
ISSN 0361�7688, Programming and Computer Software, 2014, Vol. 40, No. 1, pp. 1–9. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov, M.M. Chupilko, 2014, published in Programmirovanie, 2014, Vol. 40, No. 1.

1

1. INTRODUCTION

To ensure the correctness and reliability of micro�
processor operation, a set of activities is used. Such
activities are known as verification and testing [1]. Ver�
ification is performed at the stage of design; it is
intended for detecting logical errors in the micropro�
cessor design. Testing is performed at the manufactur�
ing stage; it is intended for detecting physical defects
in integrated circuits. To accomplish these tasks, test
programs (or just tests) are used; these are special
sequences of microprocessor instructions resulting in
the occurrence of various situations in its operation
(internal events, interaction between components,
and others) [2]. Below, we use the term testing both for
verification and testing.

By the present time, various methods for auto�
mated test generation have been proposed. They can
be classified as follows: (1) random generation (gener�
ation of pseudorandom programs) [3], (2) combinato�
rial generation (systematic enumeration of programs
of bounded length) [2], (3) template�based generation
(generation of programs based on a given high�level
description of test scenarios) [4]; (4) model�based gen�
eration (generation of programs that cover a certain
class of situations in the microprocessor model) [5].
It is clear that there is no universal method for all test�

ing problems. In practice, a combination of various
approaches, which complement and enhance each
other, is used. Typically, the generic operation of the
microprocessor is verified using random tests, while
the most important modules and subsystems are veri�
fied using model�based tests.

Unfortunately, no unified environment for the
integration of various test generation methods is cur�
rently available. To test a microprocessor, verification
engineers have to use many tools with different for�
mats of input and output data; this gives rise to diffi�
culties in their integration and maintaining the com�
patibility of their configurations. When independent
works are performed (for example, for the generation
of tests of different kinds), different tools can easily be
used. However, a complex task may require the use of
several tools (for example, if a test consisting of parts
of different types is to be generated); in this case, a
nontrivial integration procedure can be needed. Fur�
thermore, different tools use different incompatible
descriptions of the microprocessor and test scenarios;
as a result the same objects are specified several times
thus complicating test generation support.

In this paper, we propose a concept of extensible
test generation environment for microprocessors. This
environment is built around a microprocessor model
that provides knowledge about the target microproces�

Extensible Environment for Test Program Generation
for Microprocessors

A. S. Kamkin, T. I. Sergeeva, S. A. Smolov,
A. D. Tatarnikov, and M. M. Chupilko

Institute for System Programming, Russian Academy of Sciences,
ul. Solzhenitsyna 25, Moscow, 109004 Russia

e�mail: kamkin@ispras.ru, leonsia@ispras.ru, ssedai@ispras.ru, andrewt@ispras.ru, chupilko@ispras.ru
Received August 10, 2013

Abstract—Development of test programs and analysis of the results of their execution is the basic approach
to verification of microprocessors at the system level. There is a variety of methods for the automation of test
generation, starting with the generation of random code and ending with directed model�based test genera�
tion. However, there is no cure�all method. In practice, combinations of various complementary techniques
are used. Unfortunately, no solution for the integration of various test generation methods into a unified envi�
ronment is currently available. To test a microprocessor, verification engineers are forced to use many differ�
ent test generators, which results in a number of difficulties, such as (1) the necessity to ensure the compati�
bility of tool configurations (in each tool, a specific description of the target microprocessor is used, which
leads to duplication of information); (2) the necessity to develop utilities for integration tools (different tools
have different interfaces and use different data formats). This paper describes a concept of extensible envi�
ronment for test program generation for microprocessors. This environment provides a unified approach for
test generation; it supports widespread test generation techniques, and can be extended by new testing tools.
The proposed concept was partially implemented in MicroTESK (Microprocessor TEsting and Specification
Kit).

DOI: 10.1134/S0361768814010046

2

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

KAMKIN et al.

sor (its instruction set, registers, etc.) in a certain form.
This model can be used by test generators, which are
extensions of the environment. All test generators
implement identical interfaces that allow one to spec�
ify generation parameters (such as a subset of the
instruction set to be used, probabilities of various
instructions, and the like) and get access to the gener�
ation results (internal representation of tests). Engi�
neers interact with the environment using test tem�
plates that hierarchically specify the test generators to
be used, parameters of their operation, and methods
used to merges the test generation results into a unified
test program.

The paper is organized as follows. In Section 2, a
review of the available test generation methods and
tools is given. In Section 3, these approaches are ana�
lyzed, and the concept of extensible test generation
environment is described. Section 4 deals with the
architecture of the environment and gives an overview
of its basic components—modeling environment and
testing environment. In Section 5, the modeling envi�
ronment and its components compiler and modeling
library are considered. Section 6 describes the testing
environment and its components test template proces�
sor, test library, and constraint resolution mechanism.
Section 7 summarizes the results and indicates direc�
tions for further studies.

2. TEST GENERATION METHODS

A variety of test generation methods have been pro�
posed. They can be subdivided into two large classes:
(1) manual development and (2) automatic generation.
Presently, manual development is used for testing the
situations in microprocessor behavior that are difficult
to formalize or are hardly probable. However, manual
development is rarely used for systematic verification
of microprocessors. Automatic generation methods
can be classified as follows: (1) random generation, (2)
combinatorial generation, (3) template�based genera�
tion, and (4) model�based generation.

Random generation is the most widespread method
for generating complex even though not directed tests
for microprocessor verification. Despite the ease of
implementation, this method can generate an inten�
sive flow of stimuli thus helping detect nontrivial bugs.
A well�know generator of this type is RAVEN (Ran�
dom Architecture Verification Engine) developed by
the Obsidian Software company (which was later pur�
chased by ARM). This tool not only uses random code
generation, but also takes into account typical design
errors. RAVEN is based on predeveloped test genera�
tors, but it can be extended with user�defined compo�
nents [3]. Unfortunately, no implementation details of
this tool are available.

Another approach to test generation is combinato�
rial generation. The analysis of bugs in microproces�
sors shows that many of them can be detected using
short test examples consisting of 2–5 instructions.

Therefore, it is reasonable to search through short
instruction sequences (including test situations for
individual instructions and dependences between pairs
of instructions) [2]. This method was implemented in
the first version of MicroTESK (Microprocessor Test�
ing and Specification Kit) developed in the Institute
for System Programming, Russian Academy of Sci�
ences. This tool supports hierarchical decomposition
of the test generator into iterators (of which each is
responsible for the search through a specific part of the
test) and composers (which combine the results pro�
duced by internal iterators into more complex test
sequences). In addition, MicroTESK can generate
tests containing control transfer instructions. For that
purpose, various control flow graphs are constructed
and possible execution paths of limited length are
searched through for each of them [7].

The next approach is template�based generation.
A test template is an abstract representation of the test
program in which the specific values of instruction
operands (as is the case in an ordinary program) are
replaced with constraints (symbolic values). When gen�
erating a test, the generator tries to find a random solu�
tion of the system of constraints (this approach is often
called constraint�based random generation [8]). Due to
the automation of a bulk of routine work, this method
considerably improves the performance of verification
engineers. The most well�known generator of this type
is Genesys�Pro (IBM Research) [4]. This tool uses two
types of input data: (1) a model, which describes the
microprocessor architecture, and (2) test templates,
which specify testing scenarios. Genesys�Pro gener�
ates a test sequentially; that is, an instruction to be
included in the test program is chosen at each step,
and then the system of constraints imposed on its
operands is formulated and solved.

In distinction from the approaches described
above, the model�based generation uses formal models
of microprocessors to generate tests (or test tem�
plates). To clarify the terminology, we note that there
are two types of microprocessor models: (1) instruc�
tion�level (behavioral) models and (2) microarchitec�
ture (structural) models. The models of the first type
specify the instruction set of a microprocessor (this is
a view from outside). The models of the second type
specify the structure organization of a microprocessor
(this is a view from inside). All test generation methods
use instruction�level models explicitly or implicitly;
however, only few methods use microarchitecture
models (exactly these methods are called model�
based). Below we consider some of such approaches.

In [5], a directed test generation method was pro�
posed. It uses detailed specifications of the micropro�
cessor represented in the EXPRESSION language [9]
and then translates them into SVM (Symbolic Model
Verifier) [10]. Specifications determine the micropro�
cessor structure (its components and connections
between them), its behavior (semantics of the instruc�
tions), and the relationship between the structure and

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

EXTENSIBLE ENVIRONMENT FOR TEST PROGRAM GENERATION 3

behavior. The key part of paper [5] is the fault model,
which describes typical design errors (errors in indi�
vidual operations, in interaction of concurrently exe�
cuting operations, etc.). Given the fault model, a set of
formulas is generated for the microprocessor. Each
formula determines the condition under which a par�
ticular error occurs. For each formula, a test is con�
structed using SVM (and the model checking method
underlying SVM); in fact, this is a counterexample for
the negation of the formula. Then, this counterexample
is transformed into a test program. In the opinion of the
authors of [5], this method cannot be scaled for com�
plex microprocessors. To complement this method,
the test template approach is proposed. Test templates
are developed manually so as to describe chains of
instructions that specify certain situations in the
microprocessor behavior (primarily, pipeline con�
flicts). Tests are generated using a graph model of the
microprocessor derived from the specifications.

In [11], the microprocessor microarchitecture is
represented in the form of an operation state machine
(OSM). The OSM includes two layers: (1) operational
level and (2) hardware level. At the first level, the logic of
the step�by�step execution of operations is described—
each operation is described by an individual extended
finite state machine (EFSM). At the second level, hard�
ware resources of the microprocessor are described—
each resource is assigned a token. The tokens are con�
trolled by special token managers. As transitions in the
OSM are performed, the OSMs can capture and free
tokens using token managers. The microprocessor
model is defined as a combination of operation and
resource state machines. Test programs are generated
by traversing all reachable states and transitions of the
combined OSM.

3. CONCEPT OF EXTENSIBLE
ENVIRONMENT FOR TEST GENERATION

Let us analyze the test generation methods and
tools described above and define the concept of exten�
sible environment for test generation. Extensibility is a
characteristic of the environment indicating how
much effort is needed to integrate into it a new or
existing component (in our case, this is a microproces�
sor model or test generator). The less effort is needed,
the better the extensibility of the environment. The
aim of the present paper is to propose an architecture
of the test generation environment that minimizes the
effort needed to create new components and integrate
them into the environment.

Extensible environments are typically built on the
following principle. They have a kernel (platform) and
extensions (plugins) interacting with the kernel at pre�
determined extension points. It goes without saying
that the interfaces between the kernel and extensions,
as well as the methods of installation of the extensions
and their invocation from the environment for accom�
plishing specific tasks must be clearly defined. In our

opinion, open source code positively affects the envi�
ronment extensibility because the availability of code
can simplify the development of extensions.

All the approaches to test generation use instruc�
tion�level models explicitly or implicitly (to create a
test, one must know preconditions of instructions and
their assembler format); however, the more complex
test problems, the more complex models are needed to
solve them. In our opinion, the kernel of the test gen�
eration environment should be based on instruction�
level models and the corresponding test generation
methods (random, combinatorial, and template�
based test generation). More specific models and gen�
erators based on them should be in the form of exten�
sions. The test generation environment can be conve�
niently represented as consisting of two parts: (1) mod�
eling environment and (2) testing environment.

The kernel of the modeling environment makes it
possible to describe registers (variables that store bit
vectors of fixed size), memory (an array of words), and
instructions (atomic actions on registers and memory).
More detailed specifications are represented by exten�
sions of the model, which are connected to the environ�
ment through the extension points (memory access
handler, instruction invocation handler, etc.). The
modeling environment supports standard extensions
for the description of typical subsystems, such as mem�
ory control unit (description of the cache memory hier�
archy, address translation mechanism, etc.) and pipe�
line control unit (descriptions of the pipeline stages,
control flow switches, etc.). For standard extensions,
one can install additional extensions (for example, to
specify the strategy of cache row replacement or to
describe the behavior of pipeline stages).

The testing environment consists of generators of
two types: (1) test sequence generators and (2) test data
generators.

The main types of test sequence generators are ran�
dom and combinatorial generators [2, 3]. This is because
the modeling environment is based on instruction�level
models, which do not allow the use of more intricate
test generation methods. An important property of the
testing environment is the support of composition of
test programs [12]. Suppose that there are two test pro�
grams (or two test templates) aimed at the creation of
different and relatively independent situations in the
operation of the microprocessor. Then, a combination
of these programs can lead to the simultaneous (or
close in time) occurrence of these situations. More
complex model�based test generators can be installed
in the environment together with the corresponding
modeling tools. Note that the extension of the model�
ing environment is typically accompanied with an
extension of the testing environment (when a new type
of models is added, one should indicate how tests
based on them can be generated).

A promising approach to test data generation is the
generation based on constraint resolution (as is done
in Genesys�Pro [4]). It is assumed that test situations

4

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

KAMKIN et al.

are represented in terms of constraints on the values of
instruction operands and on the state of the micropro�
cessor. An advantage of this approach is the capability
of combining test situations by combining their con�
straints. In distinction from Genesys�Pro with its spe�
cialized constraint solver, we propose to use universal
solvers, such as Yices [13] or Z3 [14], which support
the SMT�LIB language [15]. In addition, the kernel of
the generator can be extended by user�defined test data
generators, which is useful in the case when test situa�
tions are difficult to represent in the form of constraints.
The testing environment includes a library of built�in
random and directed test generators (for example, for
testing floating point arithmetic units [16]).

4. ARCHITECTURE OF THE MICROTESK
ENVIRONMENT

The MicroTESK test generation environment
includes two basic parts: (1) modeling environment and
(2) testing environment. The purpose of the modeling
environment is to describe the target microprocessor
(describe the microprocessor model) and to specify the
test coverage model. The model (the microprocessor
model and test coverage model) is derived from formal
specifications written in the architecture description
language (ADL). In turn, the testing environment is
responsible for the generation of test programs for the
target microprocessor based on the information pro�
vided by the model. The goals of testing are defined in
test templates written in the template description lan�
guage (TDL).

The MicroTESK modeling environment consists
of the following components: (1) compiler, which ana�
lyzes formal specifications in ADL and creates a
model, and (2) modeling library, which contains inter�
faces that must be implemented in the model and stan�
dard blocks from which the model can be constructed
(see Fig. 1). The compiler includes two backend com�
ponents: (1) Model generation module, which constructs
the executable model of the microprocessor, and (2) cov�
erage extraction module, which derives a test coverage
model for microprocessor instructions. Respectively, the
modeling library consists of the microprocessor modeling
library and (2) coverage description library.

The MicroTESK testing environment consists of
the following components: (1) test template processor,
which generates test programs from templates written
in TDL; (2) test library, which contains a variety of test
sequence generators and test data generators used by the
test template processor; and (3) constraint solver,
which provides to the test data generators an interface
for interacting with external SMT solvers.

The components of the environment are not solid
assemblies; they can be extended by modules designed
for executing specific tasks. All the extensions related
to one microprocessor subsystem are usually joined
into one plugin (see Fig. 2). To extend the environ�
ment with modeling and testing tools for a certain sub�

system, extensions of the components of the environ�
ment must be developed, including the modeling
library (containing standard blocks for modeling this
subsystem), testing library (containing generators of
tests aimed at the verification of this subsystem), spec�
ification language, and compiler (which make it possi�
ble to describe the subsystem under examination in a
certain language).

The functional capabilities of the environment can
be subdivided according to the following basic sub�
systems: (1) instruction set, (2) memory management,
and (3) pipeline management. The tools of the environ�
ment corresponding to the first subsystem form the
kernel of the environment; they are intended for mod�
eling the microprocessor instructions and generating
test programs based of instruction�level models (ran�
dom, combinatorial, and template�based generators
are used). The modeling and testing of memory and
pipeline management mechanisms are supported by
standard extensions of the environment. The other
subsystems are supported by user�defined extensions.

5. MICROTESK MODELING ENVIRONMENT

The MicroTESK modeling environment is designed
for representing knowledge about the target micropro�
cessor and for transferring this knowledge to the test�
ing environment. The general procedure of the mod�
eling environment operation is as follows: (1) a verifi�
cation engineer develops formal specifications of the
microprocessor; (2) these specifications are processed
by the compiler, which creates the model of the micro�
processor using the modeling library. Let us consider
the components of the modeling environment in more
detail.

5.1. Compiler

The compiler processes the formal specifications of
the microprocessor and builds a microprocessor model
and test coverage model using, respectively, the model
generation unit and the coverage extraction unit; in�
built modeling libraries of microprocessors and cover�
age descriptions are also used. Note that microproces�
sor specifications may be written in several languages
of which each is responsible for a certain subsystem.
The main part of specifications is related to the
instruction set of the microprocessor; the other parts
describe memory management, pipeline manage�
ment, and other subsystems. Due to the inhomogene�
ity of specifications, the compiler is actually a collec�
tion of tools of which each processes a corresponding
part of specifications.

Presently, MicroTESK supports only one ADL
language for the specification of the instruction set;
this is Sim�nML [17, 18]. Below, a code describing the
integer addition (ADD) from the MIPS instruction set
[19] in this language is presented. We want to note the
following facts. (1) The function UNPREDICTABLE

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

EXTENSIBLE ENVIRONMENT FOR TEST PROGRAM GENERATION 5

may be used in specifications to indicate the situations
in which the microprocessor behavior is undeter�
mined. (2) By analyzing control flows in instruction
specifications, one can automatically extract a model
of test coverage. (3) Instructions can be joined into
groups forming abstract instructions, which can be
used in test templates. (4) Specifications are execut�
able and deterministic; as a result, the environment
can predict the results of program execution [12].
op ADD(rd: GPR, rs: GPR, rt: GPR)
action = {

if(NotWordValue(rs) || NotWordValue(rt))
then

UNPREDICTABLE();
endif;
tmp = rs<31..31>::rs<31..0> + rt<31..31>::rt<31..0>;
if(tmp<32..32> != tmp<31..31>)
then

SignalException(“IntegerOverflow”);
else

rd = sign_extend(tmp<31..0>);

endif;
}

syntax = format(“add %s,%s,%s”,

rd.syntax, rs.syntax, rt.syntax)

op ALU = ADD | SUB | …

5.2. Microprocessor Modeling Library

The microprocessor modeling library is designed
for creating executable models of microprocessors that
are used by the environment for interpreting test pro�
grams and for tracking the state of the model in the
course of test generation. The state tracking is needed
for the generation of self�verifiable tests (programs
with built�in checks of the microprocessor state).
Thus, the microprocessor model includes an instruc�
tion interpreter and functions for accessing the state of
the model. In addition, the model provides metadata
that describe the elements of the microprocessor that
are visible to programs, such as registers, memory,
instructions, etc. Metadata is the main interface

Modeling environment

Compiler Library

Model Microprocessor

Coverage Coverage

Formal

Model

Microprocessor model Coverage model

Testing environment

Test
Test

 Test data

Test templates

Test programs.

generation
unit

modeling
library

extraction
unit

description
library

Library

generators

template
processor sequence

generators

Constraint
solver

specifications

Fig. 1. Block diagram of the MicroTESK modeling environment.

6

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

KAMKIN et al.

between the modeling environment and the test tem�
plate processor.

The design library has several extension points for
adding plugins. The set of extension points includes
(1) the memory access handler and (2) the instruction
execution handler. Handler (1) is invoked at each
memory access for reading or writing. It encapsulates
the memory management logic, including address
translation and caching. Handler (2) is invoked each
time an instruction starts executing. Using this han�
dler, one can simulate the microprocessor pipeline by
subdividing instructions into microoperations and
scheduling their execution.

5.3. Coverage Description Library

The coverage description library makes it possible to
determine situations that can occur in the micropro�
cessor operation (overflow, cache hit, cache miss,
pipeline conflict, etc.). The set of test situations called
test coverage model provides a basis for test generation,
mainly, for test data generation for individual instruc�
tions. In addition to test situations, the test coverage
model includes rules for instruction grouping, which
classify the microprocessor instructions according to
certain categories (by operand types, used resources,
structure of the control flow, and so on). As well as the
microprocessor model, the test coverage model pro�
vides metadata concerning its elements.

Each test situation is assigned a unique name,
which can be used to indicate it. The situation names
are associated with generators; therefore, the test tem�
plate processor knows which generator should be used

for creating one or another test situation. The descrip�
tion of each situation includes the complete informa�
tion needed for the generator to create it. The built�in
test data generator uses the description of situations in
the form of constraints (test data are generated by
resolving constraints) [20].

6. MICROTESK TESTING ENVIRONMENT

The MicroTESK testing environment is responsi�
ble for generating test programs. The generic opera�
tion of the testing environment is as follows. (1) An
engineer creates a test template and feeds it at the entry
of the environment; this template describes a micro�
processor testing scenario. (2) The test template proces�
sor applies test sequence generators for this template
and builds a test program in symbolic form, where spe�
cific values of operands are replaced by names of test
situations. (3) The processor invokes test data genera�
tors to create specific values for instruction operands.
(4) The resultant test program is supplemented with
control code, which initializes registers and memory
with the generated data. Let us consider the compo�
nents of the testing environment in more detail.

6.1. Test Template Processor

The test template processor transforms test tem�
plates into test programs using test sequence and test
data generators registered in the environment. The
supported TDL is organized as a library in Ruby [21].
This language allows one to describe sequences of
instructions in assembler using the metadata provided

Plugin

Modeling

Compiler

Library

Testing

Test generators

Constraint solvers

Microprocessor

Kernel

Instruction set

 Extensions

Memory management

Pipeline management

 User defined

subsystem

Fig. 2. Subsystems and organization of plugins in MicroTESK.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

EXTENSIBLE ENVIRONMENT FOR TEST PROGRAM GENERATION 7

by the microprocessor model. In addition, this language
supports high�level constructs for describing test sce�
narios, which can be classified into two types: (1) built�
in Ruby instructions (conditional expressions, loops,
etc.) and (2) special MicroTESK instructions (blocks
for generating test sequences, references to test situa�
tions, etc.) Here is a simple example of a test template.
Assembler code
add r[1], r[2], r[3]
sub r[1], r[1], r[4]
Ruby control constructs
(1..3).each do |i|

add r[i], r[i+1], r[i+2]
sub r[i], r[i], r[i+3]

end
Test sequence generation block
block (:engine ⇒ ”random”, :count ⇒ 2013)
{

add r[1], r[2], r[3]
sub r[1], r[2], r[3]

Reference to test situation
do overflow end

}
An important construct used in test templates is the

test sequence generation block. The test template is a
hierarchical structure consisting of test sequence gen�
eration blocks. Each block contains instructions and
nested blocks and specifies a test sequence generator
and its parameters. The test template processor creates
test sequences for the nested blocks using the appro�
priate generators and then combines the resultant test
sequences and composes a test program from them (an
example is given in Subsection 6.2).

Note that the test template processor supports the
creation of self�verifying tests. When building a test
program, it can add special code (called test oracle)
that verifies the correctness of the microprocessor
state at the corresponding point of the program. The
test oracle compares the data in the memory and reg�
isters with the reference values calculated by the
instruction interpreter; if these values do not coincide,
the oracle reports an error.

6.2. Test Sequence Generators

Each test sequence generator implements a method
iterating through chains of instructions. Each block of
the test template is assigned a test sequence generator.
Since blocks may be nested, generators can be recur�
sively combined. For this purpose, each nonterminal
block must determine two strategies: (1) combining the
results produced by the nested generators and (2) com�
position (merging) of several instruction chains into a
unified test sequence.

Testing library contains predefined combination
and composition strategies. The following combining
methods are supported: (1) random combination (ran�

dom combinations of the results produced by genera�
tors are created), (2) Cartesian product (all possible
combinations of the results produced by generators are
created), (3) diagonal of the Cartesian product (to create
a combination, the nested generators are called syn�
chronously). The supported composition methods are
as follows: (1) random composition (test sequences are
mixed randomly), (2) concatenation (test sequences
are concatenated), (3) nesting (test sequences are
nested one into another). Users may add test sequence
generators and combination and composition strate�
gies to the environment. Consider a simple example.
Test sequence generation block
block(:combine ⇒ “product”, :compose ⇒ “ran�
dom”) {

Nested block A
block(:engine ⇒ “random”, :length ⇒ 3, :count ⇒

2) {
add r[a], r[b], r[c]
sub r[d], r[e], r[f]
mult r[g], r[h]
div r[i], r[j]

}
Nested block B
block(:engine ⇒ “permutate”) {

ld r[k], r[l]
st r[m], r[n]

}
}

In this example, the upper level block contains two
nested blocks A and B. Block A consists of four
instructions ADD, SUB, MULT, and DIV. Block B
consists of two instructions LD and ST. The generator
of test sequences associated with A produces two
sequences (:count ⇒ 2) of length 3 (:length ⇒ 3) com�
posed of the instructions listed above in a random fash�
ion (:engine ⇒ “random”). The generator associated
with B produces all permutations of the specified
instructions (:engine ⇒ “permutate”). The upper level
generator creates all possible combinations of the
results produced by the nested blocks (:combine ⇒
“product”) and mixes them in a random fashion
(:compose ⇒ “random”). The result of processing
such a template can look as follows.

Combination (1,1)
sub r[d], r[e], r[f] # Block A
ld r[k], r[l] # Block B
div r[i], r[j] # Block A
st r[m], r[n] # Block B
add r[a], r[b], r[c] # Block A

Combination (1,2)
st r[m], r[n] # Block B
sub r[d], r[e], r[f] # Block A
ld r[k], r[l] # Block B

8

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

KAMKIN et al.

div r[i], r[j] # Block A
add r[a], r[b], r[c] # Block A

Combination (2,1)
mult r[g], r[h] # Block A
mult r[g], r[h] # Block A
ld r[k], r[l] # Block B
add r[a], r[b], r[c] # Block A
st r[m], r[n] # Block B

Combination (2,2)
mult r[g], r[h] # Block A
st r[m], r[n] # Block B
mult r[g], r[h] # Block A
ld r[k], r[l] # Block B
add r[a], r[b], r[c] # Block A

6.3. Test Data Generators

Test data generators should produce values of the
operands of instructions based on the test situations
specified in the template. MicroTESK supports gener�
ation of test data using resolution of constraints. To cal�
culate the values of instruction operands, the test tem�
plate processor chooses a test data generator corre�
sponding to the situation and requests the state of the
resources used in the test situation (registers, memory,
etc.) from the microprocessor model. Then, the proces�
sor initializes the corresponding variables and invokes
the constraint solver.

As soon as the values of the operands have been
obtained, control code is added to the test program,
which initializes the corresponding resources of the
microprocessor. For example, if the operand of an
instruction is a register, then the control code puts the
corresponding value into it. Following the concept of
constraint�based random generation, different calls to
test data generators may produce different sets of
operand values (however, each set must satisfy the pre�
scribed system of constraints).

6.4. Constraint Resolution Mechanism

The constraint resolution mechanism is imple�
mented using a set of solvers, which are accessed via a
unified interface. Constraint solvers are classified into
two main types: (1) universal solvers that can be used
for a wide class of constraints and (2) user�defined
solvers designed for specific test data generation.

The first type includes SMT solvers based, for
example, on Yices [13] and Z3 [14]. They support
Boolean operations, integer arithmetic, operations on
bit vectors of fixed length, etc. The interaction with
universal constraint solvers is implemented using the
library Java Constraint Solver API [20]. This library
makes it possible to create constraints in the form of
Java objects, represent them in SMT�LIB [15], and
invoke an external SMT solver.

Consider an example of a constraint written in
SMT�LIB that describes the situation of overflow in
the addition instruction of 32�bit words. First, types
(define�sort), functions (define�fun), and variables
(declare�const) are declared. Next, preconditions for
the variable values and the target constraint are speci�
fied (assert).
; Types and functions
(define�sort Int_t () (_ BitVec 64))
(define�fun INT_ZERO () Int_t (_ bv0 64))
(define�fun INT_BASE_SIZE () Int_t (_ bv32 64))
(define�fun INT_SIGN_MASK () Int_t

(bvshl (bvnot INT_ZERO) INT_BASE_SIZE))
(define�fun IsValidPos ((x!1 Int_t)) Bool

(ite (= (bvand x!1 INT_SIGN_MASK)
INT_ZERO) true false))

(define�fun IsValidNeg ((x!1 Int_t)) Bool
(ite (= (bvand x!1 INT_SIGN_MASK)
INT_SIGN_MASK) true false))

(define�fun IsValidSignedInt ((x!1 Int_t)) Bool
(ite (or (IsValidPos x!1) (IsValidNeg x!1)) true
false))

; Variables
(declare�const a Int_t)
(declare�const b Int_t)

; Preconditions
(assert (IsValidSignedInt a))
(assert (IsValidSignedInt b))

; Constraint
(assert (not (IsValidSignedInt (bvadd a b))))

Some test situations are difficult to describe using
constraints (this is the case for floating point arith�
metic [22], memory management [23], and some oth�
ers). To describe and handle such situations, user�
defined test data generators may be added to the envi�
ronment.

7. CONCLUSIONS

Architecture of extensible environment for the
generation of test programs for microprocessors is
proposed. The proposed approach was implemented
in the MicroTESK environment (Institute for System
Programming, Russian Academy of Sciences). The
developed platform makes it possible to join various
methods of microprocessor modeling and testing. This
environment is based on instruction�level models; it
supports random, combinatorial, and template�based
generation of test programs. More complex types of
models and test generators can be added to the envi�
ronment as plugins. The formal specification of the
microprocessor instruction set is done in the language
Sim�nML. Based on the analysis of these specifica�
tions, a model (of the microprocessor and test cover�

PROGRAMMING AND COMPUTER SOFTWARE Vol. 40 No. 1 2014

EXTENSIBLE ENVIRONMENT FOR TEST PROGRAM GENERATION 9

age) is built. Templates of test programs are described
in Ruby so that instructions, test situations, and other
elements of the models can be accessed. The language
makes it possible to describe complex situations of
testing microprocessors, and it supports composition
of several test programs. In near future, we plan to use
MicroTESK to develop test generators for widely used
microprocessor architectures, including ARM and
MIPS. We also work on extensions of the environment
with tools for modeling and testing typical subsystems
of microprocessors (address translation buffers, cache
modules, control units, etc.).

ACKNOWLEDGMENTS

This work was supported in part by the Ministry for
Education and Science of the Russian Federation,
project no. 8232 as of August 6, 2012.

REFERENCES
1. M.S. Abadir and S. Dasgupta, Guest editors’ introduc�

tion: Microprocessor test and verification, IEEE Design
& Test Comput., 2000, vol. 17, no. 4, pp. 4–5.

2. Kamkin, A.S., Test program generation for micropro�
cessors, in Trudy Instituta Sistemnogo Programmiro�
vaniya Ross. Akad. Nauk, 2008, vol. 14, part 2, pp. 23–
63.

3. http://www.arm.com/community/partners/displayprod�
uct/rw/ProductId/5171/

4. Adir, A., Almog, E., Fournier, L., Marcus, E.,
Rimon, M., Vinov, M., and Ziv. A., Genesys�Pro:
Innovations in test program generation for functional
processor verification, IEEE Design & Test Comput.,
2004, vol. 21, no. 2, pp. 84–93.

5. Mishra, P. and Dutt, N., Specification�driven directed
test generation for validation of pipelined processors,
ACM Trans. Design Autom. Electron. Syst. (TODAES),
2008, vol. 13, no. 3, pp. 1–36.

6. http://forge.ispras.ru/projects/microtesk
7. Kamkin, A.S., Some issues of automation of test pro�

gram generation for branch units of microprocessors, in
Trudy Instituta Sistemnogo Programmirovaniya Ross.
Akad. Nauk, 2010, vol. 18, pp. 129–150.

8. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M.,
Marcus, E., and Shurek, G., Constraint�based random
stimuli generation for hardware verification, AI Maga�
zine, 2007, vol. 28, no. 3, pp. 13–30.

9. Grun, P., Halambi, A., Khare, A., Ganesh, V., Dutt, N.,
and Nicolau, A., EXPRESSION: An ADL for system
level design exploration, Technical Report 1998�29,
Univ. of California, Irvine, 1998.

10. http://www.cs.cmu.edu/~modelcheck/smv.html
11. Dang, T.N., Roychoudhury, A., Mitra, T., and

Mishra, P., Generating test programs to cover pipeline
interactions, in Design Automation Conference (DAC),
2009, pp. 142–147.

12. Kamkin, A., Kornykhin, E., and Vorobyev, D., Recon�
figurable model�based test program generator for
microprocessors, in Software Testing, Verification, and
Validation Workshops (ICSTW), 2011, pp. 47–54.

13. Dutertre, B. and Moura, L., The YICES SMT solver,
2006. http://yices.csl.sri.com/tool�paper.pdf

14. Moura, L. and Bjoslashrner, N., Z3: An efficient SMT
solver, in Conf. on Tools and Algorithms for the Construc�
tion and Analysis of Systems (TACAS), 2008, pp. 337–
340.

15. Cok, D.R., The SMT�LIBv2 Language and Tools: A
Tutorial, GrammaTech, Inc., 2011, Version 1.1.

16. Aharoni, M., Asaf, S., Fournier, L., Koifman, A., and
Nagel, R., FPgen—A test generation framework for
datapath floating�point verification, in High Level
Design Validation and Test Workshop (HLDVT), 2003,
pp. 17–22.

17. Freericks, M., The nML machine description formal�
ism, Technical Report, Bericht 1991/15, Technische
Universitaumlautt Berlin, 1991.

18. Moona, R., Processor models for retargetable tools, in
Int. Workshop on Rapid Systems Prototyping (RSP),
2000, pp. 34–39.

19. MIPS64TM Architecture for Programmers, Vol. II: The
MIPS64TM Instruction Set, Document Number:
MD00087, Revision 2.00, June 9, 2003.

20. http://forge.ispras.ru/projects/solver�api.
21. http://www.ruby�lang.org.
22. Kamkin, A.S. and Chupilko, M.M., Testing micropro�

cessor floating point arithmetic modules for conformity
to the IEEE 754 standard, in Trudy Instituta Sistemnogo
Programmirovaniya Ross. Akad. Nauk, 2008, no. 2,
pp. 7–22.

23. Kornykhin, E.V., Generation of test data for verifica�
tion of caching mechanisms and address translation in
microprocessors, Program. Comput. Software, 2010,
vol. 36, no. 1, pp 28–35.

Translated by A. Klimontovich

