 Bugs 29
False alarms 237
Without marks 26

Causes of false alarms (512 on 4.11.6 and 237 on 4.16.10) are the following.

e Imprecise environment models (258 + 96);

Automatically generated environment models could mistakenly provide wrong driver
initialization and cleanup. Also, some emulated functions are imprecise for correct
proof of memory safety.

e  Absent function (139 + 58);

Current environment models do not contain functions imported from other drivers.
This leads to false alarms if undefined functions are important for memory safety
properties.

e  Require predicate SMG (83 + 43);

These false alarms are connected mainly with arithmetic operations on unknown
values. We expect that some common patterns used in software could be emulated by
additional predicates description, e.g. bitwise AND on unsigned values provide result
value less or equal to operands and this is common check for array dereference in the
Linux kernel.

e SMG problems (13 + 32);

Problems with analysis such as missed values after merge and wrong assumptions
about loop invariants.

e  Verification task generator problems (10 + 5);

The verification task generator omits information about packed pragma for structures
at final source files. Sometimes it provides less allocation sizes than unpacked
structure sizes.

e  Unknown allocation sizes (9 + 3);

If SM@G can not derive explicit values for allocation sizes it uses a predefined value,
which may be less than required.
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The list of reported bugs is presented in Table 4. Not all bugs were reported, because
some of them were detected in old unsupported drivers or were already fixed.

Table 4. Bugs in Linux 4.11.6 reported to Linux Kernel Mailing List (https://lkml.org/lkml)

Message ID

2017/8/1/615

2017/8/10/693
2017/8/10/597
2017/8/15/322
2017/8/10/535
2017/8/16/493
2017/8/11/366
2017/8/10/522
2017/8/11/368
2017/8/10/550
2017/8/16/345

Subject

Buffer overread in pv88090-regulator.ko

hwmon:(stts751) buffer overread on wrong chip

dmaengine: qcom_hidma: avoid freeing an uninitialized pointer
ASoC: samsung: i2s: Null pointer dereference on samsung_i2s_remove
i2¢c: use release_mem_region instead of release_resource

mtd: plat-ram: Replace manual resource management by devm
mISDN: Fix null pointer dereference at mISDN_FsmNew

parport: use release_mem_region instead of release resource
video: fbdev: udlfb: Fix use after free on dlfb_usb_probe error path
dvb-usb: Add memory free on error path in dw2102_probe()

udc: Memory leak on error path and use after free

Table 5. Bugs in Linux 4.16.10 reported to Linux Kernel Mailing List (https://lkml.org/lkml)

Message ID
2018/7/6/412
2018/7/18/551
2018/7/23/964
2018/7/6/389
2018/7/23/944
2018/7/27/764
2018/7/27/503
2018/7/23/949
2018/7/27/769
2018/7/27/661
2018/7/27/655
2018/7/27/772

2018/7/23/1020

2018/8/6/572

Subject

uwb: hwa-rc: fix memory leak at probe

media: dm1105: Limit number of cards to avoid buffer over read
media: dw2102: Fix memleak on sequence of probes

video: goldfishfb: fix memory leak on driver remove

firmware: vpd: Fix section enabled flag on vpd_section_destroy
misc: ti-st: Fix memory leak in the error path of probe()

media: vime: Remove redundant free

gpio: ml-ioh: Fix buffer underwrite on probe error path

can: ems_usb: Fix memory leak on ems_usb_disconnect
regulator: tps65217: Fix NULL pointer dereference on probe
scsi: 3ware: fix return 0 on the error path of probe

net: mdio-mux: bem-iproc: fix wrong getter and setter pair
HID: intel ish-hid: tx_buf memory leak on probe/remove

pinctrl: axp209: Fix NULL pointer dereference after allocation
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2018/7/27/508 media: davinci: vpif display: Mix memory leak on probe error path
2018/7/27/512  drm: gxl: Fix error handling at qx1_device init
2018/7/27/727  fmc: Fix memory leak and NULL pointer dereference

2018/7/27/755  drm: gxl: Fix NULL pointer dereference at
gxl_alloc_client_monitors_config

2018/6/9/253  staging: rts5208: add error handling into rtsx_probe
2018/7/27/644  tty: rocket: Fix possible buffer overwrite on register PCI
2018/8/6/615  serial: mxs-auart: Fix potential infinite loop

2018/8/7/292  usb: gadget: fotg210-udc: Fix memory leak of fotg210->ep][i]

Let's consider the bug 2017/8/15/322 from Table 4 discovered in the Samsung 12S
Controller driver within Linux 4.11.6 for which our patch was applied in 4.14-rcl.

1229 static int samsung i12s probe(struct platform device *pdev)
1238 {
1231 struct i2s dai *pri dai, *sec dai = NULL:

Fig. 7. (a) probe function

Klever provides a full error trace from an entry point to a error occurrence for the
Unsafe verdict. The parts of the error trace for the Samsung 12S Controller driver are
shown in fig. 7.

Fig. 7 (a) shows a part of the error trace with the declaration of the variable struct
i2s_dai *pri_dai in function samsung i2s_probe(). In the same function in fig. 7 (b)
pri_dai is initialized by function i2s_alloc_dai() (line 1246), and field sec_dai
becomes NULL (line 1095).

The third part of the error trace in fig. 7.(c) shows that sec_dai initialization is skipped
by condition in line 1319 (quirks & QUIRK SEC DAI) triggered by device
capabilities, so pri_dai is remained equal to NULL.

In the fig. 7, (d) we see that the structure pri_dai becomes stored at driver_data by
dev_set drvdata() in line 1363 and then extracted by dev_get drvdata() in line 1382
of samsung i2s _remove(). Next the driver assigns sec_dai in line 1383 and then
perform dereference of sec_dai in line 1386 without check for NULL, which leads to
NULL pointer dereference.

The bug can be reproduced on Samsung s3c6410-i2s and exynos7-i2sl devices by
inserting and removing driver module sound/soc/samsung/i2s.ko, because the
condition in line 1319 is false for i2sv3 dai type and i2sv5_dai type i2sl (see lines
1454 and 1477 in sound/soc/samsung/i2s.c).
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1246 = pri dai = i2s alloc_dai(pdev, 0};

1887 fir'l_u" i2s dal Sike 3

1889 115 = "'"uf Li "'-"' *iimp,;

1699 assml’l(unszgnad long)i2s) != (lunsigned long)((struct i
1893 12s->pdev = pdev;

1894 125 hprl dai = [struct i2s dai *)o;

iﬂ?ﬁ ssec dal = (stroct 53; dal "9

1096 12; >i2s dai dru symmetric rates = 1U;

1997 12s->i2s dai_drv.probe = &iamSuﬂgpils.dai probe;
1808 i2s-»12s dai drv.remove = fsamsung i2s dai_remove;
1999 125-#i2s dai drv.ops = Gsamsung i2s dal ops;

1168 i25-»12s dai drv.suspend = &i25 suspend:

Fig. 7. (b) pri_dai initialization

dHAD

1319 if (quirks & QUIRK SEC DAI) {

1320 sec dal = 125 alloc dai(pdev, true);

1321 if (!sec dai) {

1322 dev_err(&pdev->dev, "Unable to alloc I25 secyn"):
1323 ret = -ENOMEM;

1324 gote err_disable clk;

1325 }

1326

1327 sec_dai->lock = &pri_dai->spinlock;

1328 sec_dai->variant_regs = pri_dai->variant_regs;
1329 sec_dai->dma_playback.addr = regs base + 125TXDS;
1338 sec_dai->dma_playback.chan name = "tx-sec”;

1331

1332 if (inp) {

1333 sec_dai-»dma_playback.filter data = i2s pdata->dma_
1334 sec_dai->filter = i2s pdata->dma filter;
1335 ]

1336

1337 sec_dai->dma playback.addr width = 4;

1338 sec_dai-»addr = pri_dai- >addr;

1339 sec_dai->clk = pri dai->clk;

1348 sec_dai->quirks = qu1rk5

1341 sec dai-=idma playback.addr = idma addr;

1342 sec dai->pri dai = pri dai;

1343 pri dai->sec dai = sec dai;

1344

1345 ret = samsung_asoc_dma platform_register(&pdev-=>dev,
1346 sec_dai->filter, “tx-sec”, NULL);
1347 if (ret < @)

1348 aote err disable clk:

Fig. 7. (c) skipped pri_dai initialization
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p— S
1316 assume(ret = 0);

1319 assume( (quirks 20} = 6u);:

1357 assume( ( (unsigned lungf:!s pdatal = (lunsigned long)({struct
dev set drvdatalé pdev-»dev, (void *)pri dai);

1363 = dev_set drvdatalspdeu -xdov, (void '}prl_daAI
dev->driver data = data;

1834 return;

1365 v pa_runtime set activelfpdev->dev);

1366 pa_runtime enable(&pdev->dev);

1368 v ret = i2s_register clock provider(pdev)

1369 assume(ret = 8);

1378 return ;

361 v ldv 2 probed default = ldv_post_probe{ldv 2 probed default);
428 # Remove device from the _qrstu. Invoke callback remove from platform
samsung 125 removel{argl)

1388 # samsung_i2s_remove( ldv. 2 resource platform device);

1388 struct 125 dal ',"' H11 2

1381 struct i2s dai *sec dai ;

1382 pri dai = (struct i2¢ dai *)tap;

1382 - pri dai = (struct i2s dal 'rﬁev“get drvdata( (struct device
1824 return |.“r¢.'.' ' |dev->driver dat

1824 return ({void *)dev->driver -‘"ah

ec dal = P" dal=>38¢ IJ.'_I
1385 prL ‘dai->sec dal = [struct i2s dai *)0;
MULL pointer dereference on write
1385 SEt_da].-z-prl_dal = {struct i2s dai *16;

Fig. 7. (d) dev_set _drvdata/dev_get drvdata and NULL pointer dereference

7. Conclusions and future work

We have presented the approach to find memory errors in Linux kernel drivers using
static verification. Whereas the Linux kernel is widely tested, our experiments show
that it is possible to find memory bugs in Linux kernel drivers with help of our static
verification method.

We expect to reduce the false alarm rate by introducing a more precise predicate
extension. Further efforts will be aimed at reducing the number of timeouts.
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Cratuyeckas Bepmdmkaumsa oumMboK UCnonb3oBaHNA
namaTtn B moaynsax agpa OC Linux

A.A. Bacunveg <vasilyev@ispras.ru>
Hnemumym cucmemnozo npoepammuposanus um. B.I11. Heannuxosa PAH,
109004, Poccus, e. Mocksa, yn. A. Conxcenuyvina, 0. 235.

Abstract. OmmOKy HCIIOIB30BaHMS NMAMATH B MOIY/IIX SIApa ONepanoHHON cucTeMsl Linux
CJIO)KHO OOHApy>HTh, HO OHU MOTYT IPUBECTH K CEPHE3HBIM MOCIEACTBUSIM. B naHHOI cTaThe
MBI OITMICBIBAEM METO]] CTaTHUECKON BepH(HUKaLIH, TTO3BOJISIONINI OOHAPY>KHBAThH BCE OIIHOKH
B paMKax IpernoiaokeHni Metona. Cratndeckast Bepu(UKaIys KPYIHBIX IPEKTOB TaKHX, KaK
aagpo OC Linux, TpeOyroT momomHMTENbHBIX ycwiuid. CoBpeMEHHbIE HHCTPYMEHTEHI
CTaTHYECKOW Bepu(HKALMU HE MTO3BOJIAIOT aHAIM3UPOBATH PO KaK €IHHOE LEeNI0e, HO3TOMY
MBI HCIONB3YEM YIPOILIEHHYIO aBTOMATHYECKU TEHEPUPYEMYIO MOAENb OKpYXKeHHs. OTa
MOZIETb BHOCHT HEKOTOPYIO HETOYHOCTb, HO TMO3BOJISIET TPOBOIUTH CTATHYECKYIO
Bepudukanuio. Takxke Mbl I0IyCKaeM OTCYTCTBUE Tella HEKOTOPbIX (yHKIHUH, 4TO HPUBOIUT K
HETIONHBIM TIporpammam, HamucauHbIX Ha si3bike ANSI C. B nmannoit pabote npemaraercs
TOAXOR K OOHAPY)KCHUIO OIIMOOK HCIOJIB30BAHUS MaMATH B TAKHX HEIOJHBIX MPOTpaMMax.
Hama TexHuka cTaTndeckod BepHU(HKaIUM OCHOBAaHA HAa TEOPHH CHMBOJIMYECKHX Ipados
MaMSTH U €€ PacIIMpEeHHN ISl CHIDKEHHs KOJMYECTBA JIOXKHBIX cpabareiBaHmil. MBI BBEIH
KOHLISTII[MIO MaMsTU 10 TPeOOBaHUIO Ul yIpolueHus Mopeneit untepdeiico sapa OC u
peann3oBanu ee B ppeiiMBopke crarnueckoii Bepudukannu CPAchecker. Taxoke Mbl H3MEHIIH
ToyHOCTh Mofenu mamsaTu CPAchecker ¢ 6aliToB Ha HOANEPIKKY OTAEIBHBIX OUTOB U JOOABUIIU
MOEPKKY BBIPABHUBAHHS CTPYKTYp, aHAJIOTMYHOE MCIOIb30BAaHOMY B KoMmuisaTope. Jlms
MOBBILICHUS TOYHOCTH AaHAJIN3a Mbl PEAlU30BalIU IPEIUKATHOEC DPACIIUPEHHE COCTOSHUS
CHMBOJITYECKOTO Tpada maMsaTu. MbI mpoBesy mpoBepky Moxyieit siapa OC Linux s Bepeuit
4.11.6 u 4.16.10 ¢ mnomompsio ¢peiiMBopka crarndeckoil Bepudukammu Klever c
uHCcTpyMeHTOM Bepudukanuun CPAchecker, 4to mo3Bommio npoananmmsupoBarh 6224 u 5215
MOIyJiel COOTBETCTBYIOIIMX Bepcuil. Pyunoll ananu3 npenymnpexiaeHuit ot ¢peiiMBopka
Klever BoisiBuI 78 peanbHbIX OMIMOOK B MOAYMSX siApa. MBI cliefany naTdu s HCIIPaBIeHHs
33 u3 HuX.

KiroueBble cj10Ba: aHAJIM3 PEKYPCHBHBIX CTPYKTYpP AQHHBIX; CTaTHYecKas BepH(HUKalus;
CHMBOJIMYECCKUE TPpadbl TaMATH; MOJIEIN MAMSITH.

DOI: 10.15514/ISPRAS-2018-30(6)-8

Jna nutupoBanus: BacmieeB A.A. Crarmdeckas Bepu(HKanus OMHOOK HCHONB30BAHUS
namsat B Moayisx sapa OC Linux. Tpynst UCIT PAH, tom 30, Bem. 6, 2018 1, ctp. 143-160.
DOI: 10.15514/ISPRAS-2018-30(6)-8

Cnucok nutepatypbl

[1]. G.Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and G. Heiser,
Comprehensive formal verification of an os microkernel. ACM Transactions on Computer
Systems, vol. 32, no. 1, 2014, pp. 2:1-2:70.

[2]. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S.
K. Rajamani, and A. Ustuner, Thorough static analysis of device drivers. SIGOPS
Operating Systems Review, vol. 40, no. 4, 2006, pp. 73-85.

158



Bacuibes A.A. Cratudeckas Bepudukaus Moxyieii sapa Linux Ha omn6ku paboTsl ¢ namsteio. Tpyos: UCIT PAH, Tom
30, Boim. 6, 2018 r, cTp. 143-160

[3]

[4].
[5].

[6].

[7].

[9].

[10].

. D. Engler and M. Musuvathi. Static analysis versus software model checking for bug

finding. Lecture Notes in Computer Science, vol. 2937, 2004, pp. 191-210.

Saturn. Precise and Scalable Software Analysis. Available at: http://saturn.stanford.edu/,

accessed 01.12.2018.

T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher. Model checking concurrent

Linux device drivers. In Proceedings of the 22nd IEEE/ACM Int. Conference on

Automated Software Engineering, 2007, pp. 501-504.

N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and G. Muller. Faults in Linux: Ten

years later. In Proceedings of the 16th Int. Conference on Architectural Support for

Programming Languages and Operating Systems, 2011, pp. 305-318.

Linux driver verification project. Available at: http:/linuxtesting.org/ldv, accessed

01.12.2018.

. B.C. Myrunna, E.M. Hosuko, A.B. XopommunoB, AHaiu3 TUIOBBIX OHIMOOK B

npaiiBepax onepaunoHHoi cuctemsl Linux. Tpyast UCIT PAH, Tom 22, 2012, ctp. 349-

374. DOI: 10.15514/ISPRAS-2012-22-19.

A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov. Establishing Linux driver

verification process, Lecture Notes in Computer Science, vol. 5947, pp. 165-176, 2010.

I. Zakharov, M. Mandrykin, V. Mutilin, E. Novikov, A. Petrenko, and A. Khoroshilov.

Configurable toolset for static verification of operating systems kernel modules.

Programming and Computer Software, vol. 41, no. 1, 2015, pp. 49-64.

. Klever verification framework. Available at: https://forge.ispras.ru/projects/klever,
accessed 01.12.2018.

. .S. Zakharov, V.S. Mutilin, and A.V. Khoroshilov. Pattern-based environment modeling
for static verification of linux kernel modules. Programming and Computer Software, vol.
41, no. 3, 2015, pp. 183-195.

. A. Khoroshilov, V. Mutilin, E. Novikov, and 1. Zakharov. Modeling environment for static

verification of linux kernel modules. Lecture Notes in Computer Science, vol. 8974, 2015,
pp. 400-414.

. E. Novikov and I. Zakharov. Towards automated static verification of GNU C programs.

Lecture Notes in Computer Science, vol. 10742, 2018, pp. 402—416.

. D. Beyer and M. Keremoglu. CPAchecker: A tool for configurable software verification.

Lecture Notes in Computer Science, vol. 6806, 2011, pp. 184—190.

. K. Dudka, P. Peringer, and T. Vojnar. Byte-precise verification of low-level list

manipulation. Lecture Notes in Computer Science, vol. 7935, 2013, pp. 215-237.

. R. Wilhelm, S. Sagiv, and T. W. Reps. Shape analysis. Lecture Notes in Computer Science,

vol. 1781, 2000, pp. 1-17.

. D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:

concretizing the convergence of model checking and program analysis. Lecture Notes in
Computer Science, vol. 4590, 2007, pp. 504-518.

159



