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Introduction

Why we choose the simulation of instabilities for validation?

@ Hydrodynamic instabilities are driven mechanism of the appearance of
some effects.

@ Correct numerical simulation can't be possible without correct
simulations of instabilities.

@ There are some analytical solutions for hydrodynamic instabilities.

Main types of hydrodynamic instabilities
@ Rayleigh — Taylor (penetration of heavy liquid to light one);
@ Kelvin — Helmholtz (increasing of wave amplitude in case of
two-phase flow with different velocities);
@ Plateau — Rayleigh (breakup of liquid jet by influence of surface
forces).
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Introduction

Gerris

Gerris — open-source code for the numerical Gerrzs
solution of the hydrodynamic problems ()
(particularly for free-surface flows). -~

Main features

Volume of Fluid scheme for interfacial flows.
Level-set function is uses for interface detecting.

Accurate surface tension model.

Adaptive mesh refinement: the resolution is adapted dynamically to
the features of the flow.

Portable parallel support using the MPI library, dynamic
load-balancing.
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Rayleigh — Taylor instability

It is observed during penetration of the light liquid in the heavy one. )

Instability conditions:

1. Initial perturbation y = ag cos(kx) with amplitude ap > 0, g < .

2. Surface tension coefficient: o < o, 0. = kizg
3. Coefficients of dynamic viscosities: p1 = p2 = p.

oy b2 Linear theory:

If conditions are satisfied then amplitude of instability grows
by law:

a(t) = agcosh (I't),

r= kg(A—k2—0> — growth rate, [[[=1/s;
g(p1+p2) ' '

p2 P1 . .
A= — dimensionless Atwood number.
A p2 + p1 )
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Rayleigh — Taylor instability

Simulation results. Mesh convergence

Case parameters

afag
al | — Aoss @ pr =1.255 kg/m3, p1= plﬁ;
vl | o ® 1=3.13-10"3 kg/(m-s);

Lap | T s @ 0 =0.0N/m; g =981 m/s*;

1.1f e \=1 m, g = 0.05 m;

It @ Mesh: 25, 26 27 28 29 210 c¢||s
per wave length.

0.4 0.6 0.8

0.2

Error as compared to the reference results (for mesh 21°).

A | ho—Ffll, | Ifio—fell, | lo—Fll, | Ifio—felle, | [lio—Tolli,
0.95 0.00145 0.00242 0.00215 0.00225 0.00153
0.33 0.00790 0.00273 0.00070 0.00050 0.00044
0.048 0.00669 0.00193 0.00045 0.00013 0.00009

v
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Rayleigh — Taylor instability

Instability region

Dependence of the growth rate

Dependence of the growth rate on
the Atwood number and the surface
tension coefficient (for previous

case):
. . o, N/m
[=7.85\/A—160(1+A)o. 0.01 0.02
\/ (1+A4)0 y A = 0.048
I, 1/s
2

005 01 . N/m ' 01 02 o N/m

A =0.33 A =0.95
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Kelvin — Helmholtz instability

U, 1 It is observed at the interface

with different velocities.

Instability conditions:

1. Initial perturbation y = ag cos(kx) with amplitude ag > 0, g < A.

(1 + p2)(gAp + K*0)
kp1p2

2. Condition for velocity difference: AU? > =AU2.

Linear theory:

If conditions are satisfied then amplitude of instability grows by law:

a(t) = agexp(It),

2AU? 3 1/2
- <k(pAg 5 1)[;2 - Z++k§Ap> — growth rate, [[]=1/s.
1 2 1 o
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Kelvin — Helmholtz instability

Mesh Convergence

afag
Case parameters
5.0 e A=0.1m,
ap = 0.0008 m;
3.0 3
@ p1=960 kg/m",
ig p2 =998 kg/m°;
' o AU=3.0m/s;
- I't
@ 0=15.0 N/m;
g =400.0 m/s;
———— Linear theory @ Mesh: 29 210 211 212 ¢¢||s
lltflllzzﬁ i” per wave length or 8, 16, 32
Mesh: 2" an_d 64 cells per wave
Mesh: 2" height.
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Kelvin — Helmholtz instability

Dependence of the growth rate from viscosity

Small non-physical waves can be appear on the interface because of initial
imbalance of forces caused by interface perturbation. This negative effect can be
decreased by adding of viscous forces near the two-phase interface. Artificial
kinematic viscosity coefficient depends on cell size proportionally: v ~ Ax.

rr
0.9
Case Parameters:
0.8¢ @ A=0.1 m, ag =0.0008 m;
0.7} ® p1=p2=960 kg/m?;
0.6 o AU=3.0m/s;
- . . _ oy 2,
0.00005  0.00010  0.00015 ® 0=18.51 N/m; g=0.0 m/s";
@ Mesh: 212 cells per wave length
Blue line — viscous term is added in all region, or 64 cells per wave height.
purple line — only near the interface

(a € (0, 1)).
V.
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Rayleigh — Plateau instability. Linear theory

It is consist in breakup of the liquid cylinder into droplets because of surface
tension.

Instability conditions:

1. Initial perturbation y = ag cos(kx) with
amplitude ag > 0, ag < .

2. Condition for densities: pg < py.

3. Condition for wave length: A\ > 27hg.

Linear theory:
If conditions are satisfied then radius of cylinder grows by law:
h(z, t) = ho + &(t) cos(kz), € (t) = eoexp(['t),

h(kho)
lo(kho)

Time of breakup can be found as t, =

— growth rate, [[=1/s.

In (hg/ﬁo)
—r .

g
M= ——kho (1 — (khg)?
pLhd o (1= (kho)?)

4
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Rayleigh — Plateau instability

Rayleigh — Plateau instability. Non-linear theory

A Maindroplet ~ Satellite droplet

Non-linear theory:
Let the instability amplitude depends on initial amplitude as follows:

3
e(z, t) = ZE{)’K,, (z, 1),
n=1

where K, (z, t) are coefficients.
Then break time can be founded from condition

tp : max e(z, tp) = hg.
b ze(0,\) (2, ) 0

v
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Rayleigh — Plateau instability

Comparison with linear and non-linear theories
Case parameters

@ A=179m, hg =02 m; @ 0=0.72 N/m;
e p; =998 kg/m3, pc=12 kg/m3; @ Mesh: 57 cells per hg.

/T
A Linear theory

10 [ Non-linear theory

3 e o o o o Gerrisresults

6

4F

2

00 02 04 06 o0s 1o M

Dimensionless breakup time for different initial amplitude

v
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Rayleigh — Plateau instability

Comparison with linear and non-linear theories

Case parameters Size of droplets after breakup
® hy=02m; Racfho
@ p, =998 kg/m3, pc=12 kg/ms;
® 0=0.72 N/m; 5
@ Mesh: about 25 cells per &q.
y
't 2
A
0.3 .
1
0.2
0.1
kho
0.2 04 0.6 0.8
0.8 » khg
0 02 04 06 08 10 Solid line — size of main droplet, dashed line —
Blue line — linear theory, gray line — non-linear theory, points size of satellite droplet. Points — results of Gerris
— Gerris results. simulation. )
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Rayleigh — Plateau instability

Conclusion
Rayleigh — Taylor instability
@ If Atwood number is close to 1 (big difference between densities) then mesh

convergence doesn't observed;

@ If Atwood number is close to 0 (fluids with equal densities) then amplitude
of instability grows faster then theory predicts.

Kelvin — Helmholtz instability

@ Problem statement follows to forces imbalance, additional viscous term near
the interface must be entered to balance of forces in initial time;

@ Question of the mesh convergence should be investigate in case of adding
viscous term.
Plateau — Rayleigh instability

@ For the dimensionless wave number khy < 0.7 growth rate of instability from
simulations agrees with non-linear theory;

@ For the dimensionless wave number khg > 0.7 jet breaks up to two droplets
as predicts by theory.
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