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Abstract. Reliable evaluation of network mining tools implies signifi-
cance and scalability testing. This is usually achieved by picking several
graphs of various size from different domains. However, graph proper-
ties and thus evaluation results could be dramatically different from one
domain to another. Hence the necessity of aggregating results over a
multitude of graphs within each domain.
The paper introduces an approach to automatically learn features of
a directed graph from any domain and generate similar graphs while
scaling input graph size with a real-valued factor. Generating multiple
graphs with similar size allows significance testing, while scaling graph
size makes scalability evaluation possible. The proposed method relies
on embedding an input graph into low-dimensional space, thus encoding
graph features in a set of node vectors. Edge weights and node commu-
nities could be imitated as well in optional steps.
We demonstrate that embedding-based approach ensures variability of
synthetic graphs while keeping degree and subgraphs distributions close
to the original graphs. Therefore, the method could make significance and
scalability testing of network algorithms more reliable without the need
to collect additional data. We also show that embedding-based approach
preserves various features in generated graphs which can’t be achieved
by other generators imitating a given graph.

Keywords: Random graph generating ·Graph embedding ·Representa-
tion learning

1 Introduction

Modeling and generating random graphs is an actively evolving research
area. Theoretical aspects include studying features and processes defin-
ing connectivity structure in real graphs with mathematical methods.
There are also important practical use-cases where random graphs are
traditionally employed. A set of random graphs with similar properties
could be used for testing significance of results of network mining tools,
e.g. community detection. If size of generated graphs is adjustable, scal-
ability of graph algorithms could be tested as well.
According to our experience, the pipeline of modeling and generating
random graphs resembling properties of real data includes the following
steps:



2

1. learn statistical features of real graphs: distributions, dependencies,
parameter ranges, etc;

2. select features to be modeled: degree distribution, clustering, diam-
eter, subgraphs distribution, etc;

3. define a probability space over all possible graphs with selected fea-
tures (usually achieved by defining parametrized generative process
for graphs);

4. sample random graphs from the defined space.
The fundamental issue here is that each graph domain (social, mo-
bile [20], biological [23], etc) has its own specific features and many of
them may be unknown. Consequently, random graph models created for
one domain could be invalid for others. And generally one can’t be sure
that all essential features of real graph are modeled.
Uncertainty about properties of an arbitrary graph leads to the idea of
automatic extraction of features from real data. Suchwise, steps 1-3 of
the aforementioned pipeline are replaced with automatic model learning
for the given graph. The model could be complicated to be studied ana-
lytically and could hardly provide new insights about the data. However,
practical use-cases of random graphs could be improved and extended:
e.g., data anonymization for publishing a synthetic version of real net-
work preserving its information privacy.
The most popular technique of automatic feature extraction from graphs
is representation learning. In recent years this area has attracted much
attention in view of recent success in word embedding [18] and adaptation
of these ideas to graph domain [24], [26].
Our approach incorporates graph embedding into random graph genera-
tion. Embedding result is a set of node vectors which altogether encode
some statistical features of the input graph. Experiments suggest that
all (or almost all) edges of the input graph could be recovered from the
node vectors given proper embedding scheme.
Another advantage of using embedding in context of graph generation
is possibility to approximate node vectors distribution. This allows to
utilize a unified sampling scheme for random graphs, regardless of input
graph domain and features. Finally, arbitrary number of node vectors
could be sampled for each synthetic graph, allowing to precisely control
resulting graph size.
Our main contributions are as follows:

– We present a pipeline of generating controllable size random graphs
similar to a given one based on graph embedding (Embedding-based
Random Graph Generator, ERGG).

– We develop an embedding method such that an arbitrary directed
graph can be recovered from its embedding with small distortion.

– Within ERGG pipeline we develop ERGG-dwc – a concrete algo-
rithm based on this embedding method which handles directed weighted
graphs with community structure1.

– We show that ERGG-dwc preserves subgraph distribution, cluster-
ing, shortest path length distribution, and other properties in gener-
ated graphs which can’t be achieved by other RGGs imitating real
graphs.

1Online demo: http://ergg.at.ispras.ru/

http://ergg.at.ispras.ru/
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Many graph domains are directed naturally (e.g. mobile call graphs),
while edge weights contain additional information about the object mod-
elled by the graph (e.g. duration of call). Furthermore, many graphs have
community structure which determines high-level organization of a net-
work into groups of nodes sharing similar function, property, role, etc.
That’s why ERGG-dwc targets edge direction and weight along with
community structure of nodes.
Important aspect of task definition is how we define similarity between
graphs, especially for the case of different graph sizes. We believe that
any fixed set of features could be incomplete. Still, we selected two distri-
butional features which seem to cover all levels of network organisation.
We require these distributions in the generated graphs to be close to
those of a given graph.
Node degree distribution is an important global characteristic of
graph. For instance, many complex networks demonstrate power-law de-
gree distribution. The form of degree distribution is known to determine
some other graph characteristics: for instance, power-law distribution
determines small diameter [5], clustering coefficient as a function of
node degree [6], etc.
Subgraph distribution is another informative topological characteris-
tic of a graph which defines node clustering behavior and other features.
For instance, it allows to categorize graphs over their domains with better
precision than other features [2].
The rest of the paper is organized as follows. In Sect.2 we survey works
in related areas, then in Sect.3 we introduce our ERGG pipeline together
with ERGG-dwc algorithm. In Sect.4 we provide a detailed research of
ERGG-dwc steps, and then in Sect.5 we experimentally evaluate them
and perform other tests. Finally, we discuss main results and give a
conclusion in Sect.6.

Notation

G = (N,E) — graph with nodes N and edges E ⊆ N ×N , n = |N | —
number of nodes, e = |E| — number of edges;
H = (M,F ) — generated graph with nodes M and edges F ;
i, j, k, l — nodes, (i, j), i→ j — edges;
deg(i) – degree of node i, deg+(i) – out-degree of node i;
wij — weight of edge i→ j;
n-GP — graph profile, L2-normalized vector of counts of all possible (up
to isomorphism) connected subgraphs with n nodes in a graph (see [2]
for details). For example, 3-GP is a vector of 13 numbers which reflects
distribution of subgraphs with 3 nodes in a graph (see Fig.1).

Fig. 1: 13 possible connected directed subgraphs with 3 nodes, up to isomor-
phism.
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2 Related Work

2.1 Random graph generation

A lot of random graph models were suggested in order to reflect particu-
lar properties discovered in real networks: power law degree distribution,
small diameter, high clustering coefficient and others. Such models in-
clude Erdös-Rènyi model [8], Watts-Strogatz model [27], Barabàsi-Albert
model [1], R-MAT [3], Kronecker graphs [14], MFNG [22], dot-product
graphs [31], hyperbolic geometric graph [11], etc.
Some models are designed to generate graphs with community structure:
stochastic block model [19], LFR [12], CKB [4], ReCoN [25]. Several mod-
els aim at producing specified subgraph distribution: triplet model [28],
STS [29]. A few models allow specifying of graph features to be produced:
Feature constraints method [30], MFNG [22].
To the best of our knowledge, there is no method for generating controlled
size directed weighted graphs with communities, capable of automatically
reproducing important statistical properties of a given graph, namely
degree and subgraph distribution (see table 1).

2.2 Directed graph embedding

The task of mapping nodes of a particular graph into real-valued vectors
of some low-dimensional space with preserving useful features of this
graph is referred to as graph embedding or representation learning. In
view of recent success of graph embeddings based on machine learning
techniques [24], [10], [26] we concentrate on them.

BLM Bilinear link model (BLM) [10] uses the following model for di-
rected graphs:

p(j|i) =
exp (ui · vj)∑
k exp (ui · vk)

(1)

Here each node i ∈ N is associated with input and output node vectors:
ui,vi. With joint link probability p(i, j) = p(i)p(j|i), the objective is a
log-likelihood of the whole graph:

JΘ =
∑

(i,j)∈E

log p(i, j)→ max
Θ

(2)

For softmax approximating authors implement Noise contrastive esti-
mation (NCE) [9], which was developed for estimation of unnormalized
probabilistic models, treating the normalizing constant Zi as an addi-
tional parameter.

LINE A similar approach for embedding of directed weighted graph
was suggested in [26]. Along with (1) which is called 2-nd order proxim-
ity, authors also maximize 1-st order proximity of node pairs p1(i, j) =

1

1 + exp (−ui · uj)
. To overcome a large summation in denominator neg-

ative sampling (NEG) [18] is used, which is a simplification of NCE.
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Table 1: Comparison of supported properties for several RGG algorithms. Prop-
erties notation: learn – how features are extracted from a graph; dir, wei, com
– support of directed, weighted graphs and communities; DD – degree distri-
bution; size – support of controllable size of generated graphs; complexity
– complexity of graph generation. Values notation: ’ ’ – not supported, ’+’ –
supported (specified to a model); ’+-’ – partially supported; ’=’ – exactly repro-
duced; ’≈’ – approximately reproduced; ’*’ – supported in theory, but unchecked
in practice.

algorithm learn dir wei com DD 3-GP size complexity

Feature constraints manual + = * = O(|E|)
SKG auto + ≈ +- O(|E| log |N |)
MFNG manual + ≈ * + O(|E| log |N |)
ReCoN auto + = = +- O(|E|)
Dot product no + +- + O(|N |2)

Finally we note that although graph embedding is widely used for learn-
ing graph features no one has yet applied it to graph generation. Of
our interest are such embedding methods of a directed graph that would
1) encode most of its properties in the representation, and 2) allow to
reconstruct from it graphs of various size with these properties preserved.

3 Embedding Based Graph Generating

Now we present the general pipeline of our Embedding-based Random
Graph Generator (ERGG) for generation of controllable size random
graphs similar to a given one. Then we suggest ERGG-dwc algorithm
tailored for directed weighted graphs with community structure.

3.1 General pipeline of ERGG

The nodes of an original graph are first embedded into vectors in low
dimensional space Rd. Then new vectors corresponding to new nodes
are sampled from some probability distribution which approximates the
distribution of node vectors. Finally, new nodes are connected with edges
giving a new graph.
More formally, ERGG input is a graph G = (N,E) and scaling factor
x > 0 (x ∈ R). The output is a new random graph H = (M,F ) with
|M | ≈ bx|N |c nodes. The steps are as follows:
1. Embed graph G = (N,E) into low-dimensional space, such that its

nodes i ∈ N are mapped into real value vectors {ri}|N|i=1.

2. Approximate the distribution of vectors {ri}|N|i=1 and sample a new

set of bx|N |c random vectors {qi}|M|i=1 from this distribution. These
vectors will correspond to nodes of a new graph (M, ·).

3. Connect nodes of graph (M, ·) with edges using the embedding model
from step 1, obtaining a result graph H = (M,F ).
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We assume that at step 1 one may use any embedding method providing
for a pair of nodes i, j a score function sij = s(ri, rj), characterizing a
link i→ j. Since an input graph G is embedded and the distribution of
its node vectors {ri}|N|i=1 is approximated by some distribution model R,
we get a generative model which defines a probability distribution over
graphs similar to G. To sample such a random graph one should sample
M vectors from R and use sij function to connect corresponding nodes.

Note that this pipeline covers both directed and undirected graphs and
allows for extending it to graphs with weights and/or communities.

3.2 ERGG-dwc — algorithm for scaling a directed
weighted graph with communities

Now we suggest ERGG-dwc, a concrete algorithm capable of handling
graphs with weights and communities. Weights are treated as edge labels,
while communities — as node labels. Suppose an input is a directed
weighted graph G = (N,E) with community structure given as node

labelling {Ci}|N|i=1 and a scaling factor x. Additional parameters are noise
magnitude ε and default edge weight w0. Steps to be performed are the
following:

1. Embedding. Embed graph G = (N,E) with a modified embedding

method (see 4.1) into node vectors {ri}|N|i=1; and find a threshold tG
which discriminates top E node pairs (i, j) with relatively higher
score s(ri, rj) from the rest of all node pairs i, j ∈ N . Threshold tG
is utilized in edge generation process during the connecting step.

2. Approximating + sampling. Randomly sample (with repetitions)

m = bx|N |c vectors {qi}mi=1 from {ri}|N|i=1 adding small gaussian
noise g ∼ N (0, diag(ε, ..., ε)). A mapping ϕ from nodes of original

graph to a new graph is thus defined: N
ϕ7→M .

3. Connecting. Connect with edges those pairs of nodes k, l from M
that have s(qk, ql) > tG. Dangling nodes if present are removed,
obtaining graph H = (M ′, F ).

4. Attributing.

(a) For each edge (k, l) ∈ F , assign weight w′kl = wij , where i =
ϕ−1(k), j = ϕ−1(l). If (i, j) /∈ E, pick a default edge weight w0.

(b) For each node k ∈ M , assign community labels C′k = Ci, where
i = ϕ−1(k).

4 Detailed Algorithm Description

Here we elaborate on ERGG-dwc steps described in Sect.3.1. Instead of
solving the whole ERGG-dwc task we have splitted it in a sequence of
simpler subtasks and conducted a research of their possible solutions,
optimizing a separate objective for each one. Namely, these subtasks
are: embedding + connecting 4.1, approximating + sampling 4.2 and
attributing 4.3.
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4.1 Embedding + connecting

The first task is to embed nodes of a given graph into vectors preserving
maximal information. In order to achieve this we try to recover edges of
the same graph back from the vectors and maximize F1 score of restored
edges versus existed edges. We will refer to it as edge-recovery F1 or
simply F1 further. Thereby Embedding step is coupled with Connecting
step.

Graph reconstructing. We assume that embedding method pro-
vides a score function sij = s(ri, rj) on pairs of nodes, which is trained
to score edges of the graph higher than non-edges. Then we just score all
node pairs and choose a threshold tG equal to sij with rank E + 1 and
therefore all pairs with sij > tG become edges.

Modified embedding method. We have elaborated BLM and LINE
algorithms according to our goal of separating edges from non-edges, and
have suggested a new COMBO algorithm. After some experiments (omit-
ted due to limited space) we found an optimal combination in terms of
F1 for all tested graphs. Namely, negative sampling is used to optimize
the objective as done in LINE:

Jθ =
1

E

∑
(i,j)∈E

log σ(sij) +

ν∑
j′∼pn(j′)

log σ(−sij′)

, (3)

where bilinear model from BLM is used as score function:

sij = ui · vj − Zi. (4)

Embedding vectors are initialized as ui,vi ∼ U [− 1

2
√
d
, 1

2
√
d
] (where d is

dimensionality of embedding space) and Zi = log |N |; noise edges are
filtered such that (i, j′) /∈ E only are sampled as negative examples;
noise distribution pn(j) ∝ deg(j)3/4 [26]. Regularization is eliminated.
Number of noise samples for each edge ν = 25, learning rate η = 0.025,
training is performed during 200 epochs.
Thereby, the set of parameters of the algorithm is: θ = {ui,vi, Zi}|N|i=1,

representation vector learnt for node i ∈ N is: ri =
[
ui vi Zi

]T
.

For optimization we used asynchronous stochastic gradient descent like
in LINE and BLM. At each step gradient is computed by one edge:

∂J
(i,j)
θ

∂θ
=

∂

∂θ
log σ(sij) +

ν∑
j′∼pn(j′)

∂

∂θ
log σ(−sij′) =

= σ(−sij)
∂sij
∂θ

+

ν∑
j′∼pn(j′)

σ(sij′)
∂sij′

∂θ
. (5)

We considered embedding to be successful if graph edges could be re-
stored with F1 > 0.99. This means that obtained representation explains
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more than 99% of graph edges under the model, while rest 1% may be
outliers.
We also discovered that dimensionality of embedding space d is crucial
parameter of embedding. Minimal d such that F1 reaches 0.99 for a par-
ticular graph could be viewed as a ”complexity” of this graph under the
embedding model. We found that it varies for different graphs (see Fig.2).

4.2 Distribution approximating + sampling

At this stage we have a vector representation of nodes of an input graph
{ri}|N|i=1 such that it can be restored from them with F1 > 0.99. The
next task is to model the distribution of node vectors ri ∼ R, such that
new node vectors sampled from R would produce (using reconstruction
procedure from Sect.4.1) graphs with similar properties. This step han-
dles creation of a graph generative model and provides randomization
and variability of size of generated graphs. In order to experimentally
compare graphs of different size, we use cosine similarity of their 3-GP
vectors and ”eyeball” similarity of the form of their degree distributions.
Since the input graph is embedded, node vectors encode information
about graph structure. We assume that key statistical graph properties
are reflected in distribution of {ri}|N|i=1, rather than in individual vectors.
Therefore a model captured the distribution R such that ri ∼ R would
also contain these properties. Furthermore if we sample a new set of
node vectors from R and construct a new graph by the same procedure,
it will also demonstrate these properties. This idea is justified well by an
example of random dot product graphs, where node vectors distribution
analytically determines graph properties [21]. Another benefit of this ap-
proach is that number of vectors sampled and therefore size of generated
graph may be varied.
To model a distribution R we suggest the following method called GN
based on gaussian noise. GN just memorizes the whole set of vectors
{ri}|N|i=1 and adds to each one gaussian noise with magnitude ε. To draw
a sample from Rε it randomly samples i ∈ {1..|N |} and returns ri + g,
g ∼ N (0, diag(ε, ..., ε)). This is in fact kernel density estimation with
a normal kernel. In case of large graphs storing all N vectors may be
excessive, so one could randomly sample a smaller subset from them.

Size of scaled graphs If we scale a graph with n0 nodes and e0 edges
by a factor of x, it should have nx ≈ xn0 nodes. What number of edges
ex should it have, or in other words what is e(n) law? In our approach
the law e ∼ n2 can be proved theoretically for graphs generated by one
model despite of probability distribution model:

Theorem 1. Let R be a probability distribution, sij = s(ri, rj) be a
real-valued function. If ri ∼ R and edge i → j is defined by condition
sij > tG, then if sample n vectors the number of edges e ∝ n2.

Proof. Since ri and rj come from the same distribution edge probability
between two randomly chosen nodes P (sij > tG) = p is a constant and is
determined only byR. Fraction of pairs connected with edges doesn’t de-
pend on the number of node-vectors sampled n, i.e. E(e/n2) = p = const.
Hence e ∝ n2. ut
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As long as real graphs may exhibit different laws of growth, we may treat
an ERGG-dwc imitation of a real graph not as its future state, but as
its scaled version.

4.3 Attributing

Now we are able to generate controllable size directed graphs structurally
similar to a given one. The final step is to handle edge weights and
community labels assigning in a generated graph. Their coherence with
graph topology should be preserved. How do we make communities in
new graphs and endow them with weights in a proper way?

Community structure We view a community structure of the graph
as its nodes labelling: each node i has a (possibly empty) set of com-
munity labels Ci it belongs to. We suggest to inherit these labels in a
generated graph using GN sampling method: if a node k of a new graph
was sampled from node i, it has the same labels C′k = Ci. In this way,
given uniform sampling of nodes in GN, communities in a new graph
become proportionally scaled images of the original ones.

Weights In order to assign edge weights in a generated graph we also
inherit original weights using GN sampling method. For edge (k, l) of a
new graph, if adjacent nodes k, l were sampled from nodes i, j of the
original graph, we assign corresponding weight w′kl = wij .

The question left is what if the original graph G(N,E) doesn’t have an
edge (i, j)? One reason is incorrect embedding of (i, j). Since the frac-
tion of edges (i, j) /∈ E after successful embedding is less than 1%, their
weights wouldn’t affect the results much. In this case a random weight
may be chosen: w0 ∼ U({wij}(i,j)∈E).

Another reason is the noise added to the sampled node vectors. In this
case we can consider such an edge a weak connection, which motivates
choice of default weight as minimal possible weight: w0 = min(i,j)∈E wij .

In order to check correctness of weights assignment, we scaled weighted
graphs with communities and used modularity measure designed for di-
rected weighted graphs with communities [7]. High value of this metric is
a kind of evidence that communities are more densely (accounting also
for edge weights) connected within than between each other. Obtain-
ing modularity values as high as in the original graph in experiments
supports the hypothesis about weights assigning (see Sect.5.1).

Complexity of ERGG-dwc is O((|E|ν log |E||N| + x2|N |2)d), details are
omitted due to space limit.

5 Experiments

When developing our ERGG-dwc algorithm we used a set of small and
medium size directed graphs from different domains and also artificial
graphs (see table 2 for their parameters). Graph embedding is imple-
mented in C++ using pthreads library for thread parallelization.
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Table 2: Left: directed graphs; right: directed weighted graphs with detected
communities. Graphs parameters: name on plots, number of nodes N , number
of edges E, modularity [7] Q, embedding space dimensionality d such that F1 >
0.99.

graph N E d

Karate2 34 78 3

Yeast3 688 1079 9

VAST4 400 1562 12

Foods5 128 2106 8

TW [16] 146 1309 12

Kron6 [17] 2187 11675 24

Words3 2704 8300 17

ER7 [17] 800 8000 26

G+ [16] 1243 106485 62

graph N E Q d

Protein3 95 213 0.6630 7

Resid8 217 2672 0.5106 14

VAST4 400 1562 0.5743 12

Airport9 1574 28236 0.1247 31

LFR10 [12] 1000 14396 0.7209 26

5.1 ERGG-dwc steps elaborating

Embedding method parameters We investigated how F1 depends
on feature space dimensionality d (see Fig.2). All graphs successfully
reach F1 = 0.99 at some d (see table 2), which we called their ”complex-
ity”. The value d corresponding to F1 = 0.99 for a particular graph can
be determined via binary search: graph is iteratively embedded with dif-
ferent d and F1 is approximately estimated for each. This usually takes
5-7 iterations.

Distribution approximating and sampling Here we fixed an
embedding for each test graph such that F1 > 0.99 and experimented
with approximating of embedding vectors distribution.

An input here is a set of representation vectors ri =
[
ui vi Zi

]T
(of

length 2d+ 1) for i = 1..|N | and threshold tG. Distribution approximat-

ing algorithm is applied to fit a given set {ri}|N|i=1 and then used to sample
new m = bx|N |c vectors. Corresponding nodes are connected with edges

2http://support.sas.com/documentation/cdl/en/procgralg/68145/HTML/

default/viewer.htm#procgralg_optgraph_examples07.htm Edges were considered
directed.

3http://www.weizmann.ac.il/mcb/UriAlon/download/

collection-complex-networks
4http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202008/

challenges/MC3%20-%20Cell%20Phone%20Calls/ Edge weight is the number of calls
5http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
6Used SNAP generator with parameters ”krongen -m:’0 0.783, 0.003, 0.733;

0.147, 0.636, 0.772; 0.028, 0.700, 0.009’ -i:9”
7Used SNAP generator with parameters ”graphgen -g:e -n:800 -m:8000”
8http://moreno.ss.uci.edu/data.html#oz
9https://toreopsahl.com/datasets/#usairports

10Run with parameters ”-N 1000 -om 3 -on 0.5 -maxk 150 -t1 2.4 -t2 1.6”

http://support.sas.com/documentation/cdl/en/procgralg/68145/HTML/default/viewer.htm#procgralg_optgraph_examples07.htm
http://support.sas.com/documentation/cdl/en/procgralg/68145/HTML/default/viewer.htm#procgralg_optgraph_examples07.htm
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202008/challenges/MC3%20-%20Cell%20Phone%20Calls/
http://hcil2.cs.umd.edu/newvarepository/VAST%20Challenge%202008/challenges/MC3%20-%20Cell%20Phone%20Calls/
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
http://moreno.ss.uci.edu/data.html#oz
https://toreopsahl.com/datasets/#usairports
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Fig. 2: Edge-recovery F1 measure of restored graphs versus embedding vectors
dimensionality d. Averaged over 5 runs.
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Fig. 3: Modularity of communities in ERGG-dwc generated graphs for two de-
fault edge weightings ’min’ and ’dist’ depending on GN noise magnitude ε. Scal-
ing factors x = 1 (left) and x = 4 (right). Original communities are detected by
OSLOM (except for LFR). Values are averaged over 5 runs.

according to sij > tG condition, and finally dangling nodes are removed,
giving an output graph H = (M,F ).
We measured cosine similarity between 3-GPs of a generated graph and
an original one; number of nodes M/xN , and number of edges F/x2E
in relation to their expected values, with different scaling factors x. We
found that GN with ε ∈ [0.1; 0.2] performs best in terms of these metrics.

Community labels and edge weights For experiments here we
used several directed weighted graphs from various domains and applied
a community detection method (OSLOM [13]), and also one synthetic
graph generated by LFR [12] (see table 2, right). We also fixed embed-
dings with F1 > 0.99 and applied GN inheriting community labels and
edge weights as described in 4.3. We compared modularity of generated
communities in the generated graphs for two methods of default weight
choice, minimal weight (’min’) and random weight from the distribution
(’dist’). We varied noise magnitude ε and scaling factor x.
We found that when ε ∈ [0; 0.2] modularity remains approximately the
same in average both for x = 1 and x = 4, while higher ε = 0.3 makes
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it lower especially significant at x = 4 (not plotted). This again proved
ε ∈ [0.1; 0.2] to be optimal values, therefore we used them further.
Comparison of default weighting schemes showed that both of them per-
form almost identically in terms of modularity on different graphs (see
Fig.3). at ε = 0.1, while at ε = 0.2 on large graphs ’dist’ scheme leads to
larger modularity loss than ’min’ scheme.

5.2 Variability evaluation

In order to apply ERGG-dwc for significance testing of various network
mining tools, generated graphs should be not only similar to the original
one but also differ from each other. Variability of graph imitations pro-
duced by ERGG-dwc should be wide enough to model the natural vari-
ability across real networks. For assessing the variability of ERGG-dwc
we considered how different graph statistics vary across graphs from one
domain and compared to corresponding variances of different ERGG-dwc
imitations of one graph of them. For that we chose a set of twitter-ego
nets and picked 15 graphs close in number of nodes (|N | ∈ [170; 180]) and
number of edges (|E| ∈ [2000; 3000]) as a dataset. We analyzed in-degree,
3-GP, and clustering coefficient distributions for these graphs and also
for 15 ERGG-dwc imitations of one of them: Fig.4 demonstrates similar
variabilities for both sets.

5.3 Significance testing

Here we demonstrate how to perform significance testing of several net-
work mining tools using ERGG-dwc. For that we chose a set of Google+
ego-nets and picked 8 graphs close in number of nodes (|N | ∈ [450; 500]).
For each graph we generated 5 imitations and ran an algorithm on the
graph (black triangles at Fig.5) and on the imitations (blue triangles
at Fig.5). We measured modularity for community detection methods
OSLOM and Infomap11 and running time for diameter computing algo-
rithm, see Fig.5 (green triangles correspond to modularity of communi-
ties generated by ERGG-dwc).
Looking at the plots one can conclude that OSLOM produces insignif-
icant results in terms of modularity, while Infomap’s result are much
more significant.
We also tested performance of diameter computing algorithm (Fig.5, 2
plots on the right). We also used 5 Google+ ego-nets and 5 ego-nets from
Twitter (|N | ∈ [170; 180]), generating 15 ERGG-dwc imitations for each
graph. Everything is as expected for Twitter, but more time is needed
to figure out the reasons of Google+ results.

5.4 Comparison to SKG

Now we compare the work of ERGG-dwc with SKG [14] in terms of var-
ious graph features. We fitted US Airports graph12 (Airport) by our al-
gorithm and SKG. Fitting was done by Kronfit with default parameters.

11http://www.mapequation.org/code.html
12https://toreopsahl.com/datasets/#usairports

http://www.mapequation.org/code.html
https://toreopsahl.com/datasets/#usairports
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Fig. 4: Variability evaluation for cumulative in-degree distribution, cumulative
clustering, 3-GP. Top row: set of 15 twitter-ego graphs of size |N | ∈ [170; 180],
|E| ∈ [2000; 3000], bottom row: 15 ERGG-dwc imitations of one of them.
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Fig. 5: Significance tests. From left to right: OSLOM CD, Infomap CD, perfor-
mance of diameter computing Google+ ego-nets and Twitter ego-nets. 8 ego-nets
of Google+ (N ∈ [450; 500]) and 8 ego-nets of Twitter (N ∈ [170; 180]) are used.

Degree distribution and spectral properties are approximated slightly
better via ERGG-dwc than SKG. 3-GP and clustering properties are not
captured by SKG at all, while ERGG-dwc matches them well. SKG gen-
erated graph doesn’t match number of nodes and hence average degree,
but has lower diameter 5 that is significantly smaller than the original 8.
Reciprocity metric (proportion of reciprocal edges) is 0.02 versus original
0.78 and 0.65 for ERGG-dwc. This may be explained by the fact that
edges i → j and j → i are sampled independently even having same
probability and thus reciprocal edge i� j is much less probable.



14

5.5 Discussion

In the experiments we showed that directed graphs from various domains
can be successfully embedded into low-dimensional space by means of our
modified embedding method COMBO. Embedding quality is evaluated
in a special sense specific for RGG task: edges of graph can be restored
with high F1 (> 0.99). Optimal dimensionality d of the space depends on
graph and is currently found by repetitive trials. Faster determination
of optimal d for a given graph could be a future work.
Unfortunately, in our experiments we found that at high scaling fac-
tors x the form of degree distribution is not preserved. As it was shown
theoretically the number of edges |E| is proportional to x2|N |2.
Furthermore, GN method provides a simple way to inherit weights and
community labels from the original graph. Experiments suggest that this
labelling method preserves high modularity of generated communities in
scaled graphs. These graphs may be used as benchmarks for testing com-
munity detection algorithms. Another future direction is advancing this
naive method of labelling: current approach may cause staircase effects
in edge weight and community size distributions at high scaling factors x.
Besides showing the closeness of generated graphs to the original one in
terms of degree distributions and 3-GP, we found their variability wide
enough to model a graph domain. This means that ERGG-dwc can be
used to generate datasets for significance testing.
We also compared quality of fitting a real graph for ERGG-dwc and SKG
in terms of several graph statistics and found that ERGG-dwc reproduces
most of them much closer to the original. Although WCC distribution
reveals many small connected components in ERGG-dwc graph, it may
be not critical since the largest WCC is large enough.
Finally, we evaluated performance of ERGG-dwc and confirmed O(|N |2)
generation time. One way to speed-up edge generation is to optimize find-
ing all pairs (i, j) with sij > tG. Some techniques used in nearest neigh-
bor search related problem could be employed to overcome an exhaustive
search. Another idea is to reduce the search space to pairs corresponding
to existing graph edges, which makes finding edges F in O(x2|E|) steps.

6 Conclusion

We introduced and thoroughly evaluated an approach to modeling real
directed graphs without a priori knowledge about their domain and prop-
erties. To the best of our knowledge, this is the first successful attempt
to employ graph embedding technique in random graph generation. The
resulting graphs are statistically similar to the input one, proving that
representing graphs in low-dimensional space is the right way to obtain
their scaled imitations.
Scalability of our method could be improved by adjusting embedding
scheme and/or edge generation process. Also, edge weights and node
communities are currently treated as attributes and in fact are cloned
from the input graph. Additional research is required towards embed-
ding weights and communities along with edges. The generating scheme
should be adjusted accordingly to recover weights and communities from
the embedding and preserve their statistical properties.
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