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Boussinesq approximation
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Doubly diffusive convection











Feigenbaum cascade





Classical, “normal” fluids

Equation of state 

In this sense water is “abnormal” fluid.



The interaction of the convective stable and unstable layers of a fluid often 

occurs in the geophysical and technical applications. It is known that the density 

of water has a maximum at the temperature close to 4°С. Any convective 

motions inside the layer result in the interaction of the stable and unstable parts 

of the layer so the convection differs from classical Rayleigh-Benard 

convection. 

We considered the flat horizontal layer of water with constant temperatures and 

stress-free conditions at the boundaries. The evolution of the hydrodynamic 

regimes and the transition to the chaotic motions was investigated numerically 

by means of pseudospectral method. The horizontal scale of the periodicity cell 

was chosen with particular attention.

The problem was studied for the case when the point of density maximum in 

the conductive state is in the middle of the layer. The existence of the different 

areas of hysteresis was detected. It can be illustrated with the help of the 

average heat fluxes. 

The scenario for the onset of turbulence is the following. At first, steady motions 

lose the stability and the periodic motion sets up. Then the bifurcation of the 

period-doubling occurs. After this mode, the quasiperiodic motion is observed 

for which the attractor in the phase space is a torus. Then the stochastic regime 

evolves. This chaotic motion shows a strongly pronounced intermittency with 

random turbulent bursts and the enhancement of the motion while there is a 

base motion with nearly constant amplitude  at the background.



Errington, J. R. & Debenedetti, P. G. Nature 409, 318–321 (2001).

Water

Fluid with 

atomic

structure



Boundary conditions:

For water with temperature 0
о

- 14
о

for atmospheric pressure experimental 

data are well described by quadratic approximation with the maximum at 

about 4
о

[Veronis 1963]*

where

* В in a more general case temperature 

maximum is expressed through the 

pressure (pressure measured in atm.):



where

here р=0 corresponds to atmospheric pressure.

General dependency of water density on temperature and pressure:
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Penetrative Convection.  
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Initial set of equations:

Boussinesq approximation

Solution = static solution + perturbations:

( – one of the functions or   )

Basic assumptions:

where - maximum functions deviation of

In the layer.

In heat transfer equation dissipation is neglected



With this assumptions:

Equations = static state + perturbations:



In the case Tb<Tu In the case Tb>Tu

Static distributions of temperature and density

Point of density maximum can be anywhere inside the layer and is determined 

by temperature on boundaries. 







Nondimensional system of equations for perturbations :

Parameters:

Prandtl number

(for water at 4оС σ=11.5968)

Rayleigh number

location of density maximum in 

conductive state

Notations:



With stress free boundary conditions on vertical boundaries, trigonometric 

decomposition gives:

then



Pseudospectral method

Let the Fourier coefficients are known for functions f and g:  

Algorithm:

I.e. it is nessesary to find Fourier of their multiplication:



System for Fourier coefficients

Nonlinear terms:

Notations for coefficients 

corresponding to spacial 

differentiation in spectral space:





To visualise the difference, conductive

temperature gradient is taken to be equal

to gradient on one of the boundaries for

penetrative convection

Comparison of results of penetrative convection and classical RB convection

in the case of equal heights of stable and unstable layers



Classical RB (lhs) and penetrative (rhs) convection, steady mode (L/L0=1)

Isotherms and streamlines

-L L0-L L0



Classical RB (lhs) and penetrative (rhs) convection:

steady mode (L/L0=1)

Mean temperature profile



-L L0-L L0

Classical RB (lhs) and penetrative (rhs) convection,

time-periodical mode (L/L0=1). Streamlines



Temperature distribution

Classical RB (lhs) and penetrative (rhs) convection,

time-periodical mode (L/L0=1)

-L L0-L L0









Rayleigh-Benard convection (linear dependancy ρ(Т) )

Periodic motion

Penetrative convection (quadratiс ρ(Т) )

Periodic motion



Mean temperature profiles

Classical RB (lhs) and penetrative (rhs) convection,

time-periodical mode (L/L0=1)



Differences from Rayleigh-Benard convection (linear ρ(Т) dependence)

RB: 

-- motions arise only if there is 

heating from below

-- average temperature in the 

periodicity cell equals 4° С

-- periodic mode is characterized 

by the circular motions in the half 

of the cell and existence of small 

vortices in the middle of larger 

structures

Penetrative convection:

-- motions can arise either in case 

of heating from below or in case of 

cooling from below

-- average temperature is close to 

the temperature at the lower 

boundary (in this case > 4°С)

-- existence of the vortices near 

the upper boundary 

-- typical horizontal scale is 2 times 

less than for RB convection

-- periodic mode is characterized 

by oscillations of the temperature 

“tails” and formation/destruction of 

vortices in the upper part of the 

layer

Rayleigh-Benard convection (isotherms, streamlines)

Penetrative convection (isotherms, streamlines)

The point of density maximum is in the middle plane of

the layer for penetrative convection (heating from below).





Tankin R., 

Farhadieh R. 
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P.953-960



Symmetrical structures

Different ratios of stable and unstable sublayers

hнеуст/hуст=0.82

hнеуст/hуст=0.49

hнеуст/hуст=0.56

Large E.D. An Experimental 

Investigation of Penetrative 

Convection in Water Near 

4°C. // Dissertation, The 

Ohio State University, 2010



To define dimensions for the study of transitions to chaos simulations were made 

for horizontal lengths up to 20L0, L0 – being taken from linear theory.

Conclusions: 

- for steady mode the period = L0

- for periodic mode with 1 maximum period length = 2L0

- for periodic mode with 2 maxima period length = 4L0

Dependency on horizontal dimensions

(L=1/α – half a period)



L= 2L0

L= 3L0

L= 4L0

L= 5L0

L= 6L0

L= 7L0

L= 10L0

L= 20L0

Steady mode

Dependence on aspect ratio (L=1/α – half a period)





L= L0

L= 2L0

L= 3L0

L= 4L0

L= 6L0

L= 10L0

Periodical mode

Dependence on aspect ratio (L=1/α – half a period)



Period-2 solution

Quasiperiodic solution 4L0



L= 2L0

L= 5.5L0

Fully chaotical mode

Dependence on aspect ratio (L=1/α – half a period)





Transitional modes

Mean Nusselt number on temperature on boundaries (and corresponding 

Rayleigh numbers) when density maximum is in the middle of conductive 

temperature distribution (T4-Tu = Tb-T4)



periodic mode, 

2 structures

steady mode, 

2 structures

steady mode, 

1.5 structures

quasiperiodic mode, 

2 structures

stochastic mode, 

2 structures



Tb=4.15  Tu=3.85, two steady solutions

Mean temperature profile and Nusselt number

isotherms



These steady modes

are stable 

after doubling

the horizontal

length

0 4L02L0



1

2
3

1

2

3



Tb=4.35  Tu=3.65, steady and periodic modes

isotherms



Mean temperature profile and Nusselt number

steady, 

1.5 structures

steady, 

2 structures

periodic, 

2 structures



Domain of existence 

of two solutions:

static and stationary





Tb=4.66  Tu=3.34, periodic mode (1 maximum for a period)



Tb=4.67 Tu=3.33, periodic mode (2 maxima for a period)



Period-doubling bifurcation 



Supercritical torus bifurcation Period-6 cycle 

saddle-node bifurcation for maps 



Существование гистерезиса:

периодическое решение, 1 максимум –

периодическое решение, 2 максимума 

за период

периодическое 

решение, 2 максимума 

за период

периодическое 

решение, 1 максимум 

за период



period-1 and 

period-2 solutions



Periodic and period-2 motion on torus



transition to 

stochastic mode

periodic, 2 

maxima

periodic, 1 

maximum

quasi-

periodical

stochastic





Tb=4.705  Tu=3.295, quasiperiodic mode



Tb=4.74  Tu=3.26

Intermittency and bursts of heat flux



Tb=4.74  Tu=3.26





Intermittency and bursts of heat flux in stochastic modes

ΔT=1.5126

ΔT=1.5130



Intermittency and new QP mode

after stochastic mode

квазипериоди-

ческий режим

stochastic mode



Three-dimensional patterns

Alexander Getling 2003



Three-dimensional modes





Spectral methods

● Functions are represented with the aid 
of Fourier Series

● Spatial derivatives are evaluated exactly 

● Effective wavenumber, discretization 
error

● Joel H. Ferziger and Milovan Peric 
Computational Methods for Fluid 
Dynamics (to be published in Russian in 
MSU 2013 )

Resolution up to 1000^3



Energy spectra and fluxes for 
turbulent convection in complex fluids

Energy transfer between various Fourier modes

Kolmogorov’s energy spectrum

Bolgiano and Obukhov dual cascade for stratified fluids  

M. Verma et al Mode-to-mode energy transfer, energy 
cascade in RBC



Further development

Classification of three-dimensional modes.

Comparative analysis with fully periodic 
boundary conditions.

Height of density maximum variation.

Slip boundary conditions.

Energy transfer between various Fourier modes 
and energy spectrum


