Automation of device and machine development for QEMU*

Vasiliy Efimov <real@ispras.ru> (corresponding)
Aleksandr Bezzubikov <abezzubikov@ispras.ru>
Danila Bogomolov <bda@ispras.ru>
Oleg Goremykin <goremykin@ispras.ru>
Vartan Padaryan <vartan@ispras.ru>

Ivannikov Institute for System Programming of the RAS

2017 Ivannikov ISPRAS Open Conference, Moscow, 15 December

*This work is supported by RFBR, grant No 16-29-09632



-
The problem

Development of either device or machine model for QEMU is a time-consuming task.
Therefore, an automation is required.

Emulator/ Machine Device development | Debug

Simulator composing automation Tools
GUI API GUI API

Simics + | C++, Python ) DML — C++

AMD SimNow | + C++

gemb . C++, Python . . )

OVPSim . C, TCL—C . TCL —» C +

QEMU + C, CLI

2/32



-
The goal

The goal is to automate the development of both device and machine for QEMU
emulator.

Objectives
@ analyse QEMU internals
@ search the workflow for stages to automate
@ develop a toolset automation

@ evaluate the toolset

3/32



Automation concepts

Automation concepts

Classic development workflow
QEMU Object Model (QOM)
Device modelling API

Machine composition API

Proposed workflow



Automation concepts

Classic development

Both device & machine
documentation is frequently
written in a domain specific

natural language.

It cannot be formalized.

workflow

Device drafts writing

—_—

5

/ Documentation analyze

Improve

Iterative development

TN

Debug

%'(\._

Initial machine composing

A detached device

1
\ is difficult to debug.

A machine cannot be
composed untill most of
its devices are available.

5 /32



Automation concepts

QEMU Object Model (QOM)

object

| machine

| _device
sys-bus-device

device

pci-device
cpu,

| _bus
PCI
|_pcIE
System
usb-bus,

| irq

| _gemu:memory-region

OOP in C (like Gnome library's
gobject)

Hierarchy node is called a type
type = class + instance

class/instance
= structure (struct, C)
+ constructor (a callback, C)

object is a type that supports
properties to both class and instance.
a property is an opaque value
identified by a string and accessed
through set and get function.

6/ 32



Device modelling API

VIRTUAL MACHINE
(GUEST)

Device snapshot &
Bus data transactions =&

Model registration
Output interrupts e
Input interrupts —

Device customization =——

DEVICE MODEL
_ VMStateDescription
chardev >
MemoryRegionOps (character device)
(registers)

L typernfo | Individual | ockgey

code (block device)
—— gemu_irq A
> IRQState [n[erface NICConf

NICState <&

= Property code

(network interface)

Timer
Guest time Host time

Interface code is composed using finite set of APl elements. Each the element has finite
set of parameters. Given those parameters, a draft with interface code stubs can be
generated for a device.

EXTERNAL ENVIRONMENT
(HOST MACHINE)
Berkeley socket Virtual
FIFO <> terminal
stdin & stdout emulator
ROM image format ROM
(QCOW, RAW, ...) image file
Network adapter
TAP-adapter
Data link through UDP

Internal hub



Automation concepts

Machine composition APl (example)

/x device instance creation x/
dev = qdev create(parent bus, QOM TYPE NAME);

/* specification of properties x/
object property set TYPE(dev, PROP_VALUE, PROP_NAME, ...);

/x device instance "realization" x/
gdev_init_nofail (dev);

/+x mapping of registers x/
sysbus  mmio_map(dev, REG INDEX, REG_ ADDRESS);

/+ interrupt lines binding x/
my incoming irq = qdev_get gpio_in(dev, IN_IRQ_INDEX);
sysbus connect irq(dev, OUT IRQ INDEX, neighbour incoming irq);



Automation concepts

Machine composition API specifics

@ Machine content is described in a declarative way.
@ An object model is used for content description.

@ A complicated device interconnection is difficult to sense in form of code.

Therefore, the graphical editor was implemented. It represent a machine in a schematic
form. The editor generates a code for the machine draft.

9/ 32



Automation concepts

Proposed workflow

Information required

for the 1-st stage:

- list of devices

- list of required QEMU API
elements per device

- device interconnection
(machine)

Documentation analyze

Iterative development

N ‘

Improve .
LH

P @Y

Generation of drafts

Debug

£

Sk

Generation
settings Py
Next, a developer
have to implement
individual part of
the device model.

= All the devices are
interconnected and
ready to debug.

10 / 32



Developed toolset

Developed toolset

Toolset infrastructure
Settings format

Generator capabilities
Examples

GUI

Existing QEMU code feedback

11/ 32



Developed toolset

Ut B Generator '
File | Edit] ...| 7] > Settings - é’
API manual
* writing
Model
draft File "
A description content | Templates
, (o)
. {
Existing (I
O‘ code '
feedback

ﬁEMU(_. /* Chunks of */ | g
code();

Code generator

12 / 32



Developed toolset

Device draft generation capabilities

Device class Capabilities
Any QOM registration
VM state and property declaration

timers

character and block devices
network interface

System MMIO
bus PMIO
device in/out IRQ
PCI(E) BAR
device out IRQ (INTx)
function MSI(X)

identification information

13 / 32



Developed toolset

Fast Ethernet adapter draft generation settings example

obj55 = PClExpressDeviceDescription (

— $ kTR

name = "AM79C971", # model name

vendor = "0x1022", device = "0x2000", pci_class = "0x0200",
revision = 0x1,

subsys = None, subsys vendor = None,

directory = "net", # directory name
irg_num = 0x1,

mem_bar num = Ox1,

nic_num = 0x1,

timer _num = 0Ox1,

msi_messages num = 0,

char _num = 0,

block num = 0

14 / 32



Developed toolset

AM79C971 X |

Name |[AM79C971

Directory net
Block driver quantity 0
Character driver quantity |0
Timer quantity |1
Network interface v

Vendor|Vendor ID ~|AMD ~||0x1022 -
Device|Device ID | AMD_LANCE | ox2000 &)

Class|PCl class code ~|NETWORK_ETHERNET «[0x0200 -

Subsystem vendor |Not specified - - -
Subsystem |Not specified | - |

IRQ pin quantity 1

BAR quantity 1

MSI message guantity 0
Revision 1

Refresh ‘ Apply |

15 / 32



Developed toolset

Machine content description

Node . . .
| BusNode This type hierarchy is based on
SystemBusNode QOM.
PCIExpressBusNode )
[ISA, IDE, I2C]BusNode IRQHub allows to deliver one
| Devicelode IRQ to many devices.
t SystemBusDeviceNode
PCIExpressDeviceNode Most p.art of'memory add.ress
 IRQLine space is defined by devices
| TRQHub internally. But several kinds
| MemoryNode of memory (like a RAM or a
| MemoryLeafNode simple ROM) have to be defined
MemoryAliasNode explicitly. Me1.110ryNode ancestors
MemoryRAMNode are used for it.
MemoryROMNode

16 / 32



Developed toolset

Variable name base|cisco_remoté]
Name of variable |ci5co_rem0te

QOM type [TYPE_CISCO_REMOTE Select
Parent bus|0: Bus, bus B

~Child buses |
-1: NULL =
~Properties

chardev String — | serial2 Delete
eeprom_c2600_mb String — | eeprom-c2600-mb Delete
nvram Link — | 17: Device, TYPE_CISCO_NVRAM J Delete

remote_cpu_type Integer — ||0>(2 Delete

Add

i

~MMIO Mappings
0:|0xf6000000

Add | Delete |
~PMIO Mappings
Add | Delete |

Refresh | Apply | OK |

17 / 32




Developed toolset

Bus interconnection example in GUI

(1) Bus settings

Variable name base pci

Name of variable  |pci
Parent device|2: Device, TYPE_Q35_HOST_DEVICE

Refresh | Apply | oK |

18 / 32



Developed toolset

IRQ line interconnection example in GUI

2 (26) IRQ line settings

Variable name ha&elirq—
Name of variable |irg_26
-Source

Node|20: Device, TYPE_C2600_PCI_HOST J
GPIO index|3
GPIO name|
-Destination

Node|18: Device, TYPE_C2600_I0_FPGA |
GPIO index|3
GPIO name SYSBUS_DEVICE_GPIO_IRQ

Refresh | Apply | OK

19 / 32



Developed toolset

Existing QEMU code feedback

| QEMU Git graph

new?2

old2==newl

newl

old

—

>—<« — Changes in QEMU

@ Automatic header analysis
o Inclusion graph (used to generate header
inclusions)
o Preprocessor macros (used by both GUI and
generator core)

@ Heuristic based support for different QEMU
version.

o A new value is propagated towards future
commits.
o An old value is propagated:
@ towards past commits,
@ towards future commits.
o During merging new values are chosen.
o Given SHA1, the actual value can be obtained.

20 / 32



The toolset usage examples

The toolset usage examples

o Intel Q35 chipset based PC
e CISCO 2600 series router (C2621XM)

21 / 32



Intel Q35 chipset based PC

@ There is another implementation in QEMU already. It is one of most complicated
machines in the emulator.

@ The goal of this experiment is to prove the proposed workflow correctness.
@ All requred devices are already present in QEMU.
@ Several old devices were updated using the toolset.

22 / 32



The toolset usage examples

Q35 machine scheme

smbus -eeprom smbus -eeprom

| smbus -eeprom smbus -eeprom |
i2c
| smbus -eeprom smbus -eeprom | EBB
ci.0 )
| smbus -eeprom I——| smbus -eeprom | P
ICH9_SMB_DEVICE [ isa-parattet |—— 10_porT so |

m_ [icho-usb-eheit — [ isa-i8259 |——] 10_PoRT_Fo |
[ isa-18259 |—— pc_seaxer |
B I

[ mc14e818_RTC |—— 154 SertaL |
bus

23 / 32



The toolset usage examples

Evaluation*

Stage Files Lines Lines
touched inserted deleted
Preparation** | 4 42 31
Generation 8 599 0
Implementation | 5 162 Q3¥**
Total 12 803 31

*The measurements were made using git diff.
**A refactoring mostly.
***Note that amount of deleted lines is a measure of piece of generated code to be

adjusted.

24 / 32



The toolset usage examples

C2600 series router (C2621XM)

@ Based on Dynamips.

e CPU PowerPC MPC860 presents in QEMU except for full system emulation
support.

@ Both machine and devices were implemented using the toolset (except for CPU).

25 / 32



C2621XM router scheme

MPC860_PORT \

e T —— vecsse x|
= MPC866_IC
MPC860_CPM

MPC866_DMA
- —| €2600_I0_FPGA | <

MPC860_SCC

—{ c2600_pc1
\ /
MPC866_WDT \ /
{ cas00_pcr_HosT |
CISCO_NVRAM l_c25007PC17HOST

CISCO_8MB_BOOTFLASH
CISCO_8MB_BOOTFLASH

ML

MPC860_PORT

o
c

[a]
0
w
o
‘O
o
@
- 1
o
=1
m

26 / 32



The toolset usage examples

Evaluation

Stage Files Lines Lines
touched inserted deleted
Preparation* 8 128 35
Generation 37 2186 0
Implementation | 31 4747 419
Total 45 6642 35

*Memory management unit, CPU'’s special registers and interrupt support, PCl
identifiers.

27 / 32



The toolset usage examples

Evaluation*

Device Configuration size  Draft size
MPC860 IC 6 125
C2600 PClI_HOST | 6 133
C2600 PCI 7 82
NS16552 7 181
C2600 10 FPGA |8 137
CISCO_REMOTE |7 152
AM79C971 12 175

*The size is measured in lines.

28 / 32



Conclusion

o Results

o Future work

29 / 32



Conclusion

Results

@ The first stage of device and machine model development was automated using
the code draft generation toolset.

@ A generation configuration is wrtten in Python.

@ The size of resulting device draft is 11-25 times bigger than size of corresponding
configuration.

@ The GUI was implemented including schematic machine editor.
@ The toolset supports complex machines like Intel Q35.

@ The piece of generated code is between 1/4 and 3/4 depending on amount of
available device models.

e Existing QEMU code is accounted including QEMU version adaptation mechanism.

30 / 32



Conclusion

Future work
Runtime debug feedback form QEMU.

GUI [x

File | Edit] .. [ 7]

INT_CNTRLLR

Code generator

[]

variable <=€-» machine element
struct field <«-» device state parameter

function call <=-» device state transition

31 /32



The End

Thank you for your attention!

Questions?

32 / 32



	Automation concepts
	Automation concepts
	Developed toolset
	The toolset usage examples
	Conclusion
	The End

