Processing of raw astronomical data of large volume by MapReduce model

Gerasimov S.V., Kolosov I.Y., Glotov E.S., Popov I.S.

Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University

Meshcheryakov A.V.

Space Research Institute of the Russian Academy of Sciences

Digital Sky Surveys

Telescope

Raw images

objId	psfmag_u	psfmag_g	psfmag_r	psfmag_i	psfmag_
1237666660766310000	23.19847	23.39965	22.43144	21.94284	21.60491
1237660237641480000	22.87714	22.1942	21.17471	20.57603	20.15581
1237663083583700000	26.06604	22.77593	22.0157	22.258	21.91062
1237678919666230000	23.07942	22.75924	21.75666	21.05289	20.83766
1237680263998660000	25.48579	24.43595	23.14009	22.16851	21.72804
1237679503780540000	23.47491	22.81789	22.27086	21.90896	21.73548
1237662963319370000	24.63494	23.20006	21.72305	21.26964	20.49038
1237678602377490000	24.88241	24.08308	23.08055	21.8592	21.36703
1237666494327480000	24.39738	23.70336	22.05684	21.53591	22.26463
1237653438159580000	23.42393	21.93365	20.68204	20.25468	19.96516
1237649770787170000	25.59212	19.82089	18.37598	18.10021	24.1325
1237663234446060000	23.74508	23.08823	22.34327	22.33628	21.95397

Catalogue

Multiwavelength astronomy

Data volumes

1998-2009

- 120 mega-pixels
- 0.08PB totally

2010-2014 (PS1)

- 1400 mega-pixels
- 0,4 PB / year
- 2PB totally

Data volumes

2013-2018

- 570 mega-pixels
- 0.1 PB/year
- 0.5 PB in total

2022-2032

- 3200 mega-pixels
- 15 TB data every night
- 60PB of raw data in 10 years
- 15PB catalogue

The astronomical science of big data sets

Biggest questions

- nature of dark energy
- nature of dark matter

Small effects

- requires large volumes (all-sky and high depth imaging)
- systematics are important

Small teams

 require ability to analyse big data sets

Our research

- Research of big data technologies to process and store raw astrophysical data (current report)
- Creation of experimental prototype of configurable astronomical image data pipeline based on MapReduce (current report)
- Research & developement of machine learning algorithms and their "big" versions to solve actual astrophysical tasks:
 - extragalactic objects distance (and other properties) estimation
 - star/galaxy/quasar classification
 - transient sky objects detection and classification
 - exploration of hidden structure of sky objects distribution

... to help astrophysicists to do their job better!

Pipeline steps

Telescope / sky survey side steps

Step	Description
Raw processing	Removal of CCD noise and artefacts
Astronomical calibration	Detection of World Coordinate System (WCS)
Photometric calibration	Objects intensity callibration

Intelligent steps

Step	Task	
	Projection	
Co-addition	Background estimation and subtraction	
	Stacking	
Catalogue creation	Background estimation and subtraction	
	Image areas filtering	
	Image segmentation (object groups extraction on filtered images)	
	Deblending (object extraction inside groups)	
	Artifacts removal (cleaning)	
	Basic objects features measurement	
	Star/galaxy classification	
	Creation of PSF-model on stars	
	Accurate measurement of all features of objects taking into account PSF-model	

Co-addition depth effect

+ 53 more images

Pipiline tools: astromatic.org

Image co-addition

Objects extraction, measurement of their features

PSF

Point Spread Function (PSF) -modelling

Impact of telescope and atmospheric effects on astronomical images

PSFEx uses stars detected on image for empirical PSF modeling.

Courtesy of LSST PhotoSIM

Distributed pipelines

- Astromatic-Wrapper https://github.com/fred3m/astromatic_wrapper
- Wiley et al. Astronomy in the Cloud: Using MapReduce for Image Coaddition
- Farivar et al. Cloud Based Processing of Large Photometric Surveys
- Montage: an astronomical image mosaic engine <u>http://montage.ipac.caltech.edu/</u>
- LSST <u>www.lsst.org</u> <u>http://confluence.lsstcorp.org/</u>

Proposed approach

Microsoft Azure for Research

Proposed approach

Co-addition step

map(filename, image):

if doesn't belong to target sky fragment

return

image'=projection_and_background_subtraction (image) # SWarp
return ((i,j), image')

reduce((i,j), list<image>):
 cell=stacking(list<image>) # SWarp
 return ((i,j), cell)

Catalogue creation step

map((i,j), stacked_image): basic_object_features, object_icons=basic_extract(stacked_image) #SExtractor psf_model=create_psf_model(basic_object_features, object_icons) #PSFEx object_features=extract(stacked_image, psf_model) #SExtractor return ((i,j), objects_features)

Objects on cell frontier

1,1	\bigcirc) 1,2
2,1		

Experiments

Stripe82 SDSS DR 12

- stripe
- run (north / south)

Experiments

D12 (4 cores, 28GB RAM, 200GB SSD) x 12

Co-addition cell-size: 0,7°x0,7° (0,5°+0,2°) cell-count: 60x5 mapreduce.map.memory.mb=5GB mapreduce.reduce.memory.mb=5GB Catalogue creation mapreduce.map.memory.mb=5GB

Source FITS-files (size of each ~12MB) were initially converted to SequenceFile format to suite HDFS block size.

Scalability: co-addition

Scalability: catalogue creation

Total time, min

Co-addition: MapReduce metrics

Volumo	Processing time, min.				
volume	map	shuffle	sort	reduce	total
14 GB	16	17	1	10	27
21 GB	17	17	1	14	33
33 GB	23	27	1	21	49

Results & next steps

- Current numbers showed MapReduce pipeline is practically useful for astrophysicists
- Further experiments scheduled to measure scalability on larger data volumes (1+TB)
- Some enhancements in the MapReduce pipeline will be implemented and their impact on performance will be researched
- 2016-2017: research and development of "big" versions of machine learning and data mining algorithms for astrophysics

Aknowledgment

The project is supported by RFBR grant #15-29-07085 офи_м

Cloud resources were provided as grant "Microsoft Azure for Research"

Experiments: catalogue creation

Volume	Processing time
15.7GB	2min 32s
23.5GB	3min 24s
34.1GB	5min 45s
45.3GB	7min 5s