Численное исследование законов оптимального управления многомассовыми движителями для перемещения в вязкой несжимаемой жидкости

Казань, КФУ ИММ, каф. аэрогидромеханики Захарова О.С., Нуриев А.Н.

Введение

Виброробот – мобильное устройство, не имеющее подвижных внешних частей (колес, гусениц, винтов и т.д.), способное перемещаться в сопротивляющейся среде лишь за счет колебаний внутренней массы относительно корпуса.

Направления исследования:

- 1. Оптимизация движения сферического виброробота по энергозатратам.
 - Модель M1: оптимизация в условиях квазистацинарности
 - Модель M2: оптимизация с учетом наследственных сил
- 2. Прямое численное моделирование движения виброробота в вязкой жидкости в рамках найденных M1-,M2- классов оптимальных законов.

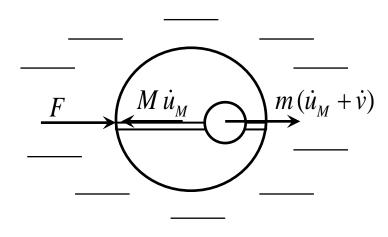


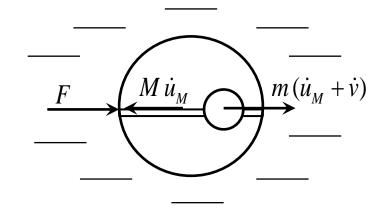
Рис.1

1.1Постановка задачи оптимизации

Основное уравнение, описывающее движение системы:

$$(m+M)\dot{u}+F[u(t)]=-m\dot{v}$$
 (1)

- $\bullet U(u) = \langle u \rangle = \frac{1}{T} \int_{0}^{T} u(t) dt$ средняя скорость движения тела;
- $N(u) = \langle u \cdot F[u(t)] \rangle$ мощность, затрачиваемая на преодоление сил сопротивления;



• $\eta = N(\langle u \rangle)/N(u)$, $0 \le \eta \le 1$, - энергетический коэффициент

Задача:

Определить
$$x(t)\{x(0)=x(T)\}:N(u)\to \min,\langle u\rangle=U,T$$
 - фиксированный

$$N(u) \to \min$$

$$\langle F[u(t)] \rangle = 0, \ \langle u \rangle = U$$
(2)

$$F[u(t)] = \frac{1}{2}C_{x}\pi\rho a^{2}|u|u + 6\pi\rho v a^{2}\int_{-\infty}^{t} \frac{du/d\tau}{\sqrt{\pi v(t-\tau)}}d\tau$$
(3)

1.2 Решение задачи для гидродинамического сопротивления в условиях квазистационарности. Модель М1

Сила сопротивления однозначно определяется мгновенной скоростью корпуса и в безразмерных переменных имеет вид

 $F(u) = C_x(u)|u|u \quad (4)$

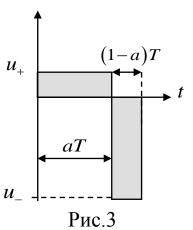
Зависимость коэффициента сопротивления задается по известным экспериментальным данным по обтеканию сферы [1].

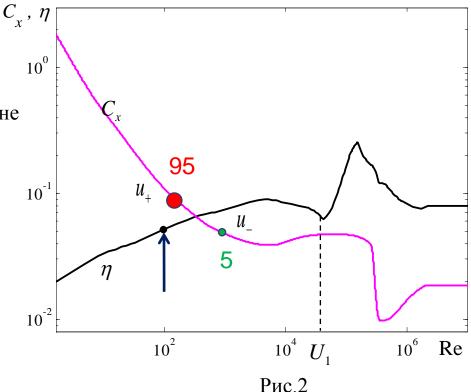
Решая задачу оптимизации

$$N = \langle F(u) \cdot u \rangle \to \min$$

$$\langle F(u) \rangle = 0, \langle u \rangle = U$$
(2)

получим, что в практически интересном диапазоне чисел Рейнольдса $U < 10^3$:





[1] Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. – 713 с.

1.3 Решение задачи для гидродинамического сопротивления.

Модель М2: учет предыстории движения

$$F[u(t)] = C_x(|u|\operatorname{Re})|u|u + s\int_{-\infty}^{t} \frac{\dot{u}(\tau)}{\sqrt{t-\tau}} d\tau$$
 (5)

$$N = \left\langle C_{x}(|u| \cdot \text{Re}) |u|^{3} \right\rangle + s \left\langle u \cdot \int_{-\infty}^{t} \frac{\dot{u}(\tau)}{\sqrt{t - \tau}} d\tau \right\rangle \to \min$$

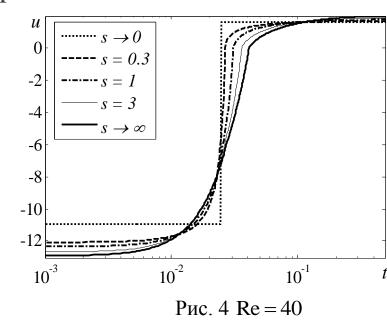
$$\left\langle C_{x}(|u| \cdot \text{Re}) |u|u \right\rangle = 0 \qquad \left\langle u \right\rangle = 1$$
(6)

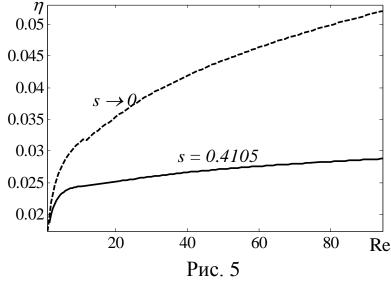
Параметры задачи: Re =
$$\frac{Ud}{v}$$
, $s = 12\sqrt{\frac{v}{\pi U^2 T}}$

Получаем следующее интегральное уравнение для u(t):

$$\left(C_{x}(|u|\operatorname{Re})|u|^{3}\right)' + s \int_{-\infty}^{\infty} \dot{u}(\tau) \frac{\operatorname{sign}(t-\tau)}{\sqrt{|t-\tau|}} d\tau + \lambda |u| - \mu = 0$$

$$0 < t < 1/2 \qquad \dot{u}(0) = \dot{u}(1/2) = 0$$





2.1 Прямое численное моделирование. Постановка задачи

Взаимодействия виброробота с вязкой жидкостью описывается уравнениями Навье-Стокса:

$$\begin{cases} \frac{\partial U}{\partial t} + U \cdot \nabla U = -\nabla p + \frac{2}{\operatorname{Re}_n} \Delta U \\ \nabla \cdot U = 0 \end{cases}$$
 (8)

Закон движения:

$$u_{M} = u(\tau T_{n}) + C, 0 \le \tau \le 1$$

$$C: \overline{F} = \langle F[u_{M}(t)] \rangle = 0 \quad (9)$$

$$\operatorname{Re}_{n} = U_{\max} d/v \quad T_{n} = T/(dU_{\max}^{-1})$$

$$\exists x = x(t) : \begin{cases} a) \ x(t) = x(t+T), v = \dot{x}, \\ b) \ \dot{u}_M = -\mu_2 \dot{v} - \frac{3}{4} \mu_1 F_x \end{cases}$$
(1)

Силы действующие на корпус:
$$F = \int_S pnds - \int_S \overline{\sigma} \cdot nds$$

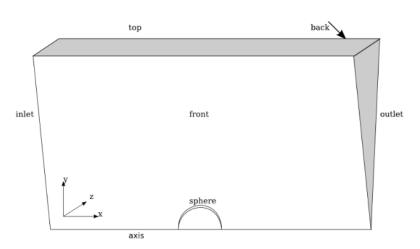


Рис 6.Расчетная область Размеры в пл. ОХҮ :50x15

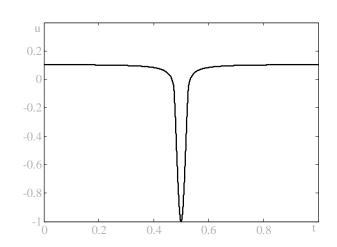


Рис.7. Закон $u(\tau)$ -решение задачи оптимизации

2.2 Геометрия и граничные условия

Задача будет решаться в диапазоне параметров, отвечающих невысоким средним скоростям движения корпуса. В данном диапазоне предполагается наличие осевой симметрии формирующихся течений.

Удобно перейти в подвижную систему координат, связанную с вибророботом: $p = \tilde{p} + x\dot{u}_{M}$

Табл. 1 Граничные условия

Граница	Условие		
Γ_{inlet}	$\int \partial u / \partial x = 0, p = -\dot{u}_M x, u_0 > 0$		
Γ_{outlet}	$\begin{cases} \partial u / \partial x = 0, p = -\dot{u}_M x, u_0 > 0 \\ u = -u_M, \partial p / \partial x = -\dot{u}_M, u_0 < 0 \\ v = 0 \end{cases}$		
Γ_{top}	$\frac{\partial p}{\partial n} = 0, \frac{\partial u}{\partial y} = 0, \frac{\partial v}{\partial y} = 0$		
Γ_{sphere}	$u = v = 0, \frac{\partial p}{\partial n} = 0$		
$\Gamma_{\mathit{front}}, \Gamma_{\mathit{back}}$	"wedge"		
Γ_{axis}	"empty"		

H. y.: $U(u_x, u_y) = (1,0), p(x, y) = 0$

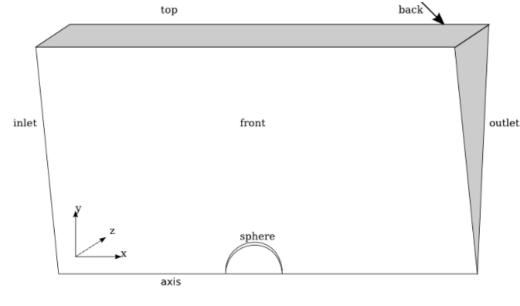


Рис 7. Расчетная область Размеры в пл. ОХУ :50x15

Для расчетов были использованы две сетки m1, m2.

 $\Box 10^5$

m1: число ячеек

 $\Box 3.10^4$

m2: число ячеек

2.4 Дискретизация системы и алгоритм решения

Система уравнений для произвольной ячейки сетки объемом V запишется в виде:

$$\int_{V} \frac{\partial U}{\partial t} dV + \int_{V} \nabla \cdot (UU) dV = -\int_{V} \nabla p dV + v \int_{V} \Delta U dV$$

$$\int_{V} \nabla \cdot U dV = 0$$

Численное решение задачи проводилось на основе алгоритма PISO.

Алгоритм коррекции средней скорости:

Таблица 2. Схемы интерполяции

$\nabla(UU)$	Gauss GammaV			
$\nu\Delta U$	Gauss linear corrected			
∇p	Gauss linear			
∂U	Неявная схема Эйлера			
∂t				

Проводится расчет движения робота (с ускорением $a_{\scriptscriptstyle f}=\dot{u}_{\scriptscriptstyle M}$) со средней скоростью до установления:

$$|\overline{F} - \overline{F}_{last}| < \delta, \quad \delta = \frac{\varepsilon}{10}$$

$$|ar{F} - ar{F}_{last}| < \mathcal{S}, \quad \mathcal{S} = \frac{\mathcal{E}}{10}$$
 2. Если $|ar{F}| > \mathcal{E}$,то коррекция $a = a_f + \frac{dv}{Tk}$ $dv = -ar{F} \frac{ar{U} - ar{U}_{old}}{ar{F} - ar{F}_{old}}$ и переход к шагу 3

Если $|\overline{F}| < \varepsilon$,то получено решение.

3. Рассчитывается k периодов движения с новым ускорением α

$$\overline{F}_{old} = \overline{F} \quad \overline{U}_{old} = \overline{U}$$

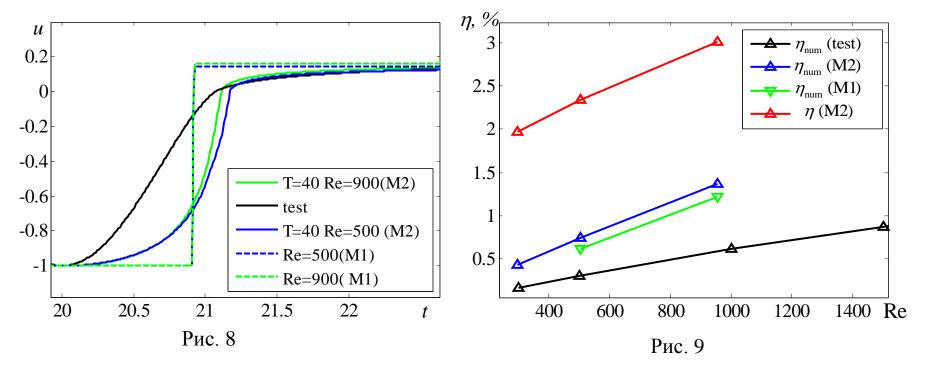
Осуществляется переход к шагу 1.

2.2 Результаты .Выбор оптимальных законов движения

Табл. 2 Сравнение оптимальных законов, полученных в моделях M1, M2 для T=40 при Re=[300,500,950]

	Numerical results		Analitic results		M2		
Re	Test	M1	M2	M1	M2	$\eta_{ ext{num(M2)}}$	$\underline{\hspace{1cm} \eta \hspace{1cm}}$
	$\eta_{_{ m num},\%}$	$\eta_{_{ m num},\%}$	$\eta_{ ext{num} , \%}$	η ,%	η ,%	$\overline{\eta_{ ext{num(test)}}}$	$\eta_{ ext{num(M2)}}$
300	0.16	-	0.43	-	1.97	2.69	4.58
500	0.3	0.612	0.745	4.34	2.34	2.48	3.14
950	0.6	1.215	1.368	5.25	3	2.21	2.2

Диапазон параметров: ${\rm Re} < 1000 \ (u_p < 120)$ T < 42



М1-квазипериодическая модель; М2 – модель с учетом сил Бассе

2.3Траектории движения невесомых частиц

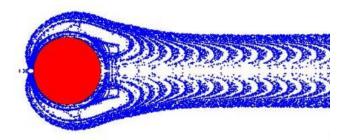


Рис.10. T = 40, Re = 300 ($u_p = 29$, $u_{av} = 11$) $\eta = 0.43\%$

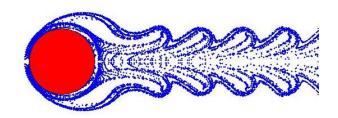


Рис.11. T = 40, Re = 500 ($u_p = 54$, $u_{av} = 24$) $\eta = 0.75\%$

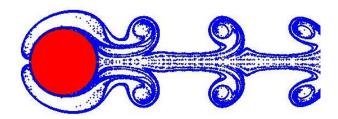


Рис.12. T = 40, Re = 950 ($u_p = 114$, $u_{av} = 60$) $\eta = 1.37\%$

2.4Визуализация и трехмерный расчет

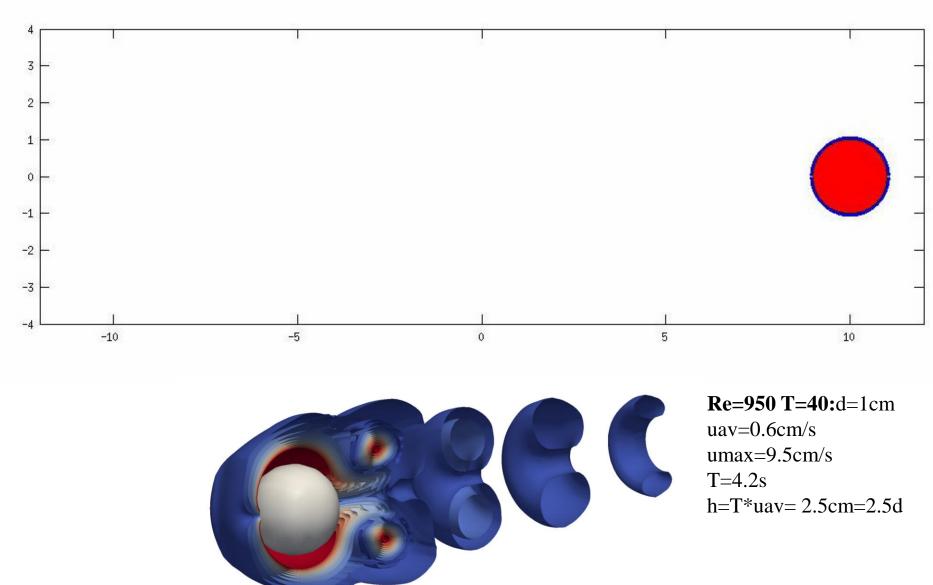


Рис.13 Визуализация течения при Re=950 T=40: Результат трехмерного моделирования

Выводы

- 1. Квазистационарная модель М1 позволяет получить верхнюю оценку эффективности движения виброробота в вязкой жидкости при движении с различными средними скоростями
- 2. Модель М2 позволяет учитывать влияние продолжительности периода на оптимальные законы.
- 3. Численное моделирование показывает, что решение модельных задач оптимизации позволяет отыскивать эффективные законы движения, обеспечивающие ненулевую среднюю скорость движения.
- 4. Силы Бассе, не оказывая влияния на коэффициенты вязких сил при разложении сил на слагаемые, в рамках аналитической задачи способствуют получению физически реализуемых (неразрывных) и более эффективных законов движения.
- 5. Улучшение согласования аналитических и численных результатов, получение более точных оценок и повышение показателя эффективности возможно при выборе в задаче оптимизации более реалистичных представлений сил Бассе и задании в качестве коэффициента при вязких силах аппроксимации коэффициента сопротивления по численным результатам.

Спасибо за внимание!