@ Samsung R&D Institute Russia
)7 _{ Center of System Software

APPROACHES TO OPTIMIZE VS8
JAVASCRIPT ENGINE

® Dmitry Botcharnikov

2015/12/02

AGENDA

JavaScript engine optimization
V8 engine architecture

Approaches to speed up V8 engine
Optimized build
Runtime parameters tuning

Scalar optimizations

Conclusion

JAVASCRIPT ENGINE OPTIMIZATION

Why optimization of JavaScript matters?

JavaScript 1s one of the most popular programming
languages

Samsung produces millions of devices running JavaScript
=> better utilize the hardware
BUT: JavaScript 1s dynamically typed prototype
based object oriented interpreted language =>
complicated to optimize

We were involved in optimizing open source V8
engine (part of Samsung stock browser for Android)

About 10% total performance improvement on
major benchmark suites: Octane, Kraken, SunSpider
=> now runs on Samsung mobile devices

V8 ENGINE ARCHITECTURE

JavaScript ‘ ‘ Hydrogen

Full

Native Code Optlmlzed
Lithium

PROFILING V8 ENGINE

Profiling of the engine reveals almost uniform
distribution of work without ‘hot’ regions

rrrrrrrrrrrrr

uuuuuuuuuuuuuuuu

............

APPROACHES TO SPEED UP V8 ENGINE

We decided to focus on the following approaches
Optimized build of V8 engine itself
Tuning of V8 runtime options
Implementation of additional scalar optimizations

SELECTION OF BUILD PARAMETERS

o Link-time optimization: FAIL

o Platform options tuning: SUCCESS

» -0O3 for highest optimization level
» -mcpu=cortex-alb for target CPU

o.
LTO: Octane 03: Octane
6000 5990
4000 - 5980
2000 5970
5960 -
0 - 5950 -

default LTO original

O3+mcpu

RUNTIME PARAMETERS TUNING

Octane score: 15.4%

SCALAR OPTIMIZATIONS

Algebraic Expression Simplification
uses algebraic 1dentities to simplify expressions:
X+1l=x,y*1=vy,2|0 =1z
Common Subexpression Elimination
path sensitive elimination of common subexpression

Fast call frame
use ARMv7 specific call frame

ALGEBRAIC EXPRESSION SIMPLIFICATION

Octane score: 10.3%

M original

©aes

14000

12000

10000

3000

6000 -

4000 -

2000 -

O -

(6 UOISI9A) 91008
pdrrosedA,

qrz

asxod

PEO 2P0y
Aoqourey)
AouoyerJeaIpurIy
[e9IpURIN

Sripd
SOY01SQISIABN
AouayerjAerdg
Aerdg

dxrsey

JIoKog Aoraer
oI Ay
03dAI)
onfdei=d
spaeyory

COMMON SUBEXPRESSION ELIMINATION

Octane score: 11.8%

14000
12000
10000
38000
6000
4000
2000

W original

gcse

FAST CALL FRAME

Prologue:
func:
stmdb sp!, {r4-r5, fp, Ir}
add fp, sp, #N
Epilogue:
mov sp, fp
ldmia sp!, {r4-r5, fp, Ir}
bx Ir

Prologue:

func:
sub sp, sp, #16
stm sp, {r4,r5,fp, Ir}
add fp, sp, #N

Epilogue:
mov sp, fp
Idm sp, {r4, r5, fp, Ir}
add sp, sp, #16

bx Ir

FAST CALL FRAME

5,8
5,7
5,6
5,5
5,4
5,3
5,2
5,1

4,9

2M calls: 110%

original

fast frame

CONCLUSION

Application of traditional scalar optimizations in
JavaScript gives diminishing returns

Successful application of optimized build gives us
evidence that there is a space for optimizations in
JavaScript engines

Thank you

