
Overview
Pre

Running
Post

Case variations
Conclusion

Real world PyFoam and swak4Foam
"Programming" an OpenFOAM-case

Bernhard F.W. Gschaider

Moscow
4. December 2015

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 1/140

Overview
Pre

Running
Post

Case variations
Conclusion

Outline I

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running
Custom plots

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 2/140

Overview
Pre

Running
Post

Case variations
Conclusion

Outline II
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 3/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 4/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 5/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

What this talk is about

• This talk will introduce two OpenSource-additions to
OpenFOAM/Foam:

• PyFoam
• swak4Foam

• It will do so on the example of a real-world case
• Structure will follow the classic simulation 3-step:

Pre-
Processing Running Post-

Processing

and show how theses packages can help at each step

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 6/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Warning

• There will be no movies in this presentations
• But around 100 slides
• It’s OK if you want to leave now and go straight to the coffee

• But I’d be sad

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 7/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Warning

• There will be no movies in this presentations
• But around 100 slides
• It’s OK if you want to leave now and go straight to the coffee

• But I’d be sad

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 7/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Warning

• There will be no movies in this presentations
• But around 100 slides
• It’s OK if you want to leave now and go straight to the coffee

• But I’d be sad

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 7/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Warning

• There will be no movies in this presentations
• But around 100 slides
• It’s OK if you want to leave now and go straight to the coffee

• But I’d be sad

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 7/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Warning

• There will be no movies in this presentations
• But around 100 slides
• It’s OK if you want to leave now and go straight to the coffee

• But I’d be sad

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 7/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

But first

• Introduction:
• Who am I?
• Where do I work?
• What is PyFoam?
• What is swak4Foam
• What are we going to simulate

• I’ll assume that you all know what OpenFOAM is

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 8/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Bernhard Gschaider

• Author of
• PyFoam
• swak4Foam

• Administrator of
• http://openfoamwiki.net

• Active in the OepnFOAM-community
• Employed at ICE Strömungsforschung

• Most of my OpenSource stuff is "collateral damage" of customer
projects done there

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 9/140

http://openfoamwiki.net

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

ICE Strömungsforschung

• Located in Leoben, Austria
• CFD Consulting

• Development with OpenFOAM
• Also using ClosedSource

• Customers in
• Automotive industries
• Petroleum
• Manifacturing
• Chemical processing
• . . .

• Active member of the OpenFOAM-community

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 10/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 11/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

What is PyFoam

• PyFoam is a library for
• Manipulating OpenFOAM-cases
• Controlling OpenFOAM-runs

• It is written in Python
• Based upon that library there is a number of utilities

• For case manipulation
• Running simulations
• Looking at the results

• All utilities start with pyFoam (so TAB-completion gives you an overview)
• Each utility has an online help that is shown when using the -help-option
• Additional information can be found

• on openfoamwiki.net
• in Training presentations at the OpenFOAM workshops

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 12/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

What is swak4Foam

From http://openfoamwiki.net/index.php/Contrib/swak4Foam

swak4Foam stands for SWiss Army Knife for Foam. Like that knife it
rarely is the best tool for any given task, but sometimes it is more

convenient to get it out of your pocket than going to the tool-shed to get
the chain-saw.

• It is the result of the merge of
• funkySetFields
• groovyBC
• simpleFunctionObjects

and has grown since
• The goal of swak4Foam is to make the use of C++ unnecessary

• Even for complex boundary conditions etc

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 13/140

http://openfoamwiki.net/index.php/Contrib/swak4Foam

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

The core of swak4Foam

• At its heart swak4Foam is a collection of parsers (subroutines that
read a string and interpret it) for expressions on OpenFOAM-types

• fields
• boundary fields
• other (faceSet, cellZone etc)

• . . . and a bunch of utilities, function-objects and boundary
conditions that are built on it

• swak4foam tries to reduce the need for throwaway C++ programs
for case setup and postprocessing

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 14/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 15/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Real-life case

• Usually I use toy-cases for these presentations
• The complexity of real world cases draws the attention from the real

problems

• Not this time
• The case presented here is modelled on a real case

• Geometries and parameters have been changed to protect the
innocent

• But the concepts remain valid

• We simulate a part of a polymer processing facility

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 16/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Flow distributor for a polymere reactor

• Purpose of this thing is to
• Receive a polymer flow from a previous stage in production
• Distribute the polymer to the next stage

inlet

outlet 1 outlet 2

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 17/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Goals of the simulation

• Given: Constant inflow
• Looking for a pseudo-steady solution

• Find a way to distribute the flow as evenly as possible to the next
stage

• Investigate different arrangements of the pipes
• Different geometries of the pipes
• Other modifications that don’t include

• Modification of the outer geometry
• Inflow

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 18/140

Overview
Pre

Running
Post

Case variations
Conclusion

This talk
pyFoam and swak4Foam
The case

Local time-stepping (LTS)

• This is a pseudo-steady problem
• Once converged the surface of the flow should not change anymore

• Reaching the steady-state with a pure transient solver takes a lot of
time

• Especially as the Courant-criterion limits the timestep
• For such cases OpenFOAM uses LTS (Local Time Stepping)

• In each cell instead of a common timestep a local timestep is used
• Calculated from the flow velocity so that the Courant-criterion is

fulfilled
• Smoothed to avoid jumps in the solution

• Equations solved until a steady state is reached
• Intermediate solutions are not physical

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 19/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 20/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 21/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

The pyFoamPrepareCase.py-utility

• To set up the case we use the pyFoamprepareCase.py utility
• Helps automate the case-setup

• Does a number of things in a specific order:
1 Clear the case
2 Process templates
3 Prepare the mesh
4 Set initial conditions

• Working with this utility is like programming the case
• More work has to be invested in the beginning
• But afterwards automation is easy

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 22/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

The template format

• Templates are text files from which text files are generated
• Using values that are inserted

• PyFoam comes with its own templating engine
• Based on Python: calculations are done in the Python syntax
• Control structures like if or for are enclosed in <!--(and)-->

• Things like if or for

• Expressions between |- and -| are evaluated and the result is
inserted into the text file

• Lines starting with $$ are variable declarations
• Everything else is passed to the result files

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 23/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

The parameter files

• The values for the templates are taken from parameter files
• Syntax of parameter files is the syntax of regular OpenFOAM-files

• Including #include to pull in other files

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 24/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the time in controlDict

Template: controlDict.template

<!--(if solver =="LTSInterFoam")-->
endTime |-ltsIterations -|;
<!--(else)-->
endTime |-realTime -|;
<!--(end)-->
<!--(if solver =="LTSInterFoam")-->
deltaT 1;
<!--(else)-->
deltaT |-deltaT -|;
<!--(end)-->
LTSInterFoam")-->
writeInterval␣␣␣␣␣␣␣␣␣␣|-int(ltsIterations/numberOfOutputs) -|;
<!--(else)-->
writeInterval␣␣␣␣␣␣␣␣␣␣|-float(realTime)/numberOfOutputs -|;
<!--(end)-->

The parameter file
Inserting these values into the
template
solver LTSInterFoam;
ltsIterations 20000;
deltaT 0.01;
numberOfOutputs 100;

Result: controlDict

endTime 20000;
writeInterval 200;
deltaT 1;

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 25/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the time in controlDict

Template: controlDict.template

<!--(if solver =="LTSInterFoam")-->
endTime |-ltsIterations -|;
<!--(else)-->
endTime |-realTime -|;
<!--(end)-->
<!--(if solver =="LTSInterFoam")-->
deltaT 1;
<!--(else)-->
deltaT |-deltaT -|;
<!--(end)-->
LTSInterFoam")-->
writeInterval␣␣␣␣␣␣␣␣␣␣|-int(ltsIterations/numberOfOutputs) -|;
<!--(else)-->
writeInterval␣␣␣␣␣␣␣␣␣␣|-float(realTime)/numberOfOutputs -|;
<!--(end)-->

The parameter file
Inserting these values into the
template
solver LTSInterFoam;
ltsIterations 20000;
deltaT 0.01;
numberOfOutputs 100;

Result: controlDict

endTime 20000;
writeInterval 200;
deltaT 1;

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 25/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the time in controlDict

Template: controlDict.template

<!--(if solver =="LTSInterFoam")-->
endTime |-ltsIterations -|;
<!--(else)-->
endTime |-realTime -|;
<!--(end)-->
<!--(if solver =="LTSInterFoam")-->
deltaT 1;
<!--(else)-->
deltaT |-deltaT -|;
<!--(end)-->
LTSInterFoam")-->
writeInterval␣␣␣␣␣␣␣␣␣␣|-int(ltsIterations/numberOfOutputs) -|;
<!--(else)-->
writeInterval␣␣␣␣␣␣␣␣␣␣|-float(realTime)/numberOfOutputs -|;
<!--(end)-->

The parameter file
Inserting these values into the
template
solver LTSInterFoam;
ltsIterations 20000;
deltaT 0.01;
numberOfOutputs 100;

Result: controlDict

endTime 20000;
writeInterval 200;
deltaT 1;

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 25/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 26/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

snappyHexMesh

• snappyHexMesh is one of the meshers that come with OpenFOAM
• Automatically generates a hex-dominant mesh

• User only has to specify the boundaries . . . ideally
• and the base mesh generated with blockMesh (the other mesher)

• Boundaries are specified in surface mesh files (we use STL)
• Additional parameters specify where to refine
• Mesher needs hints about the feature edges

• Otherwise they will be "blunt"

• Everything is controlled from one text file

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 27/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Using the symmetry

Whole geometry Using the symmetry
• The geometry:

• The overall geometry is a
regular eight-side polygon

• On four of the sides there are
inlets

• Pipes are aranged in a
regular pattern

• All this means that we’ve only
got to simulate one quarter of
the whole geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 28/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outer geometry

Boundaries
The outer radius of this geometry is
1m

• Inlet
• Wall
• Floor
• Symmetry
• Outlets will be set by the pipes

Outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 29/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outer geometry

Boundaries
The outer radius of this geometry is
1m

• Inlet
• Wall
• Floor
• Symmetry
• Outlets will be set by the pipes

Outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 29/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outer geometry

Boundaries
The outer radius of this geometry is
1m

• Inlet
• Wall
• Floor
• Symmetry
• Outlets will be set by the pipes

Outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 29/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outer geometry

Boundaries
The outer radius of this geometry is
1m

• Inlet
• Wall
• Floor
• Symmetry
• Outlets will be set by the pipes

Outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 29/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outer geometry

Boundaries
The outer radius of this geometry is
1m

• Inlet
• Wall
• Floor
• Symmetry
• Outlets will be set by the pipes

Outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 29/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outer geometry

Boundaries
The outer radius of this geometry is
1m

• Inlet
• Wall
• Floor
• Symmetry
• Outlets will be set by the pipes

Outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 29/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Feature edges

Feature edges
• Feature edges are detected by
the surfaceFeatureExtract-
utility

• Controlled by a separate file
• Needs names of surfaces and

feature angles

• Feature edges are depicted by
white lines in the picture

Edges on the geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 30/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Feature edges

Feature edges
• Feature edges are detected by
the surfaceFeatureExtract-
utility

• Controlled by a separate file
• Needs names of surfaces and

feature angles

• Feature edges are depicted by
white lines in the picture

Edges on the geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 30/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outflow pipes

The pipe Outlet geometry
• This is the simplest possible outlet geometry

• Height of the pipe is 20cm
• The lower part intersects with the reactor

• Polymer flows out

• A number of those is placed in the reactor
• We use just one STL

• Centered at location (0, 0)

• Geometries with non-zero thickness of the wall
are possible but have to be treated slightly
different

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 31/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Placing a pipe

Placing one pipe
• Pipe geometry is shifted to a
new location

• There is a utility for this

• In our case it intersects with a
symmetry plane

Pipe in the geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 32/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Feature edges of the cylinder

Edges of the cylinder

Every cylinder has its edges
• Pipe surface has to be added to
surfaceFeatureExtractDict

• Only the feature of the pipe
itself is extracted

• Red line

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 33/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Intersection two geometries

Problem with boundary cylinders
• snappyHexMesh produces ugly
cells where the pipe intersects
the symmetry plane

• Needs an additional hint
• There is a utility for that:

• surfaceBooleanFeatures
extracts the difference
between the two STLs

• Green lines in the picture

Intersection with outer geometry

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 34/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Creating the outlets

• snappyHexMesh creates the geometry
• With walls for the pipe
• but the outlets are part of the "floor"

• Need two utilities to create the outlet
• topoSet to identify the faces on the outlets
• createPatch to create the actual patches from these sets

• Both utilities are controlled by text files
• Operations have to be done separately for each outlet

• Whenever I say "text file" I mean "template file"

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 35/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Other snappy settings

• Base mesh is rather coarse
• No use to be accurate in the regions far from the surface

• Regions where interfaces are expected are refined
• Liquid level plus/minus

• approximately height of the pipes

• Inside and around the pipes
• There are parameters for this

• Zones are implemented in the snappyHexMeshDict.template

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 36/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Looping over the pipes
snappyHexMeshDict.template

Specify feature edges once in the template file
features
(

<!--(for i,s in enumerate(einbauSpec))-->
$$ stlName="einbau %03d" % i

{
file "|-stlName -|. extendedFeatureEdgeMesh";
level |-nFeatureLevel -|;

}
<!--(if intersectWithOuter)-->

{
file "outer_|-stlName -| _difference.extendedFeatureEdgeMesh";
level |-nFeatureLevel -nIntersectDecrease -|;

}
<!--(end)-->

<!--(end)-->

snappyHexMeshDict

Gets generated for N pipes
features
(

{
file "einbau000.extendedFeatureEdgeMesh";
level 5;

}
{

file "outer_einbau000_difference.extendedFeatureEdgeMesh";
level 5;

}
{

file "einbau001.extendedFeatureEdgeMesh";
level 5;

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 37/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Looping over the pipes
snappyHexMeshDict.template

Specify feature edges once in the template file
features
(

<!--(for i,s in enumerate(einbauSpec))-->
$$ stlName="einbau %03d" % i

{
file "|-stlName -|. extendedFeatureEdgeMesh";
level |-nFeatureLevel -|;

}
<!--(if intersectWithOuter)-->

{
file "outer_|-stlName -| _difference.extendedFeatureEdgeMesh";
level |-nFeatureLevel -nIntersectDecrease -|;

}
<!--(end)-->

<!--(end)-->

snappyHexMeshDict

Gets generated for N pipes
features
(

{
file "einbau000.extendedFeatureEdgeMesh";
level 5;

}
{

file "outer_einbau000_difference.extendedFeatureEdgeMesh";
level 5;

}
{

file "einbau001.extendedFeatureEdgeMesh";
level 5;

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 37/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Annotated parameter values
• The file default.parameters can have a more elaborate syntax

• Parameters can be organized in sections
• Descriptive texts for parameters and sections
• List of possible values (for instance: solver can only be interFoam

or LTSinterFoam)
• pyFoamPrepareCase.py generates a structured document from
these informations

• Which parameter values were used (and which are changed from the
default)

• optionally as HTML or PDF

default.parameters

snappy {
description "Settings␣for␣snappyHexMesh";
values {

nFeatureLevel {
default 5;
description "Refinement␣levels␣on␣feature␣edges";

}
}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 38/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Mesh for one one pipe

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 39/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 40/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

The coordinate system

Placing of the pipes
• Pipes are placed on a
semi-regular grid (equal
spacing)

• One direction in a 45° angle
to the other

• Strange definition of the
"negative" y-direction

• Coordinates could be calculated
by hand

• Lots of
√
2 in the calculation

• By providing a script
derivedParameters.py
pyFoamPrepareCase.py does
the calculations for us

The grid

0,0 1,0 2,0

0,1

0,-1

1,1

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 41/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Specifying the positions

• Positions and geometries are specified in a list with
• The STL to use

• default means "take the STL from the variable defaultSTL" (this
allows quick changes of the STL)

• The coordinates
• First two numbers are our "special coordinates"
• Third number is how much the geometry should be shifted on the

z-axis

• There is a separate list for geometries with non-zero thickness

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 42/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the default positions

achteckBarrieren.parameters

#include "achteckBase.parameters"

einbauSpec (
(default (0 0 0))
(default (2 0 0))
(default (4 0 0))
(default (1 1 0))
(default (1 -1 0))
(default (0 2 0))
(default (0 -2 0))
(default (3 1 0))
(default (3 -1 0))
(default (2 2 0))
(default (2 -2 0))
(default (1 3 0))
(default (1 -3 0))
(default (0 4 0))
(default (0 -4 0))

);

The positions

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 43/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the default positions

achteckBarrieren.parameters

#include "achteckBase.parameters"

einbauSpec (
(default (0 0 0))
(default (2 0 0))
(default (4 0 0))
(default (1 1 0))
(default (1 -1 0))
(default (0 2 0))
(default (0 -2 0))
(default (3 1 0))
(default (3 -1 0))
(default (2 2 0))
(default (2 -2 0))
(default (1 3 0))
(default (1 -3 0))
(default (0 4 0))
(default (0 -4 0))

);

The positions

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 43/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 44/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

groovyBC

• One of the oldest parts of swak4Foam
• Essentially a mixed-boundary condition where the important parts
can be specified with expressions
valueExpression expression of the values to set
gradientExpression the gradient to set
fractionExpression whether this face is a value (1) or a gradient

(0) or something in between
• A list of variables can be specified to structure the expressions
• The expressions are evaluated separately for every face in the patch

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 45/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the massflow

U.template

einlass|-einlassPatch -|
{

<!--(if UInFromMassflow)-->
type groovyBC;
value uniform (0 0 0);
variables (

"totalArea=sum(area());"
"URein=|- massFlowEinlass/<brk>

<cont> densitySchmelze -|/<brk>
<cont> totalArea;"

);
valueExpression "-normal ()*URein";

<!--(else)-->
type surfaceNormalFixedValue;
refValue uniform |--UIn -|;

<!--(end)-->
}

U

normal unit vector pointing
outward for each face

area size of each face
sum sums up an

expression

einlassUnten
{

type groovyBC;
value uniform (0 0 0);
variables (

"totalArea=sum(area());"
"URein =0.00442477876106/ totalArea;"

);
valueExpression "-normal ()*URein";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 46/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Goals for the inital alpha-fields

• We don’t want to start with an empty reactor
• takes long to converge
• the splashing of the incoming jet might "kill" the solver

• We don’t want to start with a full reactor
• takes long
• we need an interface for gravity to "work"

• We try to guess a good initial solution
• Liquid film at the inlet near the wall
• Liquid level some centimeters above the upper edge of the tubes
• Only a film of liquid on the inside walls of the tubes

• Usually we’d need a quite complicated C++-program to achieve this
• And it would only be of use for this case

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 47/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

funkySetFields

• This is definitely the oldest part of swak4Foam
• Basically swak started as a fusion of funky and groovy

• Allows quickly setting fields from the command line
• For instance: we need a temperature field in Celsius for

post-processing

> funkySetFields -latestTime -create -field TCelsius -expression "T -273.15"

• More flexibility is possible if one is using dictionary files
• Expressions with variables
• More than one expression in a row

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 48/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

The caseSetup.sh-script

• After the mesh setup pyFoamPrepareCase.sh executes this script
• If present

• Otherwise it will try to just execute setFields
• Having to scripts allows selecting a phase

• "Don’t create the mesh - use the current one - but do everything
else"

• In our case caseSetup.sh executes funkySetFields
• With a dictionary file created from a template

• The template uses information about the placement of the outlets
• Parameters to specify the height of the liquid etc

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 49/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Setting the alpha field

funkySetFieldsDict.clearCylinders (from template)

We’ll leave out the actual template
expressions (

setFilm {
field alpha.schmelze;
keepPatches true;
expression "1";

condition "pos().x>0.94";
}
clearCylinder000
{

field alpha.schmelze;
keepPatches true;
expression "0";
condition "(pow(pos().x-0.0 ,2)+pow(pos().y-0.0 ,2)) <0.0016";

}
clearCylinder001
{

field alpha.schmelze;
keepPatches true;
expression "0";
condition "(pow(pos().x-0.4 ,2)+pow(pos().y-0.0 ,2)) <0.0016";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 50/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Initial condition

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 51/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 52/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Other stuff in the caseSetup.sh-script

• Theoretically we’re ready
• Did I mention that the case has already been decomposed?

• But there are still things we want to:
• Get fields that describe the mesh quality
• Reorder the mesh to a lower bandwidth

• Depending on the hardware and the original mesh this speed up
calculations by up to 20%

• In the following graphs cells that are next to each other in memory
have a similar color

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 53/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Reorder cells

Original cell order

After reorderMesh

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 54/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Reorder cells

Original cell order After reorderMesh

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 54/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

How was this generated?

• The function id() in funkySetFields creates a field with the
cell-id in each cell:

> funkySetFields -time 0 -create -field idBeforeRenumber -expression "id()"

• Next the renumberMesh utility is called

> renumberMesh -overwrite

• As the mesh is renumbered all the fields are renumbered too
• Now create the new IDs

> funkySetFields -time 0 -create -field idAfterRenumber -expression "id()"

• These three commands just have to be added to caseSetup.sh

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 55/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Function plugins

• The syntax of swak-expressions offers a number of functions
• Almost all functions that are available in OpenFOAM for fields

• Sometimes functions for special applications are needed:
• Turbulence properties
• Chemical reactions
• Mesh quality

• As these functions are not needed by everyone (and some need a
special "environment") these functions do not "pollute" the syntax

• But they can be loaded via function plugins
• and be used like regular functions

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 56/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Cells from inlet

Estimate iteration number
• Theoretically the solution
progresses one cell per iteration

• So this number tells us how
many iterations are needed
till the inlet value "reaches"
a cell

• For this the MeshWave-plugin
was used

meshLayersFromPatch(einlass)

Cells from the inlet

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 57/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

Mesh quality

Number of faces per cell
Mesh quality functions

• The MeshQuality function
plugin calculates various
metrics (like checkMesh) of the
mesh and writes them to fields

• Orthogonality
• Skewness

• In this picture the number of
faces for each cell is printed

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 58/140

Overview
Pre

Running
Post

Case variations
Conclusion

Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

How the whole setup is done

• All the things we described are executed with one command

pyFoamPrepareCase.py . --parameter=achteckBarrieren.parameters

• Additional parameters can be overridden
• By supplying a Python-dictionary with the values

Changing the mass flow

> pyFoamPrepareCase.py . --parameter=achteckBarrieren.parameters --values ="{’<brk>
<cont> massFlowEinlass ’:10}"

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 59/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 60/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 61/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

pyFoamRunner.py and pyFoamPlotRunner.py

• These are usually the first utilities of PyFoam people come in contact
with

• They do the same things:
• start an OpenFOAM-solver
• capture its output

• write it to screen
• write it to a logfile
• analyze it

• . . . some other things
• the difference is that the Plot-utility plots
• Typically we’d start our run with:

pyFoamPlotRunner.py --clear --progress --with-all interFoam

That also:
• removes time directories from a previous run
• only shows the current time (not the whole output)

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 62/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Standard plots

Linear solver residuals Continuity

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 63/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Additional plots

Execution time Iterations of the linear solver

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 64/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Parallel support

• There is a utility for decomposing
• it basically writes the decomposeParDict for you

• Decomposing a case to 5 processors:

pyFoamDecompose.py theCase 5

• The Runner-utilities have support for parallel execution

Running parallel

> pyFoamPlotRunner.py --autosense -parallel interFoam

• Checks whether there are processor-directories
• If there are:

• Prepends the appropriate mpirun-call
• Appends -parallel

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 65/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Is it converged?

Judging convergence from the
residuals

• For this solver the residuals say
nothing about the physical
convergence of the flow

• After 6000 iterations there
doesn’t seem to be much
change

• But there are still changes

• So could we have stopped the
run there?

Long term residuals

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 66/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 67/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Average α

The interFoam-solvers print some information about the average volume
fraction in the simulation

solver output

Time = 1

PIMPLE: iteration 1
smoothSolver: Solving for alpha.schmelze , Initial residual = 0, Final residual = 0, No <brk>

<cont> Iterations 1
;Phase -1 volume fraction = 0.451541; Min(alpha.schmelze) = 0 Max(alpha.schmelze) = 1
MULES: Correcting alpha.schmelze
MULES: Correcting alpha.schmelze
Phase -1 volume fraction = 0.451541 Min(alpha.schmelze) = 0 Max(alpha.schmelze) = 1
DICPCG: Solving for p_rgh , Initial residual = 1, Final residual = 0.0373154 , No Iterations<brk>

<cont> 17
Manipulated field U in 0 cells with the expression "mag(U)>100.0 ? Uunit *100.0 : U"
time step continuity errors : sum local = 1.31064 , global = -0.0164968 , cumulative = -0.01

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 68/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Regular expressions

• Regular expressions are very popular for analyzing textual data (pattern
matching)

• For instance in OpenFOAM for flexible boundary conditions
• Python comes with a library for analyzing them
• There are slightly different dialects

• For instance there are slight differences between the regular expressions of
Python and OpenFOAM

• But in 90% of all cases they behave the same

• The following slide gives a quick glance
• Usually you won’t need much more for PyFoam

• There is a number of cool "regular expression tester" (enter that in Google)
applications on the web

• One example: http://regex101.com

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 69/140

http://regex101.com

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Regular expressions in 3 minutes

1 Most characters match only themself
• For instance ’ab’ matches only the string "ab"

2 The dot (’.’) matches any character except a newline
• Pattern ’a..a’ matches (among others) "abba", "aBBa", "ax!a"

3 The plus ’+’ matches the character/pattern before it 1 or more times
• ’a.+a’ matches "aba", "abbbba" but not "aa"

4 ’*’ is like ’+’ but allows no match too
• ’a.*a’ matches "aba", "abbbba" and also "aa"

5 Parenthesis ’()’ group characters together. Patterns are numbered. They
receive the number by the opening ’(’

• ’a((b+)a)’ would match "abba" with group 1 being "bba" and group 2 "bb"
6 To match a special character like ’+-().|’ prefix it with a ’\’

• To match "(aa)" you’ve got to write ’\(aa\)’
• Other special characters that occur frequently in OpenFOAM-output are

’[]\{\}’

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 70/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Scanning for the alpha output

• The file customRegexp is automatically read by PyFoam
• Used to analyze the output

• Every pattern is one dictionary (name is used for writing the data)
theTitle title of the plot

expr the regular expression to look for
• Each group in the plot is assumed to be a data item
• %f% is a special PyFoam-abbreviation for the regular expression that
matches a floating point number

customRegexp

alphaAverage {
theTitle "Alpha";
expr "Phase -1␣volume␣fraction␣=␣;(%f%);";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 71/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Is α converged?

Now it isn’t

Now it may be

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 72/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Is α converged?

Now it isn’t Now it may be

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 72/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Producing our own output

• Most of the time the output the solver gives us isn’t enough
• We need output that answers our questions
• To get that output we use function objects

• The function objects prints the answers to the screen
• PyFoam looks for it and plots it

• Most function-objects also write their results to the
postProcessing-directory

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 73/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Getting minimum and maximum

simpleFunctionObjects

• Collection of function objects
that don’t parse expressions

• also an old part of swak
• volumeMinMax "only" prints
the minimum and the
maximum of a list of fields

• verbose means that it writes
its results to the terminal

controlDict

extremes {
type volumeMinMax;
fields (

alpha.schmelze
U
p_rgh

);
verbose true;
outputControlMode timeStep;
outputInterval 1;

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 74/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Plotting the extremes

Output and scan
This output
Range of alpha.schmelze [;-0.002; , ;1.001;] [0 0 0 0 0 <brk>

<cont> 0 0]
Range of p_rgh [-68.8248 , 7918.26] [1 -1 -2 0 0 0 0]
Range of U [(-1.51871 -2.8473 -1.73918) , (1.70397 <brk>

<cont> 2.87548 2.45731)] [0 1 -1 0 0 0 0]

is caught by
alphaExtremes {

theTitle "Alpha␣extremes";
titles (

min
max

);
expr "Range␣of␣alpha.schmelze␣\[␣;(%f%); , ;(%f%); \]"<brk>

<cont> ;
}

Overshooting alpha

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 75/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Desperate measures

• We see that the volume fractions are outside the range [0, 1] that is
physical possible

• This is not uncommon during the start of the simulation
• It can make the solver crash

• Can be avoided with smaller time-steps
• But this makes the solution take longer

• The brutal method: reset all outside cells to the proper range
• This should only be a temporary fix for the startup period

• If this is necessary through the whole simulation we have a problem

• The manipulateField function object can do this

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 76/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Clipping the fields

controlDict.template

<!--(if clipFields)-->
clipAlpha {

type manipulateField;
fieldName alpha.schmelze;
aliases {

aSchmelze alpha.schmelze;
}
expression "aSchmelze␣>␣|-1+ clipAlphaTolerance -|␣?␣|-1+ clipAlphaTolerance -|␣:␣(aSchmelze <|--<brk>

<cont> clipAlphaTolerance -|)␣?␣|--clipAlphaTolerance -|␣:␣aSchmelze";
mask "(aSchmelze␣>␣|-1+ clipAlphaTolerance -|)␣||␣(aSchmelze <|--clipAlphaTolerance -|)";

}

controlDict

clipAlpha {
type manipulateField;
fieldName alpha.schmelze;
aliases {

aSchmelze alpha.schmelze;
}
expression "aSchmelze␣>␣1.01␣?␣1.01␣:␣(aSchmelze < -0.01)␣?␣ -0.01␣:␣aSchmelze";
mask "(aSchmelze␣>␣1.01)␣||␣(aSchmelze < -0.01)";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 77/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Clipping the fields

controlDict.template

<!--(if clipFields)-->
clipAlpha {

type manipulateField;
fieldName alpha.schmelze;
aliases {

aSchmelze alpha.schmelze;
}
expression "aSchmelze␣>␣|-1+ clipAlphaTolerance -|␣?␣|-1+ clipAlphaTolerance -|␣:␣(aSchmelze <|--<brk>

<cont> clipAlphaTolerance -|)␣?␣|--clipAlphaTolerance -|␣:␣aSchmelze";
mask "(aSchmelze␣>␣|-1+ clipAlphaTolerance -|)␣||␣(aSchmelze <|--clipAlphaTolerance -|)";

}

controlDict

clipAlpha {
type manipulateField;
fieldName alpha.schmelze;
aliases {

aSchmelze alpha.schmelze;
}
expression "aSchmelze␣>␣1.01␣?␣1.01␣:␣(aSchmelze < -0.01)␣?␣ -0.01␣:␣aSchmelze";
mask "(aSchmelze␣>␣1.01)␣||␣(aSchmelze < -0.01)";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 77/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Clipped cells

How often are we clipping
• Cells are clipped during the
startup phase

• In the end no clipping necessary

• This means it is naughty but
acceptable

• Read: it validates the
approach

Only clipping at the start

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 78/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Porous term for the velocity (unused)

controlDict.template

This is an example for the expressionField function object that creates a new
field
<!--(if dampVelocityPorous)-->

UResistance {
type expressionField;
fieldName UResistance;
variables (

"magU=mag(U);"
"resNew=|-resistivityMax -|*(magU >|- porousLowerUThres+porousUTransitionRegion -|␣?␣1␣:␣(magU<brk>

<cont> <|-porousLowerUThres -|␣?␣0␣:␣((magU -|-porousLowerUThres -|)/|-<brk>
<cont> porousUTransitionRegion -|)));"

"resOld=|-max(0,1- resistivityRelax) -|*resOld+|-min(1, resistivityRelax) -|*resNew;"
);
storedVariables (

{
name resOld;
initialValue "0";

}
);
expression "resOld";
autowrite true;

}
<!--(end)-->

Would have been used in a fvOption (didn’t improve things)

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 79/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Different velocities

• There are different velocities in our simulation
velocity of our fluid this is what really interests us
velocity of the air higher. Not so interesting for us
velocity in the interface zone here sometimes the divergence

starts
• Plotting these velocities helps us to judge the simulation
• We’ll use the function object swakExpression for this

• Evaluates expressions on fields, patches, zones . . .
• entry valueType selects which one is used

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 80/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Calculating arbitrary expressions

controlDict

magUValuesOverall {
type swakExpression;
valueType internalField;
verbose true;
outputControlMode timeStep;
outputInterval 1;
expression "mag(U)";
accumulations (

weightedAverage
weightedQuantile0 .99
max

);
}

Calculating and summarizing
• expression is evaluated

• mag calculates the length of
a vector

• accumulations describes how
to calculate a single value from
the expression

max this is obvious
weightedAverage the volume

weighted average
of the value

weightedQuantile0.99 The
value for which
99% of the
volume has a
smaller value

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 81/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Other velocities

controlDict

magUValuesFluid {
$magUValuesOverall;
aliases {

aSchmelze alpha.schmelze;
}
expression "aSchmelze >0.5␣?␣mag(U)␣:␣0"<brk>

<cont> ;
}
magUValuesAir {

$magUValuesFluid;
expression "aSchmelze <0.5␣?␣mag(U)␣:␣0"<brk>

<cont> ;
}
magUValuesMixed {

$magUValuesFluid;
expression "(aSchmelze >0.1␣&&␣aSchmelze <brk>

<cont> <0.9)␣?␣mag(U)␣:␣0";
}

Getting all in one plot
• Velocities in the different
phases

• Using thresholds to
determine the phase

• All the velocities are written to
4 different lines in the output

• But we want them in one
plot

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 82/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Dynamic plotting

• This allows collecting similar output into one plot
• Similar means: looks the same except for the name

• Selected by type dynamic
• One regular expression group is the name

• Selected by the entry idNr
• The list titles is common for all custom plots

• Labels the curves get in the legend
• There is another way to append lines to other plots

• type slave
• A master plot has to be specified

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 83/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Output and scanning expression

Output

Expression magUValues;Overall; : weightedAverage =0.0633709 weightedQuantile0 .99=0.479547 max =30.6012
Expression magUValues;Fluid; : weightedAverage =0.0136898 weightedQuantile0 .99=0.263334 max =0.460643
Expression magUValues;Air; : weightedAverage =0.0496811 weightedQuantile0 .99=0.474317 max =30.6012
Expression magUValues;Mixed; : weightedAverage =0.00392488 weightedQuantile0 .99=0.145665 max =1.07427

customRegexp

magUValues {
type dynamic;
theTitle "Magnitude␣of␣U";
logscale true;
idNr 1;
expr "Expression␣magUValues;(.+); : weightedAverage =(%f%) weightedQuantile0 .99=(%f%) max=(%f%)";
titles (

average
"99%"
max

);
}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 84/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Velocities

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 85/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Using the data

• --hardcopy generates bitmaps of the plots
• But sometimes these are not enough (they were for this presentation)
• swak4Foam writes to plain text files

• Can be read by many utilities
• PyFoam writes to a special ("pickled") file

• Can be extracted with utilities
• Optionally plain text files can be written

• PyFoam also has utilities to convert these plain text files to CSV or
even Excel files

• Including filtering
• And selection

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 86/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 87/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

What the cluster support does

• Based on a python class ClusterJob
• There is a sub-class PrepareCaseJob that uses the machinery of

pyFoamPrepareCase.py for setting up the case
• What it does

1 Copy the essential files from a template case (clone)
• to a new directory with a unique name

2 Sets up the case
3 Decomposes the case (gets the number of processors from the

cluster engine)
4 Runs the case
5 Reconstructs it

• The script reads command line parameters and translates them

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 88/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

The cluster script
#!/opt/rocks/python/python
#
#$ -cwd
#$ -j y
#$ -S /opt/python/bin/python
#$ -m be
#$ -pe mpi 2
#

from PyFoam.Infrastructure.ClusterJob import PrepareCaseJob
from PyFoam.RunDictionary.ParsedParameterFile import ParsedParameterFile

template=sys.argv [1]
suffix=sys.argv [2]
parameters=sys.argv [3]
arguments=sys.argv [4:]

argString=""
if len(arguments) >0:

argString="_parameters="+"_".join(["%s=%s"%i for i in zip(arguments [::2], arguments [1::2])])

class Ueberlauf(PrepareCaseJob):
def __init__(self):

PrepareCaseJob.__init__(self ,
"Ueberlauf_"+path.basename(path.abspath(template))+"_"
+parameters+argString+"_"+suffix ,
"LTSInterFoam",
parameters ,
arguments ,
template=template ,
steady=False ,
cloneParameters =["--no-vcs"],
autoParallel=False ,
foamVersion="2.3.1")

Ueberlauf ().doIt()

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 89/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Testing the script

• There is a utility to test these scripts locally
• Emulates the environment on the cluster
• The script runs the way it would on the cluster

> pyFoamClusterTester.py runUhdeUeberlauf.py templateCase test achteckBarrieren.parameters

• Test the case in parallel

> pyFoamClusterTester.py --procnr =2 runUhdeUeberlauf.py templateCase 2cpu achteckBarrieren.<brk>
<cont> parameters

• Additional parameters

> pyFoamClusterTester.py runUhdeUeberlauf.py templateCase fast achteckBarrieren.parameters <brk>
<cont> massFlowEinlass 10

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 90/140

Overview
Pre

Running
Post

Case variations
Conclusion

Running
Custom plots
Running on the cluster

Running it

• Actually running the script depends on the cluster
• Currently only SGE supported

> qsub -p mpi 8 runUhdeUeberlauf.py templateCase test achteckBarrieren.parameters

• Runs on 8 processors of the cluster
• Everything works because the pyFoamPrepareCase.py-machinery is
used

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 91/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 92/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 93/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

First result

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 94/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Paraview state files

• Producing a plot like the previous one takes more than 10 minutes
• If you exactly know what you’re doing and what you want
• and it is hard to get it to look exactely the same for a second time

• Everything that takes longer than 10 minutes should be scripted
• Solution: Paraview state files

1 Set up the view the way you want it
2 Save as a Paraview state file
3 with the pyFoamPVSnapshot.py this state file can be applied to

another case
• casename is replaced with the actual case name in texts
• other variables can be replaced as well
• for some objects the colors can be replaced
• timestep can be selected

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 95/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Preparing the state file in Paraview

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 96/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

The actual height field
> pyFoamPVSnapshot.py --state=heightField.pvsm overspillBarriere --last -time

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 97/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

The timescale
> pyFoamPVSnapshot.py --state=heightField.pvsm overspillBarriere --last -time --colors -for -<brk>

<cont> filters ="{’ Calculator1 ’:’rDeltaT ’}"

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 98/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Two kinds of pressure

And two more pictures without using the mouse:

The "full" pressure Minus gravity

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 99/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 100/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Pictures are fine but numbers are better

• The pictures show the distribution of the flow
• But we want to know how much goes out of each outlet
• The function object patchExpression does calculations on patches

• Patches are selected with the patches list
• Regular expressions are possible as well

• All the accumulations from swakExpression are possible
• Output can be easily picked up by a dynamic PyFoam
customRegexp

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 101/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Calculating the flow

controlDict.template

• phi is OpenFOAM for "volume flow through a face
• the alias is necessary because fields in swak-expressions can’t have
. in their names

flows {
type patchExpression;
patches (

"auslass .*"
einlass

);
aliases {

aSchmelze alpha.schmelze;
}
expression "|-densitySchmelze -|*phi*aSchmelze";
verbose true;
accumulations (

sum
);
outputControlMode timeStep;
outputInterval 1;

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 102/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Correcting for "clipped" outlets

• Some outlets are not "complete"
• The ones cut by the symmetry plane

• Flow on these has to be "normalized" with the known area

controlDict.template

<!--(if einbauRadius >0) -->
flowsScaled {

$flows;
variables (

// Theoretical area: |-einbauRadius*einbauRadius *3.1415 -|
"factor=|- einbauRadius*einbauRadius *3.1415 -|/ sum(area());"

);
expression "|-densitySchmelze -|* factor*phi*aSchmelze";

}
<!--(end)-->

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 103/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Mass flow on the outlets

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 104/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Remote expressions in swak

• Usually in the variables list the expressions are calculated on the
current patch (zone etc)

• Using a special syntax the values can be calculated on a different
• Only condition: the expression must boil down to a single value
• Syntax is varname{patchname}

• We use this to calculate the deficit of the flow
• Sum of flows must be 0

• Only then is the simulation converged

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 105/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Calculating sum of flows and deficit

controlDict.template

flowSum {
type swakExpression;
valueType patch;
patchName einlass;
aliases {

aSchmelze alpha.schmelze;
}
verbose true;
accumulations (

average
);
outputControlMode timeStep;
outputInterval 1;

$$ auslaesse =["auslass %03d" % i for i in range(len(einbauSpec+einbauDickSpec))]
variables (

<!--(for a in auslaesse)-->
"val|-a-|{|-a-|}= sum(|-densitySchmelze -|* phi*aSchmelze);"

<!--(end)-->
"valeinlass=sum(|-densitySchmelze -|* phi*aSchmelze);"
"totalAuslass =|-’+’.join([’val ’+an␣for␣an␣in␣auslaesse]) -|;"

);
expression "totalAuslass";

}
flowDefizit {

$flowSum;
expression "totalAuslass+sum(|-densitySchmelze -|* phi*aSchmelze)";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 106/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

The actual calculation

controlDict

flowSum {
type swakExpression;
valueType patch;
patchName einlass;
aliases {

aSchmelze alpha.schmelze;
}
verbose true;
accumulations (

average
);
outputControlMode timeStep;
outputInterval 1;
variables (

"valauslass000{auslass000 }=sum (1130.0* phi*aSchmelze);"
"valauslass001{auslass001 }=sum (1130.0* phi*aSchmelze);"
"valauslass002{auslass002 }=sum (1130.0* phi*aSchmelze);"
"valauslass003{auslass003 }=sum (1130.0* phi*aSchmelze);"
"valauslass004{auslass004 }=sum (1130.0* phi*aSchmelze);"
"valauslass005{auslass005 }=sum (1130.0* phi*aSchmelze);"
"valauslass006{auslass006 }=sum (1130.0* phi*aSchmelze);"
"valauslass007{auslass007 }=sum (1130.0* phi*aSchmelze);"
"valauslass008{auslass008 }=sum (1130.0* phi*aSchmelze);"
"valauslass009{auslass009 }=sum (1130.0* phi*aSchmelze);"
"valauslass010{auslass010 }=sum (1130.0* phi*aSchmelze);"
"valauslass011{auslass011 }=sum (1130.0* phi*aSchmelze);"
"valauslass012{auslass012 }=sum (1130.0* phi*aSchmelze);"
"valauslass013{auslass013 }=sum (1130.0* phi*aSchmelze);"
"valauslass014{auslass014 }=sum (1130.0* phi*aSchmelze);"
"valeinlass=sum (1130.0* phi*aSchmelze);"
"totalAuslass=valauslass000+valauslass001+valauslass002+valauslass003+valauslass004+valauslass005+<brk>

<cont> valauslass006+valauslass007+valauslass008+valauslass009+valauslass010+valauslass011+valauslass012<brk>
<cont> +valauslass013+valauslass014;"

);
expression "totalAuslass";

}

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 107/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Sum and deficit

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 108/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Actual distribution of the outflows

Using written data
• From the graph it is hard to tell which outlet
receives how much fluid

• The numbers are in the files written by the
function objects

• But they don’t tell us about the location
• Using a script the values of the flow are
correlated with the positions of the outlets

• Plotted as a "Bubble plot"
• Area of the green circles corresponds to the

mass-flow
• Red circles are the positions

Bubble plot of the
outflow

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 109/140

Overview
Pre

Running
Post

Case variations
Conclusion

Paraview state
Custom plots

Actual distribution of the outflows

Using written data
• From the graph it is hard to tell which outlet
receives how much fluid

• The numbers are in the files written by the
function objects

• But they don’t tell us about the location
• Using a script the values of the flow are
correlated with the positions of the outlets

• Plotted as a "Bubble plot"
• Area of the green circles corresponds to the

mass-flow
• Red circles are the positions

Bubble plot of the
outflow

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 109/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 110/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 111/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Outflow pipes with "crown"

The crown

Outlet geometry
• One strategy to achieve a more uniform
distribution of the outflows is a different form
of the pipes

• The "crowns" are supposed to make the flow
more self-regulating

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 112/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Setting the crown

• A new STL is prepared with the new form
• can be used with defaultSTL

• that is used if the position specification has an entry default

• Just one line for a fundamental change in the case setup

achteckBarrierenKrone.parameters

#include "achteckBarrieren.parameters"

defaultSTL Krone15;

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 113/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Flow with crowns

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 114/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Distribution of outflows with crown

Outflows

Interpretation
• The crowns don’t seem to
improve the situation
significantly here

• But the fluid level in the
reactor is lower

• But other variations to the
geometry might

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 115/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Lowering the pipes

• Another possibility
• Keep the design of the pipes
• Just lower the inner pipes

• That way they should get more flow

• In the specification we use the third coordinate to lower some pipes
• The center pipe by 4cm
• The inner ring by 2cm

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 116/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Variation with lowered pipes

• This needs a bit more editing
• But still only one call to pyFoamPrepareCase.py

achteckBarrierenLowered.parameters

#include "achteckBase.parameters"

einbauSpec (
(default (0 0 -0.04))
(default (2 0 -0.02))
(default (4 0 0))
(default (1 1 -0.02))
(default (1 -1 -0.02))
(default (0 2 -0.02))
(default (0 -2 -0.02))
(default (3 1 0))
(default (3 -1 0))
(default (2 2 0))
(default (2 -2 0))
(default (1 3 0))
(default (1 -3 0))
(default (0 4 0))
(default (0 -4 0))

);

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 117/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Lowered pipes

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 118/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Outflow analysis for lowered pipes

Outflow with lowered

Analysis
• Lowering definitely makes
things worse

• But we got that conclusion
without actually building the
reactor

• Mixing this approach with
the crowns nevertheless
might be interesting . . .

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 119/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 120/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Changing placements is easy

Placement strategies
• Placing the pipes in a
completely different way only
needs editing one file

• We try 3 more strategies
• Not all of them are good:

• The flow has to be
uniform to the
downstream reactor. Not
necessarily "per pipe"

Specifying the placement

#include "achteckBase.parameters"

einbauSpec (
(default (0 0 0))
(default (0 1 0))
(default (0 2 0))
(default (0 3 0))
(default (0 4 0))
(default (1 0 0))
(default (1 1 0))
(default (1 3 0))
(default (2 0 0))
(default (2 2 0))
(default (3 0 0))
(default (3 1 0))
(default (4 0 0))

);

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 121/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

The three strategies

Asymmetry

Radial Lanes

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 122/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

The three strategies

Asymmetry Radial

Lanes

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 122/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

The three strategies

Asymmetry Radial Lanes

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 122/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Asymmetric locations

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 123/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Locations with lanes

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 124/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

Radial placement

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 125/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

The outflow charts

Asymmetry Radial Lanes

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 126/140

Overview
Pre

Running
Post

Case variations
Conclusion

Different geometries
Different placements

What is the best way to place the pipes?

• I don’t know
• The reasons

1 this is not the real geometry of the customer
2 We set up the tools for the customer. They are now successfully

doing the simulation themself
• Non-CFD engineers
• The template cases allow them to only change what needs changing
• Quicker turn-around times because they can do case-setup and

analysis in-house

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 127/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 128/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 129/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Unmentioned features of swak

• Adding particles to solvers via function objects
• Custom fvOptions
• Better crash handling
• CGS operations on surfaces in snappyHexMesh
• Calculations on sets, zones, sampled sets, surfaces and particle
clouds

• Integration of Python in function objects
• . . .

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 130/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Unmentioned features of PyFoam

• Packing and cloning cases
• Listing case directories
• Controlling OpenFOAM-runs over the network
• Quickly generating plots from timelines
• Manipulate boundary files
• Analyze logfiles after the simulation
• Use the library for your own scripts

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 131/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Further information

• Pages on the Wiki:

https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/PyFoam

• Twitter account announcing releases and new features:
@swakPyFoam

• Presentations from OpenFOAM Workshops can be found at the two
Wiki-pages above

• Especially the basic training for swak and PyFoam allows doing
everything by yourself

• There is a more complete presentation about
pyFoamPrepareCase.py from the 10th Workshop

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 132/140

https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/PyFoam

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 133/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

What these packages don’t do for you

Picture taken from the "Fortran coloring book" by Roger Kaufman

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 134/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Why use swak4Foam

• Because it helps to avoid the use of C++
• CFD engineers shouldn’t have to be programmers
• Life is too short to program C++ all the time

• Reduces the number of "throwaway" C++ programs
• Case setup and boundary conditions should be in the case. Not in a

separate program or library

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 135/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Why use PyFoam

• Does a lot of things for which usually throwaway shell, sed or
perl-scripts are written

• One consistent set of tools
• With the --help-texts it is quite well documented

• for the OpenFOAM-ecosystem

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 136/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

"Programming the case"

Using PyFoam and swak4Foam is a bit like programming

• Initial setup takes longer than usual
• Later simulations are quick to set up
• Things have to be tested
• It is harder to make mistakes afterwards
• There is nothing to click on
• Things are easy to automate
• You can use a text-editor because GUIs are overrated
• It’s a "program": use version control

• Once you start do hg init or git init

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 137/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Outline

1 Overview
This talk
pyFoam and swak4Foam
The case

2 Pre
Templates
The mesh
Placing
Initial and boundary conditions
Additional setup

3 Running
Running

Custom plots
Running on the cluster

4 Post
Paraview state
Custom plots

5 Case variations
Different geometries
Different placements

6 Conclusion
Loose ends
"Sales pitch"
And finally

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 138/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

11th International OpenFOAM Workshop

• 26.-30. June 2016
• Takes place in Guimarães, Portugal
• Usual format

• 2 days with presentations
• 1 day with trainings
• community with discussions, birds-of-a-feather sessions

• Further information at http://www.openfoamworkshop.org
• Looking forward to seeing you there

• Pro tip: Call for abstracts starts at 1. January (to 18. March)

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 139/140

http://www.openfoamworkshop.org

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Thanks for your attention

Questions?

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 140/140

Overview
Pre

Running
Post

Case variations
Conclusion

Loose ends
"Sales pitch"
And finally

Thanks for your attention

Questions?

Bernhard F.W. Gschaider Real world PyFoam and swak4Foam 140/140

	Overview
	This talk
	pyFoam and swak4Foam
	The case

	Pre
	Templates
	The mesh
	Placing
	Initial and boundary conditions
	Additional setup

	Running
	Running
	Custom plots
	Running on the cluster

	Post
	Paraview state
	Custom plots

	Case variations
	Different geometries
	Different placements

	Conclusion
	Loose ends
	"Sales pitch"
	And finally

