

A computational study of the influence of real-gas effects in underexpanded hydrogen and methane jets

Matthias Banholzer*, Hagen Müller, Michael Pfitzner

*mail: matthias.banholzer@unibw.de phone: +49 (0)89 6004 3325

Universität der Bundeswehr München Department of Aerospace Engineering Institute for Thermodynamics

02. December 2016

Outline

- Motivation
- Numerical Models
 - Fluid Flow
 - Thermodynamics
- Generic Test Case & Setup
- Results
 - Validation Case
 - Computational Study
- Conclusion

High-Pressure Gas Injections

Gaseous fuels?

- Better mixture formation
- Higher compression ratio
- Lean burning capabilities
- Lower fuel costs
- Higher durability of engine lubricant
- \Rightarrow Better performance
- $\Rightarrow \mathsf{Higher} \; \mathsf{efficieny}$
- \Rightarrow Less pollutant emission

Characteristics

- ► Near-nozzle flow structure
- ► Jet penetration *Z*_{tip}
- Fuel-air mixing

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
0•	0000000	00	0000000	00

Challenges

Operating points

- Total pressures up to $p_{tot} = 50 \text{ MPa}$
- Back pressures at around $p_{stat} = 2.5 \text{ MPa} 20 \text{ MPa}$
- Total temperatures at around $T_{tot} = 250 \text{ K} 350 \text{ K}$
- ► Combustion chamber temperatures at around $T_{stat} = 750 \text{ K} 1100 \text{ K}$

Numerical Aspects

- ► Assumption of ideal gas law not valid, supercritical fluid ⇒ real-gas thermodynamics
- ► High nozzle pressure ratios (NPR)
 - \Rightarrow sub-, trans- and supersonic flowfield
 - \Rightarrow large range of Mach numbers
 - \Rightarrow quickly changing fluid properties

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	● ○ ○○○○○	00	0000000	00

Fluid Flow

²Kraposhin, Bovtrikova, and Strijhak 2015.

Matthias Banholzer*, Hagen Müller, Michael Pfitzner

der Bundeswehr

🚯 München

Universität

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	00

Fluid Flow

Kurganov-Tadmor Scheme:

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	○○●○○○○○	00	0000000	00

Equation of State (EoS)

► Ideal Gas (IG):

$$p = \frac{RT}{v_{IG}}$$

▶ Peng-Robinson (PR)³:

$$p = rac{RT}{v_{PR} - b_m} - rac{a_m(T)}{v_{PR}^2 + 2b_m v_{PR} - b_m^2}$$

$$p = \frac{RT}{v_{SRK} - b_m} - \frac{a_m(T)}{v_{SRK}^2 + b_m v_{SRK}}$$

Pressure correction for caloric properties:

$$h(T,p) = h_0(T) + \int_{p_0}^p \left(v - T \frac{\partial v}{\partial T}\Big|_p\right) dp$$

³Peng and Robinson 1976.

⁴Soave 1972.

02/12/2016 ISPRAS OPEN 2016

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	00

EoS Comparison for Hydrogen

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	00

EoS Comparison for Methane

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	00000000	00	0000000	00

EoS Comparison for Methane, Critical Values

 $\frac{\text{Matthias Banholzer}}{10 \ / \ 23}^{*}, \text{ Hagen Müller, Michael Pfitzner}$

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	00000000	00	0000000	00

H2/N2. p = 5 MPa. T = 150 K

Thermodynamics

Mixing Rules (EoS: PR)⁵:

200 NIST $\rho = \frac{RT}{v_{PR} - b_m} - \frac{a_m(T)}{v_{PR}^2 + 2b_m v_{PR} - b_m^2}$ $ho~[{\rm kg/m^3}]$ PR 100 $a_m = \sum \sum x_i x_j a_{ij}$ 0.5 1 $a_{ij}(T) = 0.4274 \left(\frac{R^2 T_{c,ij}^2}{p_{c,ij}} \right) \left[1 + k_{ij} \left(1 - \sqrt{\frac{T}{T_{c,ij}}} \right) \right]^2$ ×N2 [-] 1,100 $b_m = \sum x_i b_i$ as [m/s] 650 00 200 0 0.5 ×N2 [-]

⁵Müller et al. 2015.

02/12/2016 ISPRAS OPEN 2016 Matthias Banholzer^{*}, Hagen Müller, Michael Pfitzner 11 / 23

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	000000	00	0000000	00

Solver Validation

Fluid Flow: Shock tube problem

Real-Gas Thermodynamics: Critical values

02/12/2016 ISPRAS OPEN 2016 Matthias Banholzer*, Hagen Müller, Michael Pfitzner

12 / 23

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	•0	0000000	00

Geometry

Setup

- ► axisymmetric nozzle
- ▶ *D* = 1.5 mm
- Structured mesh
- ► Refined area: D/40
- ► Mesh size: 150 000 cells

Boundary Conditions

- ► Total inlet pressure
- ► Total inlet temperature
- Static outlet pressure
- Init. up to x = -1.4 D

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	0●	0000000	00

Operating Points

Validation Case:

	<i>p_{high}-</i> chamber	<i>p_{low}-</i> chamber
Fluid [-]	H ₂	Air
NPR [-]	10	0
Pressure [kPa]	983.70	98.37
Temperature [K]	295.4	296.0
EoS [-]	IC	3

Computational Study:

	<i>p_{high}-</i> chamber	<i>p_{low}-</i> chamber
Fluid [-]	H_2 / CH_4	N_2
NPR [-]	1	0
Pressure [<i>MPa</i>]	1/10/50	0.1/1/5
Temperature [K]	293	3.0
EoS [-]	IG/SRK	

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	000000	00

Validation Case

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	○●00000	00

Hydrogen Injection, p = 10 MPa, NPR=10, EoS: SRK

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	000000	00

Hydrogen Injection, p = 10 MPa, NPR=10

x/D [-]

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	000000	00

Methane Injection, p = 10 MPa, NPR=10

x/D [-]

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	00

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	00

Jet penetration depth⁶:

$$Z_t = \Gamma \left(\frac{\dot{M}_n}{\rho}\right)^{1/4} t^{1/2}$$

4

Momentum flux at nozzle exit:

$$\dot{M}_n = U_n^2 \frac{d^2}{4} \pi \rho_n$$

⁶Hill and Ouellette 1999.

02/12/2016 ISPRAS OPEN 2016 Matthias Banholzer*, Hagen Müller, Michael Pfitzner

20 / 23

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	000000	00

Computational Study / Outlook

Methane Injection, p = 50 MPa, modelled with real-gas thermodynamics? \Rightarrow Possibility of phase separation.

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	● 0

Solver Capabilities

Numerical Schemes

- Successfully extended hybrid KT scheme for use with real-gas thermodynamics
- ► Two cubic EoS: Peng-Robinson, Soave-Redlich-Kwong
- Implemented equations for multi-species flow
- Real-Gas Mixing Rules
- Partially validated, more test cases to come
- \Rightarrow Solver which is capable of simulation high pressure gas injections using real-gas thermodynamics

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	0•

Jet Comparison

Ideal-Gas vs. Real-Gas Thermodynamics

With increasing p_0 higher deviations:

- mass flow $\Big|_{RG}$ > mass flow $\Big|_{IG}$ • $Z_{tip}\Big|_{RG}$ > $Z_{tip}\Big|_{IG}$
- mixture characteristics
- \blacktriangleright near-nozzle flow structure, shift of Mach disk position \uparrow
- \Rightarrow Real-Gas thermodynamics essential for pressures $p_0 > 10\,\text{MPa}$ and/or $T_0 < 273\,\text{K}$
- \Rightarrow Differences between IG/RG: Hydrogen-Jets > Methane-Jets

Motivation	Numerical Models	Generic Test Case & Setup	Results	Conclusion
00	0000000	00	0000000	00

Thank you for your attention.

Governing Equations

Mass:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \left(\rho u_i\right)}{\partial x_i} = 0$$

Momentum:

$$\frac{\partial \left(\rho u_{i}\right)}{\partial t} + \frac{\partial \left(\rho u_{j} u_{i}\right)}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{j}}$$

Enthalpy:

$$\frac{\partial \left(\rho h\right)}{\partial t} + \frac{\partial \left(\rho h u_{i}\right)}{\partial x_{i}} = \frac{\partial p}{\partial t} + \frac{\partial \left(u_{i} \tau_{ij}\right)}{\partial x_{i}} - \frac{\partial q_{k}}{x_{i}}$$

Species:

$$\frac{\partial \left(\rho Y_{k}\right)}{\partial t} + \frac{\partial \left(\rho u_{i} Y_{k}\right)}{\partial x_{i}} = -\frac{\partial j_{k}}{\partial x_{i}}$$

Governing Equations

Species-Flux:

$$j_k = -\rho D_{k,m} \frac{\partial Y_k}{\partial x_i}$$

Mass diffusivity / Schmidt-Number:

$$Sc_{k,m} = \frac{\mu_m}{(\rho D)_{k,m}} = 1$$

Heat flux:

$$q_k = -\kappa \frac{\partial T}{\partial x_i} + \sum j_k h_k$$

Hybrid Scheme

$$\sum_{f} \phi_{f} \Psi_{f} = \sum_{f} [\alpha_{f+} \phi_{f+} \Psi_{f+} + \alpha_{f-} \phi_{f-} \Psi_{f-} + \omega_{f} (\Psi_{f-} - \Psi_{f+})]$$

$$\sum_{f} \phi_{f} \Psi_{f} = \sum_{f} [\Psi_{f+} (\alpha f + \phi_{f+} + \alpha f + \phi_{f-}) + \Psi_{f-} (\alpha f - \phi_{f-} + \alpha f + \phi_{f-})]$$

Weighting Factor:

$$\alpha_{f+} = \frac{\varphi_{f+}}{\varphi_{f+} + \varphi_{f-}}, \quad \alpha_{f-} = \frac{\varphi_{f+}}{\varphi_{f+} + \varphi_{f-}}$$

Diffusive volumetric flux:

$$\omega_f = \alpha_{f+}\varphi_{f-}$$

Volumetric flux associated with local speeds of propagation:

$$\varphi_{f+} = \max \left(c_{f+} |S_f| + \phi_{f+}, c_{f-} |S_f| + \phi_{f-}, 0 \right)$$

$$\varphi_{f-} = \max \left(c_{f+} |S_f| - \phi_{f+}, c_{f-} |S_f| - \phi_{f-}, 0 \right)$$

Hybrid Scheme

Speed of sound:

$$c = \sqrt{\frac{M_{w}}{\rho} \frac{c_{p}}{c_{v}} \left(\frac{\partial p}{\partial v}\right)}\Big|_{T}$$

Kappa-function:

$$\kappa = \min\left(\frac{M_f}{\mathsf{CFL}}, 1\right)$$

Mass flux:

$$q_f^P = \kappa_f \rho_f^P (\alpha_{f+} \phi_{f+} + \alpha_{f+} \phi_{f-})$$

$$q_f^N = (1 - \kappa_f) \rho_f^P (\alpha_{f+} \phi_{f+} + \alpha_{f+} \phi_{f-}) + \rho_f^N (\alpha_{f-} \phi_{f-} + \alpha_{f+} \phi_{f-})$$