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Objective 

• We address the performance evaluation of multi-tier 
clouds applications  

• We compare a Real-Time Calculus-based framework 
with two classical analytical approaches such as 
queuing theoretic approaches and control theoretic 
approaches 

• We focus on the capabilities of these alternatives for 
estimating the key Quality of Service parameter - the 
application response-time 
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Motivation 
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Imaginary example of a client session on a basic multi-tier application architecture 
(note that in virtualized cloud platforms, each software server, i.e., Apache, Tomcat, 
and MySQL, is  run inside of a virtual machine). 
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Focus of attention: Predicting Web-application response-time in cloud computing platform, 
e.g., does maximum request-to-response latency of a client data access request will not 

exceed application deadline (with 95% confidence interval)? 



Analytical Frameworks Review 

• Queuing models 

• Control theory models 

• Modular Performance Analysis with RTC  
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Modular Performance Analysis with RTC  

• Deterministic analysis (Thiele et. al) 

– RTC belongs to the class of so-called deterministic queuing 
theories 

– RTC is deterministic in the sense that hard upper and lower 
bounds of the performance metrics (such as latency) can 
be always found 

• Stochastic analysis (Garay, 2013) 

– Soft real-time guarantees, i.e., guarantees on delays and 
backlogs that are valid up to a certain level of confidence 
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G. R. Garay, J. Ortega, A. F. Díaz, L. Corrales, and V. Alarcón-Aquino, "System performance evaluation 
by combining RTC and VHDL simulation: A case study on NICs," Journal of Systems Architecture, vol. 
59, pp. 1277-1298, 2013. 



RTC Fundamentals 

• Arrival and Service Functions 

• Arrival and Service Curves 

• Worst-case analysis:  

– Maximum Backlog 

– Maximum delay  
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Arrival and Service Functions 

• An event stream can be described by an arrival 
function R, where R(t) denotes the number of events 
that have arrived in the interval [0, t) 

• A computing or communication resource can be 
described by a service function C, where C(t) 
denotes the number of events that could have been 
served in the interval [0, t) 
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Arrival and Service Curves 

The upper and lower arrival curves, 𝛼𝑢 Δ ,
𝛼𝑙 Δ  ∈ ℝ≥0 of an arrival function R(t) satisfy 
the following inequality: 

 
𝛼𝑙 𝑡 − 𝑠 ≤ 𝑅 𝑡 −  𝑅 𝑠 ≤  𝛼𝑢 𝑡 − 𝑠 , ∀ 𝑠, 𝑡 ∶ 0 ≤ 𝑠 ≤ 𝑡 
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Arrival and Service Curves 

The upper and lower service curves,  

 
𝛽𝑢 Δ , 𝛽𝑙 Δ ∈ ℝ≥0 

 

of a service function C(t) satisfy 

 
𝛽𝑙 𝑡 − 𝑠 ≤ 𝐶 𝑡 −  𝐶 𝑠 ≤  𝛽𝑢 𝑡 − 𝑠   ∀ 𝑠, 𝑡 ∶ 0 ≤ 𝑠 ≤ 𝑡  
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Both, 𝛼𝑓
𝑢 arrival curve and  𝛽𝑟

𝑙   service curve are bounding-functions  and can 

be defined using a piecewise linear approximation  
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Deriving the 𝛼𝑓
𝑢  and  𝛽𝑟

𝑙  

bounding-functions of the 
processing resource  𝑟.  

RTC model parameters and 
our metric of interest (𝐷𝑚𝑎𝑥). 

Modeling the resource  𝑟  and 
obtaining its maximum request-
response delay time (𝐷𝑚𝑎𝑥) by 
using RTC. 

𝒅𝒆𝒍𝒂𝒚 ≤ 𝒔𝒖𝒑𝒕≥𝟎  𝐢𝐧𝐟 𝝉 ≥ 𝟎 ∶  𝜶𝒇
𝒖 𝒕 ≤  𝜷𝒓

𝒍 (𝒕 +  𝝉)  
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𝛽𝑙 = (((𝛽1 
𝑙 ⊗ 𝛽2

𝑙 ) ⊗  𝛽3
𝑙 ) ⊗ ⋯ ) ⊗ 𝛽𝑛

𝑙  

Modular Performance Analysis with RTC  
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Family of service curves corresponding 
to a system component with non-

deterministic behavior  
(left part)  

Procedure for obtaining its 
resultant bounding-curve  

(right part) 

G. R. Garay, J. Ortega, A. F. Díaz, L. Corrales, and V. Alarcón-Aquino, "System performance evaluation 
by combining RTC and VHDL simulation: A case study on NICs," Journal of Systems Architecture, vol. 
59, pp. 1277-1298, 2013. 



RTC model calibration 
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∃ 𝑖, ∆ ∶  𝛽𝑟𝑖
𝑙 Δ < 𝛽 𝑟𝑖,𝑟𝑒𝑎𝑙𝑖𝑡𝑦

𝑙 (Δ) 

Deriving the parameters for constructing the  𝛽𝑟𝑖
𝑙   lower service curve of a concrete 

system component with non-deterministic behavior (e.g., a web, application or 
database server) from simulations or real traces may give the case where the 
following assumption holds 

where 𝑖 ∈ (1, 2, 3, … ), 𝛽𝑟𝑖
𝑙   is a resultant lower service curve derived from a set 

of lower service curves and ,  𝛽 𝑟𝑖,𝑟𝑒𝑎𝑙𝑖𝑡𝑦
𝑙 (Δ) is an unknown lower bounding-curve 

of the SUT for the stochastic component being considered. 

For this reason, in (Garay, 2013), statistical methods are used in order to 

demonstrate that the values of the L and R parameters of  𝛽𝑟𝑖
𝑙   have an adequate 

level of predictability, and, hence, results are valid up to certain level of 

confidence. 

G. R. Garay, J. Ortega, A. F. Díaz, L. Corrales, and V. Alarcón-Aquino, "System performance evaluation 
by combining RTC and VHDL simulation: A case study on NICs," Journal of Systems Architecture, vol. 
59, pp. 1277-1298, 2013. 



Modeling capabilities MPA-RTC Queuing Theory Control Theory  

Multi-tier cloud Web application Yes Yes Yes 

Hard/Soft response time guarantees Both No Soft guarantees   

Workload models Real and/or synthetic Synthetic Real or synthetic 

Task processing models Real and/or synthetic Synthetic Real or synthetic 

VM provisioning Yes Yes Yes 

VMs performance interference effect Yes Yes Yes 

Autonomic resource management Yes Yes Yes 

Server consolidation Yes Yes Yes 

Horizontal/Vertical scaling Both Both Both 

Comparison of analytical approaches 

In our paper, references to analytical studies based on queuing theory (QT) and control 

theory (CT) are given and a discussion on the modeling capabilities of each approach is 

presented 
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Workload models 

• Real workload traces 

• Naive synthetic workload models (e.g., 
probability distributions) 

• Realistic synthetic workload models 

• Combinations of the previous alternatives 
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Modeling provisioning response 

delay 
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VMs performance interference 

effect 
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RTC-based autonomic resource 

management 
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VMs deployment scenarios 
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Horizontal scaling 
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Conclusion 

• We discuss different approaches for modeling cloud-
based systems 

• We conclude that RTC is suitable framework for 
estimating statistical response time guarantees 

• We consider that contemporary issues in cloud 
computing research could be analyzed by using MPA-
RTC 
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