Modeling of the memory
management process for dynamic
work-stealing schedulers

Elena A. Aksenova, Andrew V. Sokolov

Institute of Applied Mathematical Research
Karelian Research Centre RAS
Petrozavodsk, Russia

Introduction

Strategies for parallel computing planning are
divided into static and dynamic.

Static schedulers are used when almost all the
tasks are known. In this case, we can determine in
advance the optimal task schedule. Such a
problem is considered NP-complete and is quite
rare.

When dynamic scheduling the scheduler uses a
relatively simple planning strategy that produces a
result that is close to optimal.

Introduction

 Work-sharing — the scheduler moves jobs from the
most loaded processor to the least loaded one.

* Work-stealing — processor that has become empty
tries to steal jobs from another processor. Work-stealing
strategy is implemented in a large number of systems,
e.g.: Cilk, TBB, TPL, X10 and others. In this method of
load-balancing processor uses deques for information
storing.

There are different ways for implementing of several deques in
the shared memory:

* One can use the “linked list” implementation. A model of this
method for deques will be similar to the already constructed
models for stacks and queues [Sokolov A.V., Drac A.V., 2013].

 In [Aksenova, E.A., Lazutina, A.A., Sokolov, AV, 2003] another
method was proposed and analyzed, where stacks and queues are
represented as a linked list of arrays (“paged implementation”).

* |In [Hendler D., Lev Y., Moir M., Shavit N., 2006] it was suggested
to use this method for deques.

* |In [Mitzermatchen M., 1998] the model of work-stealing load
balancer (built on the basis of queuing theory) was proposed, but

specific ways of representing deques in memory were not
considered.

The implementation method of work-stealing deques was
proposed, where deques are allocated "one by one in a
circle” (Patent application N2 2016143800)

In this paper, we propose a mathematical model
for the sequential cyclic representation of n work-
stealing deques, where each deque is located in
one's memory area.

At each step of discrete time, operations with
specified probabilities can occur.

Previously, such models were built by our team to
represent some dynamic data structures: stacks,
gueues, priority queues and others.

Work-stealing deque
AlB[C|D|T=
tail Em head
[a]—/[B]c[p[E

If one processor finds that its deque is empty, it steals tasks
from another processors deque.

Problem definition

m — the size of shared memory;
n — number of deques, n<m;

Si — the size of memory for i-th deque,
SitSot. .. ts=m, i1=1,....n;

x. — the length of i-th deque at a some step,
OS Xi S Si9 l=1,n

m
A

S1 A\ 83 S5

At each step, parallel operations of insertion, deletion and
processing of elements are possible.

Suppose that the probabilistic characteristics of each
deque are known:

* p. —the probability of insertion an element to the
i-th deque,

* g. — is the probability of deletion the element from
the i-th deque,

* r,—is the probability that the length of the i-th
deque has not changed (processing),

pi‘|‘qi‘|‘7‘i=1, izl,...,n.

If the j-th deque becomes empty x;=0, j=I,...,n, then it
can steals the K > 0 elements from any deque in which

x; > K, i#, i=1,...,n. At each step one deque can steals
elements from only one deque.

The problem is to choose the values s., 2s.=m, i=1,...,n
and K > 0 so, that the average time before the overflow
of any deque would be maximal.

As a mathematical model, we consider a random walk on
an integer lattice in the n-dimensional space 0< x; < s,
i=1,...,n, where x, — is the length of the i-th deque. We
will examine a random walk as an absorbing Markov
chain.

That optimality criterion can be useful, for example, in
applications of real time, where the overflow of memory
can lead to an emergency shutdown of the program. It is
appropriate to note here, that among the multi-core
architectures there are such, where cache memory is
absent. For example, in the AsAP-Il architecture each core
has two FIFO-queues, and in the SEAforth architecture
(designed by Charles Moore (IntellaSys)) each core has
two LIFO-stacks. In these architectures stacks and queues
are implemented cyclically and separated from each other
with the possibility to lose elements due to overflow. We
assume, that it is possible to implement work-stealing
deques in hardware in a similar way, and in some cases
our model can minimize a number of lost elements.

The Model of two deques

‘ S ‘ Mm-S \

m

* X1 N X2 — the lenghts of 1
and 2 deques;

exi=stl,x>=m—s+1 -
absorbing barriers.

12 /43

Random walk

x:‘

m-=s+1

m-=s 4

13 /43

Random walk

x:‘

m-=s+1

m-=s 4

14 /43

Random walk

x:A

m=s+1

m-=s

15 /43

Random walk

x:A

m-=s+1

m-=s 4

16 /43

Random walk

x:‘

m-=s+1

m-=s 4

17 /43

Random walk

X

18 /43

Overflow

19 /43

Stealing of K>0 elements (tasks)

x:‘

m-—s+1

m-=s 4

20 /43

The point with coordinates (x,,x,,xs,...,X,.;,X,) iS the state
of the Markov chain, which describes the system of
deques at each step. The process of work (random walk)
starts from the point (0,0,...,0).

The total number of states in the Markov chain
(s;+1)(s,+1)...(s,+1).

Let's number the states of the Markov chain. By the
method of mathematical induction this formula of state
numbering for any value of n can be proved:

M(x X, %) = X+ x5(8+1) + (s +1)(s 1)+ F

(s D(s, D). (s D).

The randomm wall: area and the

numbering of states for two deques
s]l=3 s2=2

M(X,Xs,...,X,) = X; T

The random walk area and the mimbenng of
Xy(s;t1)+ states for three deques 51=3, 52=2, 33=1
X;3(s;F1)(s, D) +...+

Xy(s (8 1).(5. 1),

22 /43

Consider the transition from the state 5 to the state 22 and
determine the lengths of deques x,, x,, x; for that step by
algorithm (this algorithm is based on the formula of

numbering of states): a=5:
20 xy:=[a/ ((3+1)(2+1))]=0
X5 0 21 . a?:a % ((3+1)(2+1))=5
' 23 x,:=[a/(3+1)]=1
12 0 a:=a % (3+1)=1
L 19 x;:=a=1
| 1877
Y, *’*x:
el] p=22:
A N xy=[b/ ((3+1)(2+1))]=1
RSB [b:=b % ((3+1)(2+1))=10
e T xy=[b/ (3+1)]=2
’ b:=b % (3+1)=2

Let's check:
a=M(1,1,0)=1+1(3+1)+0(3+1)(2+1)=5,
b=M(2,2,1)=2+2(3+1)+1(3+1)(2+1)=22.

At each step in the system of n parallel deques there are
n operations of insertion, deletion and processing. In
total, 3" event variants are possible, where each event is
a set of n operations of three possible for each deque.

The probabilities of transitions to the Markov chain :
* for each deque p+q.tr=1, i=1,...,n.
* for the system of n deques

(i tq,tr)pytg,try).(p g,)=,

where each summand is the probability of the Marcov
chain transition at each step, describing what happened
with the deques (which n operations were performed).

Suppose that at some step the process was in the state a=M(x,,x,,...,x,)
and in the next step the process was got into the state
b=M(x',,x',,....x'"). To determine what operations were performed at
this step in the deque system, consider the increment values

A=(x", — x;) for i=1,....n:
* 1-theinsertion of an element in the i-th deque, x; > 0;

* 0 - the length of the i-th deque has not changed, x, > 0 (processing
or deletion from the empty deque, when steal is impossible);

* -1 - deletion of the element from the i-th deque, x,> 0;
* K- i-th deque stole K elements, x, = 0;
* —K - there was stealing of K elements from the i-th deque, x;> K

* (1-K) - there was an insertion of 1 element and stealing of K
elements, x,> K

* (-1-K) - one element has been deleted and K elements are stolen,
x; > K.

We obtain a set of n elements consisting of

{0, 1, -1, (—-1-K), (1-K), =K, K}.

The steal of K > 0 elements from the i-th deque is possible, if the length
of the deque is x;> K, i=1,...,n. If there are no deques in the system
from which the elements can be stolen, then the length of the deque
does not change. The number of deques that have stolen the elements

should be equal to the number of deques from which the elements
were stolen.

With the help of the defined set of elements we determine the
probability of the event that occurred:

P(x,x')=11d., i=1,...,n, where
d={p, if A=1, x. >0 or A, =1-K, x.>K;
g, if A=—1, x;>00r A,=—1-K, x,>K or A,=K, x; = 0;
ro if A;=0, x,>0 or A,=-K, x,>K;
gtr, if A,=0, x,=0 and x; <K, i#, j=1,....n;
0 for all other cases }.

Transition probability matrix

- - * Q- transition matrix from the
Q R nonrecurring states to the nonrecurring

— ones;
_O I | *R-—transition matrix from the nonrecurring
states to the absorbing ones;
* | — identity matrix;
* O — zero matrix.
(D A O 0\
B C A .- O
OB C " Matrix Q in the case of two deques
Y | has block form, where A, B, C, D, F —
\O O ... B F) submatrixes.

For the case of n deques, the matrix of transition
probabilities from the nonrecurring states to the
nonrecurring ones is given algorithmically. The function
double Qij(int i, int j) receives state numbers, from which
and where the transition occurs, calculates the deque
length increments and transition probability.

For decision of the problem, we shall find and sum the
elements of the fundamental matrix N = (I-0)! in the
row corresponding to the initial state (0,0,...,0) for all
possible values } s;=m, s>0, 1=1,...,n.

The number of options for partitioning m units of
memory into n deques is C,Z;ll :

Since we need to sum elements in a certain row of the
matrix N (in our case this is the first row), then we can
use the representation of the fundamental matrix as a
series, calculating only the elements of the required row

N=(1-0)" =1+Q+Q2+Q3+---:iQk
k=0

In the mathematical model we consider the value K > 3,
since for values K = 1,2 in increments A. of the i-th
deque it is impossible to determine stealing.

Definition of the optimization problem

Since a Markov chain is constructed for each set
of values si, i = 1, ..., n and K> 0, we can say that we
solve the problem of finding the optimal Markov chain
for a given optimality criterion or, in other words, we
solve the problem of integer nonlinear programming,
where the optimality criterion function is algorithmic.

Also, a simulation model of parallel work with
Work-stealing deques was built. With the help of a
random number generator, at each step we generated a
sequence of operations with deques until overflowing of
one of deques. The experiment was repeated a selected
number of times. For the simulation model the value K >
0.

Results of numerical experiments

m=20 n=2
N Pi q; I; S Kopt Time
deque
1 0.3 0.6 0.1 7
2 0.6 0.3 0.1 13 3 92.4
mSi

15
10
O _

0,5

pi/qi

31 /43

Results of numerical experiments

m=100 n=2
N Pi q; I; S Kopt Time
deque
1 0.3 0.6 0.1 20
2 0.6 0.3 0.1 80 12 1709.7
mSi
100
80
60
40

0,5

2

pi/qi

32 /43

Results of numerical experiments

m=100 n=3
N Pi q; I; S; Kopt Time
deque
1 0.1 0.5 0.4 15
2 0.3 0.3 04 55 12 1055.01
3 0.5 0.1 0.4 60
WS
80
60
40
o N
0,2 1 5

pi/qi

33 /43

Implementing of the scheduler

Statistical studies were conducted to assess the probabilities
of operations with deques for several types of tasks
performed in the scheduler (multiplication of matrices and
knapsack problem). For this purpose, within the framework of
our RFBR grant experimental work-stealing task scheduler
was implemented in C ++ 11, using the implementation of
deques based on cyclic arrays with non-blocking
synchronizations of operations with the possibility of dynamic
resizing. Source codes and implementation on the site
https://github.com/rkuchumov/staccato. In comparison with
the task scheduler from Intel TBB, which uses the same
algorithm of planning and implementation of deques, our
implementation showed acceptable results on some tests.

To compare the work of the schedulers,
the following tests were used:

 fib - calculation of the 35th Fibonacci number by the
recurrent formula;

* knapsack - solution of the knapsack problem by branch-
and-bound method for 26 elements;

« matmul - multiplication of 256*256 size matrixes;

* mergesort - sorting of 64 MB integers by the method
of merging;

» dfs — the task graph traversal, in which tasks create 300
subtasks and complete when the depth is 3.

Work time, sec.

Implementing of the scheduler

ARMv7 x86
1
37 4
.Intel BB Our implementation 2.73
241
10- L 7 295 2ba
— 7.72 198 21 1
5.
1.
2i @7
0- 0-
fib dfs knapsack matmul mergesort fib dfs knapsack matmul mergesort

Comparisons was carried out on:
e Intel Pentium N3530 2.16GHz, 4 CPU, 64L1, Linux 4.4.0

« ARMvT7lrev 5,4 CPU, 32 L1, Linux 4.4.8
with the same compilation parameters.

36 /43

In practice, including in the implementation of the balancer
described in the report, classical methods of working with a
heap in C / C ++ translators are often used to work with
deques in the form of cyclic arrays. For each deque, an
array is requested from the heap. When it becomes large
enough, a new array is requested, for example, twice as
large - the elements of the deque are copied there, and the
old array is given to the list of free heap blocks. If on the
contrary, when the deque has become sufficiently small,
then the same actions are performed with an array smaller
than the old one twice. Perhaps a modified variant of the
Garwick algorithm will be useful here, where when a
overflows, a local redistribution of a part of the deques
located next to the overflowing deque is made.

In the model presented in the report, we consider a random walk
starting from the origin of coordinates(at the beginning of the
work, the deques are empty). We also started work on the
development of models in which the problem was solved not of
the initial division of memory, but of an optimal redistribution of
memory after overflow. There, the initial point of the walk is one
in which we are overwhelmed, or the point obtained from it due
to the optimal interception. This model can be used if we consider
time intervals with different probabilities of operations with
deques. To be used in practice, such a model should be applied
several times with different transition matrices, if statistical
studies have revealed intervals of time at which the probabilities
of operations with deques remain practically unchanged (since
we are considering a homogeneous Markov chain when the
probabilities do not depend from time).

References

 Blumofe R.D., Leiserson C.E. Scheduling multithreaded computations by
work stealing // Journal of the ACM, 1999. N.46, P.720-748.

* Herlihy M., Shavit N. The Art of Multiprocessor Programming. Elsevier,
2008.

 Knuth D. The Art of Computer Programming. V.1. Addison-Wesley, 2001.

 Hendler D., Shavit N. Non-blocking Steal-half Work Queues // ACM
Symposium on Principles of Distributed Computing, 2002. P.280-289.

 Sokolov AV., Barkovsky E.A. The Mathematical Model and The Problem
of Optimal Partitioning of Shared Memory for Work-Stealing Deques //
PaCT, LNCS, 2015.V. 9251, P.102-106.

 Eugene Barkovksy, Ruslan Kuchumov, Andrew Sokolov. “Optimal control
of two deques in shared memory with various work-stealing strategies”,
Program systems: Theory and applications, 2017,8:1(32), pp. 83-103. (In
Russian). URL:http://psta.psiras.ru/read/ psta2017_1 83-103.pdf

Thank you for attention!

The research was supported by RFBR Ne 15-01-03404-a

