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INTRODUCTION

Current LPA codes are 1-D (e.g., two-fluid model (RELAPS) or drift flux
model (RETRAN)).

Problem: how to take into account the real 2D (and 3-D) flow characteristics
iIn 1-D models.

Typical solution: using flat profiles model -> field equations become 1-D.
This provides high calculation speed and saves memory.

But, important distributed information is lost.

These lost parameters are important not only for simple tube geometry, but
also annular and sub-channel geometry.

Dr. N. Zuber offered the classic solution to distribution parameter (DP) via
C, for continuity equation, Drs. Hancox and Nicoll provided empirical
extensions to energy and momentum equations.

This work presents analytical derivation of the DPs using power-mode
approximation for the monotone (and non-monotone) profile of basic
variables to the continuity, energy and momentum equations.
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PRESETATION GOALS (Part 1)

1. To construct a more complete and universal analytical
formulations of closure relationships for the distribution
parameters (DPs) C,. (k=f —fluid or g - vapor; s=0,1,2,3 - mass, energy,
momentum) IN non-equilibrium two-phase flows

C - <ak(Pks> Al 00 dA
ks —

<ak><(|)ks> a0 dA 1, 0y dA
0. = enthalpy h,, or superficial j, or phase w, (w,?) velocity.

2. To provide the representation of the integral formulations of
these main effects that control the phase parameter distribution.

3. To introduce some examples of effects of radial variations of
parameters on the above mentioned characteristics.
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Main assumptions and properties of the derived
quadrature relationships for DPs are:

(a) the use of the drift flux model,
(b) the quasi-steady-state approximation, and

(c) the power-mode approximations of the local distribution of the
variables,

(d) two-zone accounting for heterogeneity of void fraction and enthalpy
profiles in the channel cross-section.

1. These DPs C,. quadrature are expressed in terms of elementary
functions, they directly reflect the principle of superposition, generalize
and unify not only the Zuber-Findlay method, but also Hancox-Nicoll and
Hibiki-Ishii methods.

2. The revealed complementarity properties are particularly useful for the
purposes of testing, validating and verifying DPs.
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Figure 3. Power approximations for the parameter profiles: a) volumetric flux
density; b) k-phase enthalpy - h,, and c) k-phase void fraction - «,.

A set of analytical relationships for C,; were derived by inserting the power-mode
approximation of the monotone variable profiles (Fig. 3) into the original
definitions and integrating the linear combination of differential binomials.
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Fig. 4. Model of two monotonic profile superposition ("B").

An analogous set of analytical relationships was derived for the case of non-
monotonous variable profile (Fig. 4), including a compound channel or sub-channel
(see Table 2)in the form of so-called two-zone representation of two monotone
"cross-linked" on the border line R; of two power-mode approximations.
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IS included in the structure of each

the character

The two-phase flow parameter C,

distribution parameter

behavior.

of their

affecting

the general case of non-monotonic void fraction profiles. The comparison

for investigating the behavior of other distribution parameters as well in
with Hancox-

Consequently, the main characteristics of the C, may serve as the basis

Nicoll empirical relationship is shown in the Figs. 5 and 6.

Though the comparison rather satisfactory, but one can see the vast

expanses of differences from each other and from unity.



Figure 8. Distribution parameter for
enthalpy Cy, as function of Cy, and form

Figure 7. Distribution parameter for

momentum flux Css, for ¢,,=0.4,

— Oy /{0y ) -

=1

a

factor

vaj = 0.5.

Due to the hierarchical structure of the obtained analytical relationships
for distribution parameters it is possible to build the more complicated

distribution parameters (for example, energy and momentum equation
components) as the function of more simple distribution parameters

(for example,

Coand C,).
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Fig. 9. Distribution parameter for Fig. 10. Distribution parameter for

enthalpy flux C¢' as function of Cy; enthalpy flux Cy, as function of
and C,, for F,=2. Cyj for C,,/C o =05.

The property of the hierarchical structure provides the most laconic and universal
presentations of the compound parameter distributions, see Figs. 7-10. These Figures
Illustrate the vast expanses of differences from the unity for distribution parameters.
This fact points out the invalidity to use flat profile approximation in the 1-D model
for number of the non-equilibrium flow regimes, in particularly, for “subcooled” flow
boiling and for the “post critical” heat transfer.
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Fig. 12. Distribution parameter C,,® for non-monotonic void profiles

of two-phase flow when R=0.98; «,,,=0.2; o
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CONCLUSIONS (part 1

A set of analytical relationships for DPs C,, was derived with power-mode
approximation of the monotone variable profiles and integrating of the linear
combination of differential binomials, which were expressed in terms of elementary
functions. There are generalize and unify not only the Zuber-Findlay, but also the
Hancox-Nicoll and Hibiki-Ishii methods. An analogous set of relationships was
derived for non-monotonous profiles, including a compound channel or sub-
channel.

These integral forms of the DPs make up the interrelation of the hierarchical
structure between continuity, energy and momentum conservation law equations.
Moreover, kinematic (i.e., simple form) DPs, such as C,, and C,,, are a part of
more compound DPs for an energy transfer C,, and momentum transfer C,,
relationships and affect in many respects the character of their behavior.

The system of the DPs reciprocal products and the k-phase average contents for
the quasi-1-D model are derived. These complementation properties reflect the
integral balances mass, enthalpy, momentum and their fluxes. In turn, it is a
consequence of the unified consideration of DPs for each phase through its volume
fraction: as a- void, or (1-a)- fluid fraction. These integral balances between phases
are useful both to the quasi-1-D theories of two-phase flow modeling, and to semi-
empirical applications, including testing and verification problems for the C,, closure
relationships.



Paper 40 part 2

LYON-TYPE INTEGRAL FORMS OF WALL FRICTION, HEAT- AND MASS
TRANSFER CLOSURE RELATIONSHIPS FOR NON-EQUILIBRIUM TWO-
PHASE FLOWS. GENERALIZATION FOR ANNULAR
AND ROD CLUSTER GEOMETRIES
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Main assumptions of the derived closure relationships
for friction, heat- and mass-transfer factors:

(a) coolant flows (with high aspect ratio of length to diameter), which
occur in the frames of the boundary layer various models,

(b) the quasi-steady-state approximation,
(c) the use of the drift flux model,

(d) the phenomenological theory of hydrodynamics, heat, and mass
transfer - gradient hypotheses (Fick’s, Fourier's and Newton’s) are
used to describe the substance, heat, and momentum fluxes

(e) the generalized of variables separation method (A.D. Polyanin)
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Field equations of:

Definitions:

Mixture mass

p
—+V. 0,
o (pl)=

p=(ap),+ap); ;
Pi=(apli) ; Hapl) ¢

Convective diffusion, N;=N,+N,

p%+pU-VC:—V (N 4T

c=(ap),/p;
Nd =C(ap), Uy

Mixture energy O =0, +0

oh )
p—tipl Vh=-V-(; }+q,

h=[(aph),+(aph);1/p
dy=Cpoly (h, —hy)

Mixture motion T, =T, 47,

i . ~ .
,oEtou-Vu:—V-(rT +P)+pg

U=[(apt), +(apt) Vo

= C
Ty= o ——p Uy Uy

General form

p%—konVgo:—V : (3)+IV

variable ¢ — (c, h, w);
flux J — (N, §, 7);

source I, — (I,q,,2G)

Tab. 2: Non-conservative (transportable) forms of conservation law equations
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The mathematical descriptions  of similarity among the
three transfer processes mentioned above (see the top line In
Tab. 1) make it possible to introduce a formally generalized
equation, in which the substance flux J Is expressed by means
of the total transfer characteristic &; and the gradient of the
transfer potential ¢ normal to the wall as follows:

J=per Op/oy , (1)

where ¢r= ¢ + & - 1S the total (molecular ( ¢) + turbulent (&))
substance transfer characteristic (coefficient), namely, viscosity,
thermal diffusivity or diffusion coefficient (see the 2 -nd line of
Tab. 1).
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After scaling variables In equation (1) with respect to
their wall values and after integrating along radius Y, we can
obtain the profile of variation for any of the potentials under
consideration in the channel cross-section, if the substance flux
and molecular + turbulent transfer characteristics are known.
This Is expressed by the formula:

v =
+ o+ J :

ow—@ =Pe_ . | —=—dY (2)
W @ E[)(pg)T

The detailed description of the substance fluxes and the key to
decode the designations are obvious from the first six lines of
the Tab.1. Using the definitions given in Tab. 1, one can easily
reconstruct specific relationships for the profiles of axial
velocity, enthalpy (temperature), and concentrations from the
Integral (2), see the 3-d line.
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Separate effects (e=1 +6- Is used to identify the components |
e=1+4 pipe/flat channel) are explained in the Tab.3:

e=1, e=2, e=3, e=4;, e=5, e=h,
10 op  Op Op PNgow A

——(Fdyg)=lyp + pPW—+pV——— + (10
Tap ra)=lvg  pw v o s (10)

where r=ry+y,w, v and v, are axial radial and azimuthal
velocities; and J4 1S the azimuthal substance flux.
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After variables scaling in the equation ( 10) for local substance
flux, integrating it over cross section of pipe and each of zone
annular and sub-channel, first with the variable upper limit Y,
and then up to the wall Y,=1, and, joining the obtained integrals
(using Tab.3 designations), we have:

for pipe
j P [1_ya, K (11)
o Ry_l o ep'rep |»
for annular
- 1F25 F 26
1+ 26, Ya 1+ 265 ©

and for sub-channel

- 1- 26, _ 25
Jn (Y,0) = — RN Jwn (0) + —Z s D mKegn | - (13)
1 25,0 Yn

Averaged transfer components - @g,, which are generalized
mass forces in the form of component Froude numbers are
given in the 4th column of Tab. 3.



2 Friction factor, heat and mass transfer coefficients

3 Form-factors of source/sink

4  Weight function

R
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Tab. 4: Analytical closure relationships for friction factor, heat and mass transfer for
pipe/gap, annular and sub-channel geometries
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Bubbly upward tube flow at low mass velocities have recorded the occurrence of
heterogeneous (saddle-shaped) void fraction profiles and anomalous shear stresses.
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Fig. 1. Bubble saddle-shape void fraction
profile for adiabatic two-phase tube flow
for inlet condition Re=19100, £=0.15.
Experiments of Nakoryakov et al., 1981.
Apubple = 3 = 5 mm; dy,, = 86.4 mm
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Fig. 2. Wall shear stress ratio (A/A,)
vs gas volumetric flow ratio.
Anomalous for 0.01< 3 <0.2+0.3.
Experiments of Nakoryakov et al.,
1981. 25
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CONCLUSIONS (Part2)

A simple and descriptive approach has been proposed to construct
generalized quasi-one-dimensional integral Lyon-type relationships for the pipe,
annular, and sub-channel wall friction, heat and mass transfer coefficients. The
approach is based on: 1) the drift flux model, 2) the boundary layer approximations
and 3) a generalized substance transfer notations. The model takes into account
both the effect of non-uniform flow profiles as the effect of the geometry (pipe,
annular and sub-channel type).

With this approach, one can formulate the integral analytical expressions
for the wall friction factor, heat, and mass transfer coefficients to account for the
contribution of various complementary effects. These additional effects are
heterogeneous profiles of generalized mass forces arising due to the presence of
local variable gradients in the non-equilibrium flows. They include not only the
density (in the mixed convection), but also other components in the momentum,
heat, and mass transfer processes, and their sources and sinks in the channel flow
Cross section.

Unlike Lyon’, Kutateladze-Leont'yev’, Petukhov-Popov’, Novikov-
Voskresensky’, and lannello-Suh-Todreas’ relationships, the integral forms
deduced are more general and are characterized by an additive form of notation of
the effects under consideration. This is significant for the criteria to assess the
contribution of the effect in question.
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for your attention
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Figure 1. Space averaging scheme of the local parameters over the simple channel geometry
and the subchannel geometry cross-section.

29




1|2 3 4 Averaged transfer components @, | 5 Form-factors for the variable profile Kq,, Kga,
€ Component | ®gya, Peon Keon
Pl Source/ i~ ~
-1
sink q)w:.[ LR AR, R, =R™, (1) Kyp =1- vaR7dR/(CDV¢>€RJ) (@)
0 0
L2 Axial t~ . ap' "L apt
radiont CDZ(/J:E[,OW ~-R,dR @) | K, zl—bpw RydR/(QDwERJ) (4)
P |3 . 1 + R +
Radial [~ Op 4 [
agiont | @ —'([pv ZR,dR ®) | K, =1 I RydR/(CDW‘RJ) (6)
E |4 Temporal o -t j‘~5¢+ R dR 7 | K :1_1T~&p+ R,dR (CD R ) (8)
aCCG|eI‘a'[i0n @“e Sr* Op af‘ 7 244 Sr* Op T ¥ wp®
Al L Y,
N Source/ q)vcoa:j hiaYdY where | K, =1- I vaYJadY/(CDV(paSRJa) (@)
sink o 0
Y., =1F25,Y, (1)
N2 Axial t~ ., dp; % ap!
_ @, =[p.w Zay, dy 3 —1- + Xa
U gradlent 2 !pa a Vo Ja () chﬂa 1 _(’;pawa P YJadY ((DzwaiRJa) (4)
L 3 . 1 + Ya +
Radial o= &pa i ~ .+ O?Da
A gradient D, . —_([PaVa ~ Y, dY ®) | K, —1—£PaVa oy YJadY/(CDwa%Ja) (6)
R |4 1 Y, s
Temporal o - L[5 9y gy v 1 i~
acceleration “® gy, !Pa at = (7)) | Ko =1 Sr.. _([ a ot Y5 dY ((Dw(@maa) (8)

Tab. 3: Definitions for ®,, components’ average values and form-factors K, in equations of (¢)
substances transport for pipe/gap, annular and sub-channel geometries. 2* - absent for heat and mass

fluxes, using o¢*/0Z




S 1 1 Al - 1 AY, _
y Source/ @) Z”lm\(ncn(dew, (1) -AH| % deQ/CDA %5 ) )
sink 00 00
Y, =1-25.Y' (1)
B 2* . Al + AY,
Axial N s 1pf~ ., O
- Y dyde (3 1 : X
Gradient zgn A!_([pnwn a " (3) Allpnw Y de9/<q)2meRJn) 4)
C |3 ; Al + AY,
Radial N S 2 1
O = Y. dYdé 5 =1— APy A
H gradient yon AMpn (5) 1 AMpnv Ly deH/( R0 @
A 4 Al + AY,
Temporal | g 1 ~ 0Py avde (7 1 ~ 5% A gan
N acceleration o Sr*nAMp” ot " (7) SrnA-([-(['O” Y,dydo (q) R )(8)
N 5 . Al + AY, N
Azimuthal N Y N4 A 17t~ 4
o) =— vV dYdé /R 9 AT AORA
L 6 . Al = AY =
Azimuthal .1 a, . L 1R d, o
gradient D —Al-!%deg/mJn (11) K an —1—X£_£§0de9/(®mn%Jn) (12)

Tab. 3 (continued): Definitions for @, components’ average values and form-factors K, in

equations of (¢) substances transport for pipe/gap, annular and sub-channel geometries. 2” - absent
for heat and mass fluxes, using o¢p*/0Z




