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ABOUT VIBRATION-DRIVEN ROBOT (VDR)

Vibration-driven robot (VDR) is a multi- — T~
. . e Viscous fluid

mass propulsion system consisting of a /\

closed shell and movable internal parts. O

In a resistive medlgm the motion pf t.he )\

system as a whole is forced by periodic

oscillations of internal parts relative to
the shell.

Viscous fluid

Such a principle of movement seemsto = ——— ~

be expedient for mini and micro-robots _ .

(for motion in low-Reynolds-numbers Fig. 1: Motion scheme of two-
mass VDR

range).



MATHEMATICAL MODEL

Basic equation of rectilinear motion of
the two-mass system:
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Governing system of a fluid motion
around VDR:

a—U+U -VU =—Vp+iAU, V-U=0
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Viscous fluid
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Fig. 1: Motion scheme of two-

Forces acting on VDR by a viscous fluid :
mass VDR

Ry = J S pnds — I s 9 nas, Uy - acceleration of the shell,
v -acceleration of the internal

Imass



MATHEMATICAL MODEL

We rewrite governing equations in a moving (non-inertial) coordinate
system associated with the shell. To retain the governing system in the
basic form, we determine a new pressure as

BC on the surface of VDR:
u |c =V |c =0.
BC at infinity:
. . R _ .
u |oo: ﬂZV_ﬂl? F’ \ |oo: O
Correction of forces:

F = F, — [ xty nds.



NUMERICAL SOLUTION

Numerical solution is carried in the OpenFOAM software package. For
discretization of equations 2" order scheme is used. The resulting discrete
problem solution is based on the PISO method implemented in the icoFoam
solver. The next additional steps for updating the BC are defined:

1. The predictor for the acceleration of the moving coordinate system is calculated as
Wwh=2wT— w2
2. The boundary conditions at the input and output boundaries are updated
ud =—wl + W)™, ul = (-2l dt+4ult —ul?)/3
3. The discrete governing system of the fluid motion is solved by the PISO method,

the force is calculated.
4. The real acceleration of the system is calculglted using the new value of the force:

W =—p, Vj+ﬂ1?|:j
5. The corrector is calculated as

Wi =Wy — .



APPROBATION OF THE NUMERICAL MODEL.

STEADY FLOW PAST TRIANGULAR CYLINDER.
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Fig. 2: The drag forces acting on the cylinder. Gray markers - vertex facing flow, black
markers — base facing flow.



APPROBATION OF THE NUMERICAL MODEL.
OSCILLATORY FLOW PAST TRIANGULAR CYLINDER.
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Fig 3a: Average stream function for regime S*. Re = Fig. 3b: Average stream function for regime S. Re =
31,5; KC=0,35 57.7;II§CC =0.64
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Fig. 3c: Average stream function for regime S. Re = 68.25; Fig 3d: Map of regimes

KC = 0.727




VDR MOVEMENT.

INTERNAL MASS MOTION LAWS
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Fig. 4: Harmonic (dashed line) and two-phase* (solid line) laws of the internal mass
motion

* Egorov A .G., Zakharova O. S. The energy optimal motion of a vibration driven robot in a
resistive medium. J. Appl. Math. Mech. 74 p. 443. 2010



HARMONIC LAW OF THE INTERNAL MASS

MOTION. EQUILATERAL TRIANGLE
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Fig. 5: Flow patterns around vibration-driven robot.




HARMONIC LAW OF THE INTERNAL MASS

MOTION. SYMMETRY BREAKING
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Fig. 6: Flow patterns around vibration-driven robot.



TWO-PHASE LAW OF THE INTERNAL MASS

MOTION. EQUILATERAL TRIANGLE
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Fig. 7: Flow patterns around vibration-driven robot.



MAIN CHARACTERISTICS OF THE MOTION.

EQUILATERAL TRIANGLE

Ua Tl:v% T

sol . Twophase A

\

Two-phase

0.05 1 T R s T
»

50 100 150 200 250 30 100 150 200 250

Fig.8a: Average velocity of movement (U, = (U)) Fig. 8b: Efficiency of movement (1 = No ).




MAIN CHARACTERISTICS OF THE MOTION.
SHAPE OPTIMIZATION
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Fig.9a: Average velocity of movement (U, = (U)) Fig. 9b: Efficiency of movement (1 =

).
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HYDRODYNAMIC FORCES APPROXIMATION

Forces acting on the shell of VDR can be approximately represented in the form:

d Cy, U>0
F[u(t)]ch\u\u+Cmd—tl, CD:{C:_, -0

We use this approximation to eliminate drag component from the full force calculated

numerically: - .
L(Cy..ConCp) = |2 (FIUt)] - F™") ————>min
i=1
(Flu®])=(Cy4uju) ~0
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Fig. 10: Comparison of the full force and its
-100 - - approximation.




DRAG COEFFICIENT
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Fig. 11: Drag force coefficients. Gray markers—- Cd+, black markers - Cd-. Blue line - Cd

for steady flow past equilateral triangular cylinder.



Thank you for attention

Pa6boma evinonxena npu noddepicke eparmos PH® 15-19-10039 u POPH 16-31-00462 (moa_a).
YucneHHas modens dsuxceHus subpopoboma 6 scudkocmu pazpabomaHa npu uHaHco8ou
noddepcke epanma PH® 15-19-10039 8 Husxcecopodckom eocydapcmeerHom yHugepcumeme.



