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1. INTRODUCTION

Aspect�oriented programming (AOP) has emerged
as a response to the question of how to “properly”
decompose a large program into modules. One of the
most interesting and simultaneously powerful ideas on
decomposition criteria was the idea of D.L. Parnas to
arrange each design decision into a separate module,
especially concerning complex solutions that, most
likely, will be revised in the future [1]. Parnas has
shown that traditional facilities used to support modu�
larity are often sufficient, but, sometimes, there is a
clear lack of them, and additional ones are needed.
In Russia, almost at the same time, in the 1970s,
A.L. Fuksman had been investigating this problem.
He justified the need to introduce special constructs
into the practice of programming for “a concentrated
description of dispersed operations” [2]1.

Programming languages currently in use, as a rule,
do not support such constructs. For example, those
module types that are available in procedural or
object�oriented languages help to decompose a pro�
gram system by grouping functionally related compo�
nents and/or data. However, there are also other
methods of decomposition, which may depend on
architectural solutions intended, for example, for
technological tasks rather than on a structure of a basic
functionality implementation. An “additional” func�
tionality corresponding to these problems was called
crosscutting concerns.

1 Note that the decomposition problem arises not only at the pro�
gram design stage. During its lifecycle, a development project
needs to be equipped with some program modules that are used
for debugging, monitoring, optimization, security analysis, etc.
On the one hand, these “modules” are not an integral part of a
program; on the other hand, a general solution of the decompo�
sition problem should consider these modules as well.

The description of crosscutting concerns has to be
distributed through program code, which tangles it
and leads to a code duplication. The probability of an
error appearance increases because of incorrect mod�
ifications in parts of a program system associated with
crosscutting concerns. Typical examples of crosscut�
ting concerns are logging, tracing, configuration man�
agement, and error handling. More complex examples
of crosscutting concerns can be found in ensuring safe
access to systems, database handling, performing
transactions, etc.

Aspect�oriented programming, a paradigm pro�
posed in the 1990s, provides a special mechanism to
supplement traditional facilities of modularity support
related to basic functionality with ones related to
crosscutting concerns. AOP extends the capabilities of
the existing programming languages and smoothly
complements them. AOP was originally developed for
object�oriented programming languages (primarily,
for Java); however, an AOP support can be provided
also to procedural languages such as C.

This work was carried out within the project aimed
at developing the LDV Linux driver verification toolkit
[10–13]. This project treats AOP as a basic facility for
automatic instrumentation of drivers’ code before per�
forming verification itself. Operating system drivers
are usually written in C with the use of almost all facil�
ities of the language. In view of this, we decided to
develop a full�fledged AOP implementation that may
become of value by itself rather than a highly special�
ized instrumentation tool. Therefore, the AOP fea�
tures proposed in this study are useful for various C
programs; but, some of these features address specific
characteristics of code instrumentation of Linux ker�
nel components (in particular, drivers). Accordingly, a
part of this paper is devoted to AOP in general and to
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specific features of AOP for C, while another part
addresses details arising from needs of the LDV
project.

Section 2 of this paper considers basic concepts of
aspect�oriented programming and gives illustrating
examples. Section 3 is devoted to traditional methods
of aspect description. Section 4 discusses an impact of
C specific features on implementation of AOP frame�
works. Section 5 considers requirements for AOP
frameworks for C within the LDV project. Section 6
describes the existing AOP frameworks for C. A tool
that implements the proposed approach is presented
in Section 7. Section 8 assesses possibilities of a prac�
tical use of this tool and existing AOP implementa�
tions for C. Section 9 summarizes the discussion and
considers directions of further development.

2. BASIC CONCEPTS OF AOP

One of the key concepts of aspect�oriented pro�
gramming is a join point. There exist different defini�
tions of this concept [3, 4, 8, 9, 14–16]. This paper
defines the join point as a program construct that can
be associated with a description of some part of cross�
cutting concerns of a program. Typical examples of the
join points are functional calls and structure declara�
tions.

A pointcut is a description of a set of join points log�
ically grouped by some condition. For example, a
pointcut can describe all calls of memory allocation
functions (such as malloc, calloc, etc.).

One more concept of AOP is an advice. An advice
specifies a set of actions that must be executed for join
points described by a pointcut2. For example, for such
a join point as a function call, an advice may include
instructions for logging a message containing a value
returned by the given function.

Pointcuts and advices allow AOP to extract a
description of a part of crosscutting concerns into sep�
arate modules — the so�called aspects3. The rest of
this section gives an example of an aspect and consid�
ers how pointcuts and advices can be specified.

Along with the possibility of describing crosscut�
ting concerns as aspects, AOP involves tools for auto�
matic binding of aspects with a target program. In this
process, essentially for some representation of pro�
gram code4, potential join points are matched with
pointcuts defined in an aspect. If this match is
detected and there is an advice for the given pointcut,
the corresponding join point should be framed by the

2 More precisely, these join points should in some manner be
framed or "decorated" with the corresponding code, which may
contain both instructions and certain definitions or declarations

3 Here, the term “aspect” has a highly specialized meaning used
only in the literature on AOP.

4 We note in advance that different types of aspect�related pro�
cessing can be conducted with different types of program repre�
sentation such as textual, intermediate, binary, etc.

code given in the advice. The process of binding
aspects with the target program is called aspect weav�
ing.

To implement AOP for some programming lan�
guage, it is necessary to determine how to describe
aspects and develop an aspect weaver. At present, there
are a large number of AOP implementations for differ�
ent programming languages: AspectJ [4] for Java,
AspectC++ [8] for C++, Aspect.NET [9] for
Microsoft.NET, ACC [14, 15], InterAspect [16],
SLIC [18] for C, etc. As an example, we consider
AspectJ, one of the most advanced and well�known
AOP frameworks to date.

Aspects in AspectJ are being developed with the
help of the same�named aspect�oriented extension of
Java programming language [5]. Figure 1 shows the
aspect Logging, which, for a graphical system, extracts
crosscutting concerns of logging [6]. To do this, the
aspect specifies the named pointcut5 move. The join
points described by move are calls of the method setXY
of the class FigureElement and calls of the methods
setX and setY of the class Point. In addition, the aspect
Logging specifies an advice. This advice says that,
before execution of join points described by the named
pointcut move (i.e., before calls of appropriate meth�
ods), a message should be printed to the screen. Aspect
weaving in AspectJ is performed at a program byte�
code level using ajc, a special�purpose compiler of
Java and its extension AspectJ [7]. The weaved byte�
code can be interpreted by standard Java virtual
machines.

In the development of an approach to implementa�
tion of AOP for C the experience of AspectJ was
actively used. Also, we took into account experience of
the existing AOP frameworks for C and C++. The next
section presents well�established methods of aspect
description that are applicable to various program�
ming languages.

3. TRADITIONAL METHODS FOR ASPECT 
DESCRIPTION

The majority of the existing AOP implementations
offer the extensions of those programming languages
that are used for writing target programs. In AspectJ,
AspectC++, and Aspect.NET, as well as, probably, in
other AOP frameworks for object�oriented program�
ming languages, aspects are largely similar to classes.
Aspects may have their own fields and methods; they
are supported by mechanisms similar to class inherit�
ance and polymorphism. The AOP frameworks for C
do not support such abstraction. Instead, they propose
to describe aspects as separate files. As for other con�
cepts, the AOP frameworks for different programming
languages are more similar.

5 A named pointcut concept is formally considered in the next
section
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Traditionally, the join points are divided into static
and dynamic join points. The static join points are pro�
gram declarations, such as structures, classes, func�
tions, methods, variables, structure or class fields, etc.
The dynamic join points correspond to events that can
occur during a program execution. Examples of the
dynamic join points are a function or method call, an
assignment of a value to a variable or a field, an initial�
ization of a structure or a class, etc.

Traditionally, a pointcut that describes a set of static
join points is specified as a corresponding entity signa�
ture. A signature is allowed to be recorded by using the
so�called wildcards. The wildcards make it possible to
set a match to any type, a part of an entity name, or an
arbitrary list of parameters. In the AspectJ example
shown in Fig. 1, the methods setX and setY of the class
Point can be described by using the signature
“* Point.set*(..)”.

As a rule, a pointcut describing a set of dynamic
join points is specified by adding a keyword to a point�
cut that describes a set of static join points. This key�
word reflects an essence of the relevant event. The
existing AOP frameworks support the following point�
cuts describing dynamic events6:

• call—a function call;

• execution—a function execution occurring after
control is transferred from a function that calls the
given function to that function;

• set—setting a value to a variable or a field;

• get—using a variable or a field.

6 From now on, in this section, we will not consider join points
that are of a purely object�oriented nature and have no proce�
dural counterparts, because the aim of this paper is to develop an
approach to the implementation of AOP for C.

It is worth noting that AOP traditionally supports
an implicit description of join points based on their
context, for example:

• infile—all join points of some file;
• infunc—all join points of some function;
• cflow—all join points that are found in a context

of execution of join points of another pointcut.
The considered pointcuts for describing join points

are called primitive pointcuts. Combinations of point�
cuts that can be obtained by using operators “and”
(intersection), “or” (union), “not” (exclusion), and
brackets (grouping) are called composite pointcuts.
The composite pointcuts play a special role in refining
a description of a set of join points, for example, by
combining explicit and implicit methods for specify�
ing join points. A named pointcut is a primitive or com�
posite pointcut that is bound with a certain name by
which the given pointcut can be referred to. In the
example shown in Fig. 1, move is a named pointcut
combining three primitive pointcuts.

In AOP, an advice traditionally consists of a decla�
ration and a body. The advice declaration contains a
pointcut and also, when the pointcut describes a set of
dynamic join points, one of the keywords before, after,
or around. The pointcut determines a condition when
the advice should be used. The keywords indicate how
this should be done: before – before, after – after, and
around – in place of7. The advice body contains code
that should frame the corresponding join points.
As already noted, the advice of the example shown in
Fig. 1 says that before the execution of the join points

7 Instead of the literal meaning of “around”, most AOP frame�
works use around advices primarily to cancel an execution of the
corresponding dynamic join point. In accordance with this, we
proposed a more relevant name, although we will use the word
around.

Fig. 1. Example of an AspectJ aspect that extracts crosscutting concerns of logging for a graphical system.

// Aspect consists of a named pointcut and an advice.
aspect Logging {
// Named pointcut specifies matching to join points of a program
// (calls of methods);
pointcut move ():
call (void FigureElement.setXY(int, int)) ||
call (void Point.setX(int)) ||
call (void Point.setY(int));

// Advice prints a message on the screen before
// an execution of a program join point
// matched by the given named pointcut.
before(): move() {
System.out.println(“about to move”);

}
}
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described by the named pointcut move, the message
should be printed to the screen.

Normally, an advice body is written with the help of
instructions of the same programming language in
which the target program is written. Along with this,
the AOP frameworks allow special instructions to be
used in advice bodies. For example, by using the
instruction proceed, one can write a function call that
is specified as matching by an advice pointcut. With
special instructions in advice bodies, one can use the
so�called reflection information, which is information
on the corresponding join point and its context. Tradi�
tionally, the following reflection information is sup�
ported for the join points:

1. For function calls and executions:
• a name of a called function;
• a type of a returned value;
• types and a number of arguments.

2. For function calls (additionally):
• actual parameters;
• a returned value;
• a file and a function in a context of which the

call occurs.
3. For assignments and uses of variables and fields:

• a name of a variable or a field;
• a value being assigned or a current value of a

variable or a field;
• a file and a function in a context of which the

assignment or the use occurs.
An important problem that traditionally arises in

the aspect description is the order of application of
several advices when their pointcuts correspond to the
same join point. Different AOP implementations offer
slightly different solutions. For example, AspectJ
offers the following algorithm of application of several
advices for the same join point. Among advices of the
same type (before, after, around), the earlier an advice
occurs in the aspect, the earlier it is applied. First of all
the around advices are applied in the following way:

(1) If a body of a currently applied advice contains
no special instruction proceed, its application is termi�
nated.

(2) Otherwise, a part of this advice is applied until
the instruction proceed; instead of this instruction, a
next around advice (if available) is applied or the algo�
rithm

• applies all before advices;
• executes directly the join point itself;
• applies all after advices.
Then, the remaining part of the given advice is
applied.

For more complex cases, when, for example, the
program is weaved with several aspects, it is tradition�
ally believed that the behavior of the aspect weaver is
undefined.

Normally, advices for static join points are treated
separately from advices for dynamic join points. Many

AOP frameworks offer an ability to add fields into def�
initions of composite data types, such as structures and
unions. Specification of advices for static join points is
of particular importance for object�oriented languages
because of a for them this allows to describe in aspects
crosscutting concerns that are associated with encap�
sulation, inheritance, and polymorphism.

We have considered main traditional methods for
the aspect description. These methods, to some
degree, are supported by AOP frameworks for various
programming languages. Section 6 shows that the
existing AOP frameworks for C do not go beyond tra�
ditional methods for the aspect description. However,
the C language and a build process of C programs have
several specific features that should be taken into
account in developing AOP framework.

4. INFLUENCE OF SPECIFICS 
OF C AND A BUILD PROCESS OF C 

PROGRAMS ON IMPLEMENTATION OF AOP 
FRAMEWORK

A key feature of C is that this language supports
address arithmetic. For AOP, it is of special interest to
consider variables or fields that have a pointer type, as
well as various operations with them. All that is sup�
ported by AOP frameworks for variables and fields
automatically applies to the pointers. However, for the
dynamic join points, pointers need to be additionally
supported by operations such as taking of a variable or
a field address, a pointer dereference, an assignment to
and a use of array elements.

Another feature of C is a mechanism of a build pro�
cess of C programs. C is one of few programming lan�
guages for which compilation and linking of program
code is preceded by preprocessing that is based on a
configuration specified by build files and the user. Pre�
processing is an integral feature of C (for example,
Java has no such feature); therefore, this stage of
source code processing should be considered in AOP
frameworks for C. The main actions that are per�
formed successively for all program files during this
process are conditional compilation, inclusion of
header files, and macro expansion.

Header files inclusion may be associated with AOP
concepts as follows. Each header file included into
some file and the file itself can be considered as static
join points. As a signature that allows a set of such join
points to be described, one can consider a path tem�
plate allowing one to use a wildcard symbol denoting a
sequence of characters of arbitrary length. Also, one
can use a special notation for a currently preprocessed
file. This makes it possible to develop aspect files for
crosscutting concerns related to header files inclusion.
This can be used, for example, to add some auxiliary
preprocessor directives (thus affecting a program con�
figuration), function prototypes, etc.

Macros are largely similar to functions. For exam�
ple, a macro has a named parameterized definition,
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while macro expansion is used to replace formal
parameters in the definition by actual parameters and
substitute the result into program code. Due to this
analogy, macros can be reasonably considered as static
join points. To describe a set of these join points, one
can use a signature with support of wildcards for spec�
ifying both a part of a macro name and a list of param�
eters of arbitrary length. Again, by analogy with func�
tions, one can consider for macros dynamic join
points, such as macro “execution” and macro “call”
(expansion). In a natural way, one can port a descrip�
tion of these join points through their context (infile)
and a use of reflection information in advices, such as
a macro name, actual parameters, and a context. With
the help of advices for macros, one can add some aux�
iliary code in place of (or before, or after) the substi�
tuted code.

We have considered the characteristics of C and the
build process of C programs that affect implementa�
tion of AOP frameworks for C. It is equally important
to take into account characteristics of a practical
application of AOP frameworks, which will be
addressed in the next section.

5. SPECIFIC FEATURES OF PRACTICAL 
APPLICATION OF AOP FRAMEWORKS FOR C

Our approach to the implementation of the AOP
frameworks for C was strongly affected by the Linux
Driver Verification (LDV) project [10–13]. The aim of
LDV is to provide a toolkit allowing one to use various
static analysis tools in order to check if Linux drivers
satisfy a certain set of correctness rules.

It turned out that an AOP framework for C is an
appropriate framework to formalize correctness rules
regardless of a static analysis tool and then to instru�
ment the source code of drivers to be checked.

This use case required from AOP frameworks for C
the following:

• Support C with all extensions of the GCC com�
piler as a source language (this is a standard language
for writing drivers of the Linux operating system) and
support standard and GCC options of C programs
build.

• Offer a large set of AOP facilities allowing extract�
ing crosscutting concerns of C programs into aspects.
This is required due to a variety of correctness rules to
be checked. In particular, formalization of correctness
rules requires a model state and model functions that
are essentially similar to fields and methods of aspects
in AOP frameworks for object�oriented programming
languages (an example can be seen in Section 8).
Here, it is important that the use of the proposed facil�
ities of AOP for developing aspects should be rather
convenient and intuitively understandable.

• An aspect weaver must output a correct C pro�
gram that is equivalent to the original program with
the only exception that it is extended by a description

of appropriate crosscutting concerns. This is required
for subsequent use of static analysis tools.

• AOP frameworks should be sufficiently easy to
maintain and to extend with new abilities. This
requirement came from practice. For example, for�
malization of new correctness rules sometimes
requires support of additional types of join points and
reflection information.

It should be noted that the specific requirements
formulated above can be considered in terms of
extracting crosscutting concerns for any C program
with a correction that it is done for Linux. For exam�
ple, most programs operating under Linux require
support of C with GCC extensions. To efficiently
extract crosscutting concerns, one needs a large set of
AOP facilities, and the use of AOP frameworks should
be convenient. The requirement that an aspect weaver
output should be a C program is also useful for debug�
ging AOP frameworks.

6. EXISTING AOP FRAMEWORKS FOR C

AOP frameworks for C have been developed to a
lesser extent in comparison with those for Java.
At present, the most advanced AOP framework for C is
ACC (AspeCt�oriented C) [14]. An extension of ACC
for C [15] used for developing aspects is similar to the
extension for Java made in AspectJ. Figure 2 presents
an aspect example written in this extension of C. The
aspect consists of one advice saying that, after all calls
of the function foo2, a message that contains a return
value of this function should be printed on the screen.
An approach to aspect weaving in ACC differs from
the one of AspectJ. For each input preprocessed file,
the special compiler acc generates a C file extended by
a description of relevant crosscutting concerns.

ACC supports a rather large set of AOP facilities for
extracting crosscutting concerns. ACC does not sup�
port such traditional AOP facilities as dynamic join
points for assignments and uses of fields, as well as the
order of advices application to the same join point
when around and before/after advices should be
applied simultaneously.

As for specific facilities of AOP for C, ACC fails to
affect the preprocessing process because an already
preprocessed source code is taken as an input. Also,
ACC offers no way to describe pointer operations in
pointcuts.

When using ACC, it is necessary to set a model
state and model functions manually because these fea�
tures are not supported by the framework. ACC is
released under GNU General Public License version 2,
which allows its modification. But ACC uses a parser
of C and its aspect�oriented extension, which was gen�
erated on the basis of a closed grammar. This parser
cannot handle some GCC extensions. Therefore,
ACC cannot be used, for example, for instrumentation
of source code of latest versions of Linux drivers. For
large and complex programs, ACC outputs C code,
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which is not equivalent to the original one and is
incorrect in some cases. The framework is currently
not supported by its developers and modification of its
parser is difficult; therefore, further development of
the given AOP framework is difficult.

InterAspect is one of the latest AOP frameworks for
C [16]. This framework is interesting primarily because it
is based on GCC plugins [17]; due to this, all GCC
extensions are supported. To develop aspects,
InterAspect provides a special AOP library for C rather
than an extension of C. Figure 3 shows how this library
can be used to define a primitive pointcut describing calls
of the function malloc. This can be done by creating the
corresponding pointcut (aop_match_function_call) and
setting limitations on the names of called functions
(aop_filter_call_pc_by_name), on the types of their argu�
ments (aop_filter_calls_pc_by_param_type), and on the
return value type (aop_filter_call_pc_by_return_type),
which is a rather labor�consuming task.

InterAspect supports a significant number of tradi�
tional AOP facilities. The most notable shortcoming of
the framework is lack of support for around advices.
Also, InterAspect fails to specify join points by their
context, does not support composite pointcuts, pro�
vides insufficient reflection information on join
points, and fails to set advices for static join points.
Like ACC, InterAspect does not support AOP facili�
ties related to specific features of C and a build process

of C programs. InterAspect operates at a low�level
internal representation of GCC, extending it by
describing crosscutting concerns. A tool output, object
or binary code, is generated by GCC, which does not
allow InterAspect to be used directly for static analy�
sis, as well as creates inconveniences in debugging the
framework. InterAspect is being developed passively.
The tool is released under GNU General Public
License version 3, which makes it possible to extend its
functionality.

One of the most promising (in terms of instrumen�
tation) approaches was implemented in SLIC (speci�
fication language for interface checking) and its pre�
processor [18]. SLIC is a C like language for develop�
ing specifications. In fact, a SLIC specification is
nothing else than an aspect. In bodies of SLIC advices,
one can use conditional expressions, simple assign�
ments, references to function parameters and their
return value, as well as special instructions for static
analysis tools. SLIC supports a setting of a model state.
The SLIC specification shown in Fig. 4 demonstrates
an ability to check errors in programs using AOP.
In this example, we have a wrong situation, where a
queue has more than four zeros. The specification
determines the model state of the program, zero_cnt,
which serves to count the number of zeros in the
queue. The advice is specified for an enter to the func�
tion put, which checks the number of zeros in the

Fig. 2. Example of an ACC aspect.

Fig. 3. Example of an InterAspect pointcut.

// Advice prints a message and a return value 
// of function foo2 after its call.
after (int res):
call(int foo2(int)) && result(res) {
printf(“after call foo2, return %d\n”, res);

}

static void instrument_malloc_calls() {
/* Creating a primitive pointcut matching calls

of function void *malloc(unsigned int). */
struct aop_pointcut *pc =
aop_match_function_call();

aop_filter_call_pc_by_name(pc, “malloc”);
aop_filter_call_pc_by_param_type
(pc, 0, aop_t_all_unsigned());

(pc, aop_t_all_pointer());
aop_join_on(pc, malloc_callback, NULL);

}

aop_filter_call_pc_by_return_type
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queue and increases zero_cnt if no error occurred.
Similarly, an advice is specified for an exit from the
function get.

SLIC is used during verification of Microsoft Win�
dows drivers. The SLIC preprocessor instruments
drivers’ source code on the basis of a specification. The
preprocessor outputs a C program that is equivalent to
the original program, which is extended by additional
checks. Then, the given program is checked using a
static analysis tool.

Due to specifics of its application area, SLIC has
never focused on being a full�fledged AOP framework
for C. It supports only a few dynamic join points (in
fact, only a function call and execution). SLIC fails to
set join points by their context, does not support
named pointcuts, and supports merely a single com�
posite pointcut (“or”). The around advices are not
supported, and a small amount of reflection informa�
tion can be used in advice bodies. SLIC does not allow
several advices to be specified for the same join point
and does not support advices for static join points.

Like ACC and InterAspect, SLIC does not support
AOP facilities related to specific features of C and a
build process of C programs.

Source code of the SLIC preprocessor is closed
unlike InterAspect and ACC, which particularly does
not allow one to extend its application domain for
extracting crosscutting concerns of C programs with
GCC extensions. As already noted, SLIC allows set�
ting a model state. Model functions are not supported.
Since the tool is used rather actively to solve important
industrial problems, we can assume that SLIC is sup�
ported at a sufficiently high level.

This paper does not address other AOP frameworks
for C, such as C4, Aspicere2, Xweaver, and WeaveC,
because they offer fewer useful features in comparison
with the ones described above. Also, this review omits
AOP frameworks for C++. These tools can be adapted
for extracting crosscutting concerns of C programs;
however, for developing and weaving aspects, they
widely use concepts and facilities of object�oriented
programming.

Thus, the existing AOP frameworks for C do not
offer all considered facilities of AOP. Most of the con�
sidered frameworks have fundamental limitations for
adding an extra support of some features. This conclu�
sion has led us to the need to develop our own AOP
framework for C.

7. C INSTRUMENTATION FRAMEWORK

The proposed approach to implementation of
aspect�oriented programming frameworks for C was
implemented in C Instrumentation Framework
(CIF). To develop aspects, CIF proposes to use a C
extension similar to AspectJ, AspectC++, ACC,
SLIC, and many other AOP extensions for various
programming languages. Aspects are stored as files
separately from program source code. A CIF aspect
file example can be found in the next section.

CIF supports the majority of the AOP facilities for
C described in the proposed approach. All traditional
facilities of AOP, as well as the possibility to set point�
cuts for including header files, “executing”, and
expanding macros, are supported. To date, like in
other AOP frameworks for C, CIF does not support
pointcuts for operations with pointers.

In developing CIF, much attention was paid to its
practical application, particularly for instrumentation
of Linux drivers’ code before its static analysis. Due to
the proposed architecture, the framework accepts
source code of programs in C with all GCC extensions
as input, as well as supports the standard and GCC
build options for C programs. After aspect weaving,
CIF can output both the C code (which, for example,
can be transferred to a static analysis tool) and those
representations of the program code that are sup�
ported by GCC.

The Table 1 compares supported features of CIF
and the existing AOP frameworks for C described in
Section 6. As one can see, CIF supports almost all
required facilities.

Let us consider the architecture of CIF in more
detail. Originally, the architecture was based on the
LLVM infrastructure [20]. It turned out that this
approach has a number of shortcomings, especially
from the point of view of practical application. There�
fore, this work proposed the new architecture.

At the input, CIF receives an aspect file, an unpre�
processed C file, and a set of options of preprocessing
and compilation8. The tool further operates like the
standard preprocessor and the C compiler, except that
CIF additionally performs aspect weaving of source
code. Aspect weaving is conducted automatically in
five stages. At each stage, CIF calls with appropriate
options a modified version of GCC 4.6.1 that includes

8 An unpreprocessed C file and a set of preprocessing and compi�
lation options can be obtained, for example, on the basis of pro�
gram build files.

Fig. 4. Example of a SLIC specification.

state { int zero_cnt = 0; }
put.entry {
if ($1 == 0) {
if (zero_cnt == 4)

abort “Queue has 4 zeroes!”;
else

zero_cnt = zero_cnt + 1;
}

}
get.exit {
if ($return == 0)
zero_cnt = zero_cnt - 1;

}
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the preprocessor and the C compiler [21]. The modi�
fied version of GCC has the following:

• an aspect parser that checks lexical, syntactic,
and semantic correctness of aspect files and converts
them into an internal representation of CIF (advice
bodies are considered only to find specific instructions
in them);

• a component intercepting program elements
(join points of a program) processed by the preproces�
sor and the compiler of GCC and converting it into an
internal representation of CIF;

• a component that matches join points and point�
cuts of advices given in the aspect;

• a component that frames matched join points on
the basis of advice requirements;

• a component that allows one to print C code on
the basis of the high�level internal representation of
GCC.

Let us consider aspect weaving at each of the five
stages and use of input data in CIF. For convenience,
we denote an input aspect file as a.aspect and an
unpreprocessed C file as a.c.

The first stage is auxiliary. At this stage, the aspect
file a.aspect is preprocessed by means of the GCC pre�
processor. In this case, directives starting with the

character “@”, rather than the standard character
“#”, are interpreted. Options of aspect preprocessing
can be set by the CIF option aspect�preprocessing�opts.
We denote an output file as a.aspect.i. Preprocessing of
the aspect files can be used, for example, to develop a
library of aspect files, which is an important task for a
wide practical application.

At the second stage, CIF inserts an additional text
before or after a.c code. Since this is done before
invoking the preprocessor, that text can contain differ�
ent preprocessor directives. We denote the output file
as a.prepared.

At the third stage, CIF runs the standard GCC pre�
processor, which gets the file a.prepared and prepro�
cessing options as inputs. As preprocessing proceeds,
aspect weaving of “executions” and expansions of
macros occurs in accordance with the advices of the
aspect file a.aspect.i. Here, on the basis of information
on the join point, special instructions are replaced in
advice bodies. The preprocessed file obtained at the
output is denoted as a.macroweaved.

At the fourth stage, CIF inputs the file a.mac�
roweaved and compilation options to the standard
GCC compiler. At this stage, the compiler parses the
input file and converts it into its internal high�level

Table 1. Comparison of C Instrumentation Framework with existing AOP frameworks for C

Characteristics of an AOP framework ACC InterAspect SLIC CIF

Support of
traditional
AOP facili�
ties

Pointcuts for static join points including support of 
wildcard symbols

+ + ± +

Pointcuts for dynamic join points ± ± ± +

Pointcuts for specifying join points by their context + – – +

Composite and named pointcuts + ± ± +

Before, after, and around advices for dynamic join points + ± ± +

Arbitrary correct C code in advice bodies + + ± +

Special instructions in an advice body including reflec�
tion information

+ ± ± +

Order of application of advices ± ± – +

Advices for static join points + – – +

Support of
AOP facili�
ties for C

Pointcuts for inclusion of header files – – – +

Pointcuts for “executions” and expansions of macros – – – +

Pointcuts for operations with pointers – – – –

Possibilities
of a practical 
application

C with GCC extensions including GCC build options ± + ± +

Model state and model functions – + ± +

Output of an aspect weaver in C ± – ± +

Extensibility of framework possibilities ± + – +

Support of a framework – ± + +
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representation. Simultaneously, the special compo�
nent of GCC intercepts processed definitions and calls
of functions, assignments, and uses of variables and
fields, as well as declarations of composite data types.
If they are matched by the advices specified in the
aspect file a.aspect.i, composite data types are comple�
mented by fields at the level of textual representation
of the file a.macroweaved, and for functions, variables,
and fields, auxiliary functions are created to be
appended at the end of the file a.macroweaved. Bodies
of auxiliary functions are generated on the basis of
bodies of respective advices. Special instructions in
advice bodies’ code are replaced by their values on the
basis of the obtained information on the join point.
It makes sense to note that advice bodies can contain
an arbitrary valid code in C with GCC extensions. This
code is parsed and checked by the GCC compiler at
the next stage of the CIF operation. We denote the file
obtained at this stage as a.weaved.

At the fifth and final stage, CIF inputs the file
a.weaved and compilation options to the standard
GCC compiler. The further operation is largely similar
to that of the fourth stage, except that declarations of
composite data types are not intercepted, while, for
functions, variables, and fields, the corresponding
dynamic join points and auxiliary functions are linked
at the level of the high�level internal representation of
GCC. If CIF runs with the option – back�end=src, as
the compiler completes parsing of program elements,
their high�level representation is converted into C

code, which is printed into an output file specified by
means of a special option. It should be noted that all
transformations maintain links with original source
code of a program by adding line directives. If the
value of the CIF option –back�end is one of asm, obj,
or bin, the GCC compiler continues its work in a stan�
dard way and outputs one of the program code repre�
sentations that are supported by the GCC compiler
(assembler, object, or binary code respectively). The
output file is denoted as a.o.

Figure 5 shows a CIF workflow, which clearly dem�
onstrates the way how input data is used and con�
verted. Here, the boxes with dotted borders indicate
some external data.

8. PRACTICAL APPLICATION
OF C INSTRUMENTATION FRAMEWORK

C Instrumentation Framework was included into
the LDV toolkit [10–13]. LDV rules that describe cor�
rect use of the Linux kernel interface by drivers are
manually formalized as aspects in the following way:

(1) One analyzes that part of the Linux kernel
interface for drivers that is related to a given rule. In
the majority of cases, one obtains macros and func�
tions the correct use of which is specified by the rule.

(2) In an aspect, one specifies a model state and
model functions where checks required by the rule and
the corresponding changes in the model state are per�
formed.

(3) With the help of advices, one specifies in the
aspect the linkage of model functions to those places
where respective interface of the Linux kernel is used.

(4) In different parts of the aspect, auxiliary ele�
ments are specified.

CIF is used for automatic instrumentation of driv�
ers’ source code aimed at its further checking by
means of static analysis tools.

As an example, we consider one of LDV rules
describing the correct registration of a Gadget class
USB device. When this rule is violated, the entire sys�
tem may crash [22]. The rule is as follows:

(1) Primarily it is necessary to register in an arbi�
trary order a class of devices and a range of device
numbers, and, then, register a Gadget class device. No
re�registration of resources is allowed.

(2) After using the device, it is necessary to dereg�
ister, first, the Gadget class device and, then, the class
of devices and the range of device numbers in an arbi�
trary order.

In formalizing the rule, it should be taken into
account that registration functions may not work
because of some reason. In this case, one should also
deregister registered resources. For example, if the
Gadget class device cannot be registered, it is neces�
sary to arbitrarily deregister the class of devices and the
range of device numbers.

Options of 

Compilation

aspect preprocessing

options

Compilation
options

a.o.

a.weaved

a.macroweaved

a.prepared

a.c.

b.h

a.aspect.i

2 stage

3 stage

4 stage

5 stage

1 stage

Options of aspect
preprocessingb.aspect

a.aspect

Fig. 5. C Instrumentation Framework workflow.
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An analysis of the Linux kernel interface revealed
the following macros and functions that are relevant to
the rule:

(1) Macro “class_create (owner, name)” – creation
and registration of the device class.

(2) Function “void class_destroy(struct class ∗)” –
deregistration and destruction of the device class.

(3) Macro “class_register(class)” – registration of
the device class.

(4) Function “void class_unregister(struct class ∗)”
– deregistration of the device class.

(5) Functions “int alloc_chrdev_region(dev_t ∗,
unsigned, unsigned, const char ∗)” and “int
register_chrdev_region(dev_t, unsigned, const char ∗)”
– registration of the device number range.

(6) Function “void unregister_chrdev_region(dev_t,
unsigned)” – deregistration of the device number
range.

(7) Function “int usb_gadget_register_driver(struct
usb_gadget_driver ∗ driver)” – registration of the Gad�
get class device (up to Linux kernel version 2.6.37).

(8) Function “int usb_gadget_probe_driver(struct
usb_gadget_driver ∗ driver, int(∗bind)(struct usb_gadget
∗))” – registration of the Gadget class device (starting
with Linux kernel version 2.6.37).

(9) Function “int usb_gadget_unregister_driver(struct
usb_gadget_driver ∗ driver)” – deregistration of the
Gadget class device.

Figure 6 shows a part of the aspect file specifying
the model state and model functions (comments and
fragments of similar code are omitted). The model
state and model functions are placed into a separate
file with the help of the special advice new (line 32) to
prevent from repeating for several C files which can be
linked together. Here, this file is given by the environ�
ment variable LDV_COMMON_MODEL.

Line 33 includes an auxiliary header file that
defines an interface of static analysis tools:

(*) Functions ldv_under_ptr (used in line 46) and
ldv_undef_int_nonpositive (used in line 58) return an
undefined pointer and an undefined non�positive
integer respectively. These functions are necessary to
simulate possible failures of resources registration.

(*) Macro ldv_assert (used in lines 49, 50, etc.)
checks the condition received as a parameter. If a vio�
lation of this condition is detected, the static analysis
tool will report a possible error.

Line 34 includes the auxiliary header file that deter�
mines model functions to handle errors transmitted by
function return values of the pointer type. For example,
line 47 uses the special macro LDV_PTR_MAX, which
specifies the maximum possible value of the pointer
that brings no information about an error.

Lines 35–38 specify possible values of the model
variable ldv_class: LDV_CLASS_UNREGISTER cor�
responds to the state in which the device class is not
registered and LDV_CLASS_REGISTER to the state
where it is registered.

Lines 40–42 define and initialize variables that
represent the model state. At the beginning of program
execution, all resources are unregistered.

Lines 43–54 define the model function
ldv_create_class corresponding to the Linux kernel
interface macro class_create, which is responsible for
the creation and registration of the class of devices.
ldv_create_class simulates a possible failure in the reg�
istration of the device class (lines 45–47 and 53) and
checks that the Gadget class device was not registered
before the registration of the device class (line 49) and
that the registration of the device class is not repeated
(line 50). If these checks are passed, the model state is
changed; namely, the variable ldv_class is set to
LDV_CLASS_REGISTER.

The macro class_register corresponds to the model
function ldv_register_class (lines 55–66). In general,
this function is similar to ldv_create_class, except that
a possible failure in the device class registration is
modeled using integers rather than pointers (lines 57–
59 and 65).

Lines 68–73 determine the model function
ldv_unregister_class corresponding to the Linux kernel
interface functions class_destroy and class_unregister.
The function ldv_unregister_class checks if the Gadget
class device is unregistered and if the device class is
registered. Then, the device class is deregistered.

Lines 75–80 define a special model function that is
executed when the driver operation is terminated. This
function checks if all resources were deregistered
before the final state.

Figure 7 shows a part of the aspect file that
describes the binding of model functions (lines 12, 15,
etc.) to macro “executions” (lines 11 and 14) and
function calls (lines 17, 20, etc.). For this rule, no
binding to a function execution is possible because
implementations of these functions are unavailable for
static analysis of driver’ source code.

It should be noted that, by using a composite point�
cut that specifies calls of functions class_destroy and
class_unregister (line 17), one can call the same model
function ldv_unregister_class (line 18) instead of
them. A similar technique is used for calls of the func�
tions alloc_chrdev_region and register_chrdev_region,
as well as usb_gadget_register_driver and
usb_gadget_probe_driver. The latter particularly
makes it possible to use the given aspect file for instru�
mentation of Linux kernel drivers’ source code of dif�
ferent versions (up to 2.6.37 and higher).

Figure 8 shows an auxiliary part of the aspect file.
Line 01 includes a special aspect header file specifying
the binding of model functions for processing errors
transmitted through function return values of the
pointer type, to executions of respective functions of
the Linux kernel interface. Line 02 says that instru�
mented driver code should be preceded by model
function prototypes (lines 03–09). This is needed
because, before their usage, the functions must be
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Fig. 6. Model state and model functions for the LDV rule describing correct registration of the Gadget class USB device.

32 new: file(LDV_COMMON_MODEL) {
33 #include <verifier/rcv.h>
34 #include <kernel-model/err.h>
35 enum {
36 LDV_CLASS_UNREGISTERED,
37 LDV_CLASS_REGISTERED
38 };
39 // Similarly for the range of device numbers and a

// Gadget class device.
40 static int ldv_class = LDV_CLASS_UNREGISTERED;
41 static int ldv_region = LDV_REGION_UNREGISTERED;
42 static int ldv_usb_gadget = LDV_USB_GADGET_UNREGISTERED;
43 void *ldv_create_class(void)
44 {
45 void *is_got;
46 is_got = ldv_undef_ptr();
47 if (is_got <= LDV_PTR_MAX)
48 {
49  ldv_assert(ldv_usb_gadget == LDV_USB_GADGET_UNREGISTERED);
50  ldv_assert(ldv_class == LDV_CLASS_UNREGISTERED);
51  ldv_class = LDV_CLASS_REGISTERED;
52 }
53 return is_got;
54 }
55 int ldv_register_class(void)
56 {
57 int is_reg;
58 is_reg = ldv_undef_int_nonpositive();
59 if (!is_reg)
60 {
61  ldv_assert(ldv_usb_gadget == LDV_USB_GADGET_UNREGISTERED);
62  ldv_assert(ldv_class == LDV_CLASS_UNREGISTERED);
63  ldv_class = LDV_CLASS_REGISTERED;
64 }
65 return is_reg;
66 }
67 // Similarly for ldv_register_region and

// ldv_register_usb_gadget.
68 void ldv_unregister_class(void)
69 {
70  ldv_assert(ldv_usb_gadget == LDV_USB_GADGET_UNREGISTERED);
71  ldv_assert(ldv_class == LDV_CLASS_REGISTERED);
72  ldv_class = LDV_CLASS_UNREGISTERED;
73 }
74 // Similarly for ldv_unregister_region and
 // ldv_unregister_usb_gadget.

75 void ldv_check_final_state(void)

76 {
77 ldv_assert(ldv_class == LDV_CLASS_UNREGISTERED);
78 ldv_assert(ldv_region == LDV_REGION_UNREGISTERED);
79 ldv_assert(ldv_usb_gadget == LDV_USB_GADGET_UNREGISTERED);
80 }
81 }
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defined or prototypes should be provided for them.
Since model functions are defined in a separate file,
they are provided with prototypes. In addition, differ�
ent parts of the aspect file shown in Figs. 6–8 contain
auxiliary model comments that are omitted for brevity.

Currently we have formalized 44 rules of the LDV
project in form of aspects. Using these aspects, CIF
has successfully instrumented source code of more
than 95% of drivers (their total number is around
2000–4000 depending on the Linux kernel version
from 2.6.31.6 to 3.7�rc4 [23]). The remaining drivers
were not processed due to technical problems in the
GCC component that prints C code on the basis of the
internal high�level representation of the compiler.

Since this component is being developed within this
work, these problems will be potentially resolved.

The instrumented code was checked by means of
the static verification tools BLAST [24] and
CPAchecker [25]. As a result, we have detected 75 real
bugs in Linux drivers that were reported to the kernel
developers [26]. All these errors were fixed.

9. CONCLUSIONS

Aspect�oriented programming provides a special
mechanism to extend modularity support facilities
that can be found in the existing programming lan�
guages. AOP frameworks were originally developed for
object�oriented programming languages (primarily,

Fig. 7. Binding of model functions with “executions” of macros and calls of functions of the Linux kernel interface.

Fig. 8. Auxiliary include of an aspect header file and definition of model function prototypes. 

11 around: define(class_create(owner, name)) {
12 ldv_create_class()
13 }
14 around: define(class_register(class)) {
15 ldv_register_class()
16 }
17 around: call(void class_destroy(..)) ||

 call(void class_unregister(..)) {
18 ldv_unregister_class();
19 }
20 around: call(int alloc_chrdev_region(..)) ||

 call(int register_chrdev_region(..)) {
21  return ldv_register_region();
22 }
23 around: call(void unregister_chrdev_region(..)) {
24 ldv_unregister_region();
25 }
26 around: call(int usb_gadget_register_driver(..)) ||

 call(int usb_gadget_probe_driver(..)) {
27  return ldv_register_usb_gadget();
28 }
29 around: call(int usb_gadget_unregister_driver(..)) {
30 ldv_unregister_usb_gadget();
31 }

01 @include <kernel-model/err.aspect>
02 before: file("$this") {
03 void *ldv_create_class(void);
04 int ldv_register_class(void);
05 void ldv_unregister_class(void);
06 int ldv_register_region(void);
07 void ldv_unregister_region(void);
08 int ldv_register_usb_gadget(void);
09 void ldv_unregister_usb_gadget(void);
10 }
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for Java). This paper considers approaches to imple�
mentation of the AOP frameworks for C. To this end,
we consider the traditional ways of aspect description
for different programming languages, as well as the
influence of specific features of C and the build pro�
cess of C programs on AOP frameworks. Particular
emphasis has been placed on the possibility of using of
the AOP frameworks for C in practice (particularly for
instrumentation of Linux drivers’ source code before
its static analysis). This paper describes capabilities
and shortcomings of the existing solutions. Also, it
presents the new AOP framework for C–C Instrumen�
tation Framework. This framework excels the existing
solutions in all indicators.

Further development of CIF will be aimed at
improving support of the AOP facilities specific to C
(particularly operations with pointers), as well as at
expanding the CIF application domain.

Information on the current version of C Instru�
mentation Framework can be found at the project
website [19].
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