Tizen .NET Memory Profiler

DEXT-Compiler La
01/12/2017

Memory Leaking Code

void OnStart()

{
timerl = new System.Threading.Timer((arg) => {
String str = prefixTime + System.DateTime.Now.ToString();
. . < There is subtle memory leak in this
callListener += (bool isResume) => code. Managed memory profiler
{ helps us to find leak here.
label.Text = (isResume ? prefixResume : prefixSleep) + str;
}s
}, null, o, 1);
}

Samsung R&D Institute Russia Page 2

Why another profiler?

= Native profilers

- Where is unmanaged memory allocated?
= Managed profilers

- What's managed memory used for and where is it allocated?
= All profilers:

- How much memory is used by the application?

Questions:
= What about applications with mixed managed and unmanaged code?

= How much physical memory is used by the application?

Samsung R&D Institute Russia Page 3

Mixed code

= In mixed applications, native memory lifetime can be determined by managed code.

Managed object

= What happens when a managed object is collected, but doesn’t free native memory?
- Managed memory profilers show no leaks

- Native profilers detect a memory leak, but don’t provide enough information to eliminate it

Samsung R&D Institute Russia

>

Native memory

Page 4

Virtual / physical memory

_ _ Page 0 Page 0 Page 0
= Memory allocated using standard library and

system calls is not application’s physical Page 1 \ Page 1 Page 1
memory usage. Page 2 Page 2 Page 2

= Physical memory is allocated when the \
memory is written to (copy-on-write) Page 3 Page 3 Page 3
= Memory can be shared with other processes Page 4 Page 4 Page 4
Page N Page N Page N

Process 1 Physical Process 2
memory

Samsung R&D Institute Russia Page 5

Memory Profilers

= There are a number of memory profiler tools already available

mmap/munmap
Technology malloc managed (.NET)
virtual physical
dotMemory .NET Profiling API - + - -
Valgrind (Massif) Binary translation (slow) + - + -
I Tizen .NET Memory Profiler + + + + I
KDE HeapTrack + - - -
LeakSanitizer)
MemProf * i i i

= Tizen .NET Memory Profiler can track managed memory and physical memory consumption

= Tracking managed memory and physical memory consumption is crucial for figuring out and investigating

memory leaks in .NET applications

Samsung R&D Institute Russia

Page 6

http://ppt/slides/slide5.xml
http://ppt/slides/slide5.xml
http://ppt/slides/slide5.xml
http://ppt/slides/slide5.xml
http://ppt/slides/slide5.xml
http://ppt/slides/slide5.xml

Implementation

Based on open-source KDE Heaptrack, extended to:

= Track managed objects

= Combine managed and native call stacks
= Make snapshots of a managed heap

= Show physical memory consumption

Samsung R&D Institute Russia

el

:%""rrlﬂﬂﬁmmHHH HHH’HW

Page 7

Implementation

KDE Heaptrack architecture:

= A profiler library (tracker) is preloaded into
an application, or injected during runtime

= Calls to malloc/calloc/realloc/free are
intercepted by the library and sent to a
trace encoder

= A compact trace is written to a hard drive by
the trace encoder

= Trace analyzer is used by an expert to
examine the trace

Samsung R&D Institute Russia

Profiled application

Tracker

malloc, calloc,
realloc, free

v

Trace Encoder

Hard
Dnve

Trace Analyzer

Page 8

Implementation

Tizen .NET Memory Profiler architecture:

Managed profiler receives callbacks upon
object allocation, GC start/stop, function
enter/leave, object movement by GC, and
forwards them to the tracker

Tracker combines native and managed call
stacks, providing complete call site data for
both managed and native allocations,
tracks managed object allocations,
movements and deallocations in the heap
Extended encoder writes managed
allocations, call stacks and heap snapshots
to the trace

Samsung R&D Institute Russia

Profiled application

Managed prof.

ObjectAllocated,
GCStarted, —>
GCFinished,
FunctionEnter,
FunctionLeave

* Tracker

malloc, calloc,
realloc, free, mmap,
mmap64, munmap

v

* Trace Encoder

O

(Harcl+
Drive
v

* Trace Analyzer

Page 9

Implementation

= calls to mmap, mmap64, munmap are
intercepted by the tracker and their call
sites are recorded

= tracker periodically reads /proc/self/smaps.

Whenever a new physically mapped
(private dirty) region is found, a
corresponding call site is located and the
data is written to the trace

Samsung R&D Institute Russia

Profiled application

>

mmap

witack

Tracker

/hys'ical memory

e

/proc/self/smaps

Page 10

Memory Leaking Code (example 1)

void OnStart()

{
timerl = new System.Threading.Timer((arg) => {
String str = prefixTime + System.DateTime.Now.ToString();
. . < There is unnoticeable memory leak
callListener += (bool isResume) => issue in this code. Managed memory
{ profiler helps us to find leak here.
label.Text = (isResume ? prefixResume : prefixSleep) + str;
}s
}, null, o, 1);
}

Samsung R&D Institute Russia Page 11

Managed memory consumption chart

Here we catch several functions, for which memory Dbee%';”uesseagf
consumption continuously increases over time. This is an garbage
usual indicator of a memory leak. collections

""" e
‘ mllmllllu-,

\F' \
I [HI,H“Im'-lu

Total memory
consumption
increases over :

time . i f 13':‘: mlmnmm |

I ”I uﬂl\ll.._ _.

Putting mouse
over graph
shows name
of consuming
function

_j;!ﬂllti\“

Memory
consumption of
the function
increases over

time

0s

Samsung R&D Institute Russia Page 12

Memory Leaking Code (example 2)

class Graph : System.IDisposable

{
private int w, h;
[System.Runtime.InteropServices.Dl1Import("native-graphics.so", EntryPoint = "Draw")]
static extern void Draw(int width, int height);
[System.Runtime. InteropServices.Dl1Import("native-graphics. "FreeMemory™)]
static extern void FreeMemory();
public Graph(int width, int height) { w = width; h = height; } The unmanaged memory is allocated by
public void DrawPicture() { Draw(w, h); } ———— the mallocfrér:nugrrr;?;gﬁﬂ:ode called
public void Dispose() { FreeMemory(}; }
b
void OnDraw() It should be freed here by calling Dispose
{ method
Graph graph = new Graph(this.width, this.height);
graph.DrawPicture(); Because the Dispose method is not called, unmanaged
memory is never freed in this case
// eraph.Dispose is not called; and "using construction is not used also
b

Samsung R&D Institute Russia Page 13

Managed memory consumption

eeeeeeeeeeeeeeeeeeeeeeeeeeee
ooooooooooo

| |

i i

‘ ' Declines are because of garbage

i ' collections, as in the first example.
aaaaaaaaaaaa ' However, here managed part is

eeeeeeeeeeeeee

H | '!‘ 'WW WMWWW um WW i mn m Wmmu

\
\

Samsung R&D Institute Russia

Unmanaged memory consumption

3.8 MB
The total unmanaged +29MB
memory consumption
increases
. . 2]
This part increases. E
5
. . -1.9MB O
Putting mouse over this part shows us 2
that it is the Graph.DrawPicture 3
function
-+ 976.6 KB
f I ! -0B
0s 10s 20s 30s 40s 50s 60s

Elapsed Time

Samsung R&D Institute Russia Page 15

Call stacks for memory allocations

= This chart shows us where exactly the leaking allocation came from

Here is the call stack for Graph::DrawPicture function.

Unmanaged memory that is allocated through this

e .. We see that DrawPicture is called from
malloc’ is never freed. It leaks.

App::OnDraw handler.

[
The DrawPicture then invokes unmanaged code that I .| -
allocates unmanaged memory through "malloc’ | I ﬂ|_ | _T | r
0 A
CEEStartuph. |
EEStartup(tay | || |

| dnt Volatilel ||
]|| !-'nlatlle-:int=| ﬂ |]_[
| Volatile<int: | | |
| EnsurefEStar. |

|| cortostaizste [
| coreclr_initialize
—I ExecuteanagedAssen.. |
corerun(int, char cor

—

3.4 MB contribution to peak consumption

2.9 ME (83.5%) contribution to peak consumption in malloc and below.

Samsung R&D Institute Russia Page 16

Summary

- The Tizen .NET Memory Profiler is prototype memory profiling solution that is
capable of providing the baseline necessary information for detecting and
Investigating memory leaks in .NET applications

- Key features:
* Track managed and unmanaged memory
* Track physical memory consumption

- The solution is based on KDE HeapTrack, which is fast and stable project with more
than four-years history

Samsung R&D Institute Russia Page 17

Short-term plans

- Add more descriptive information about location in managed code

 Display file names and line numbers where possible
 Display function argument lists

- Improve profiling performance

« Current performance slowdown is ~20-100x compared to running without
profiler.

Samsung R&D Institute Russia Page 18

THANK YOU!
Z AL CH
CINACUBO!

Samsung R&D .Institutek Russia

Heap snapshot

Instances

v 3378 116.4 KB
> 2867 44.8 KB
> 1 16.0 KB
v 1 24 B
* 1 16 B
¥ 1 16 B
1 0B
1 0B
1 0B
v 1 16 B
1 0B
1 0B
b 3 5.5 KB
* 186 2.2 KB
> 186 2.9 KB
v 1 16.0 KB
1 24 B
P 1 16 B
1 0B

Samsung R&D Institute Russia

3.1 MB
2.6 MB
2.6 MB
2.6 MB
910.1 KB
260.0 KB
260.0 KB
650.0 KB
1.7 MB
96 B

96 B

136 B
13.6 KB
452.9 KB
452.9 KB
452.9 KB
452.9 KB
154.7 KB
298.3 KB

Shallow Size ~ Referenced Si; Class Name

[System.string]
[XamarinApplication.ClockView]
[XamarinApplication.ClockView[]]
[system.Collections.Generic.List 1]
[XamarinApplication.ClockModel]
[XamarinApplication.App]
<gcroot>

<gcroot=

<gcrook=
[XamarinApplication.App]
<gcroot=

<gcroot>

[system.Object[]]
[XamarinApplication.Label]
[XamarinApplication.ClockView]
[XamarinApplication.ClockView[]]
[system.Collections.Generic.List 1]
[XamarinApplication.ClockModel]
<gcroot>

Page 20

Managed memory by type

Heaptrack - res.gz — Heaptrack GUI X

File
Summary | Bottom-Up Caller f Callee | Top-Down = Managed Heap = Flame Graph = Consumed @ Instances | Allocations = Allocated
filter by function... filter by file.. filter by module...
Peak ~ Peak instances Leaked Allocations Allocated Location
85.8 KB 427 85.8 KB 687 160.7 KB [System.String] in 77 ()
b 341 KB 11 34.1 KB 21 70.9 KB [System.Char{]] in ?7 ()
b 33.6 KB 10 33.6 kKB 11 33.6 KB [Systern.Object[]] in 72 ()
b 15.0 KB 66 15.0 KB 66 15.0 KB [System.Reflection.CustomAttributeRecord[1] in 77 ()
b 9.5 KB 162 9.5 KB 162 9.5 KB [System.Reflection.AssemblyMame] in 77 ()
b 81KB 149 8.1 KB 149 8.1 KB [System.Globalization.Culturelnfel in 77 ()
b 7.2 KB 308 7.2 KB 308 7.2 KB [System.Version] in 77 ()
» 6.9 KB 312 6.9 KB 313 6.9 KB [Systermn.Byte[1] in 27 ()
b 6.0 KB 153 6.0 KB 153 6.0 KB [Xamarin.Forms.Color] in 77 ()
» 5.8 KB 67 5.8 KB 69 5.8 KB [System.Int32[1] in 77 ()
b 4.0 KB 203 4.0KB 203 4.0KB [System.RuntimeTypel in 77 ()
» 3.6 KB 62 3.6 KB 62 3.6 KB [Xamarin.Forms.BindableProperty] in 77 ()
b 2.4 KB 5 2.4 KB 5 2.4 KB [System.Collections.Generic.Dictionary” 2.Entry[11~3 in ?7 {)
b 2.0KB 46 2.0 KB 46 2.0KB [System.RuntimeMethodinfoStubl in ?7 ()
P12 KB 22 1.2 KB 22 1.2 KB [¥amarin.Forms.Platform.Tizen.ExportRendereraAttribute[]] in 77 ()
b 11KB 22 1.1 KB 22 1.1KB [¥amarin.Forms.DependencyAttribute[1] in 77 ()
»1.1KB 22 1.1 KB 22 1.1KB [¥amarin.Forms.Platform.Tizen.ExportCellAttribute[1] in 77 ()
b 1.1KB 22 1.1 KB 22 1.1KB [¥amarin.Forms.Platform.Tizen.ExportHandlerattribute[1] in 77 ()
b 1.1KB 22 1.1 KB 22 1.1KB [Xamarin.Forms.Platform.Tizen.ExportimageSourceHandlerAttribute[1] in 77 ()
b 1.1KB 10 1.1 KB 10 11KB [System.Runtime.CompilerServices.ConditionalWeakTable™ 2. Entry[1] in 27 ()
b 1L1KB 22 1.1 KB 22 1L1KB [Xamarin.Forms.ExportEffectattribute[]]in 27 ()
» 1L.OKB 33 1.0 KB 33 1.0 KB [¥amarin.Forms.BindableProperty.BindingPropertyChangedDelegate] in 77 ()
b 704 B 10 704 B 10 704 B [System.Reflection.AssemblyMame[]] in ?7 ()
b 692 B 27 692 B 33 TEEBB [System.Typelll in 77 ()
b 648 B 7 648 B 7 648 B [System.Collections.Generic.HashSet' 1.5lot[]] in 77 ()
» 576 B 20 5768 25 836 B [System.String[1] in 77 ()
» 5768 12 576 B 12 576 B [Xamarin.Forms.Style] in 77 ()
» 552 B 46 552 B 46 552 B [System.IntPtr] in 27 ()
» 480 B 15 480 B 15 480 B [System.EventHandler] in 77 ()
b 480 B 30 480 B 30 480B [¥Xamarin.Forms.Platform.Tizen.ExportRendererAttribute] in 77 ()
» 468 B 3 468 B 3 468 B [System.Collections.Generic.Dictionary " 2.Entry[11~4 in ?7 {)
» 468 B 3 468 B 3 468 B [System.Collections.Generic.Dictionary” 2.Entry[11~8 in 77 {)
b 428B 5 428 B 7 548 B [System.Collections.Generic.Dictionary” 2.Entry[1] in 77 ()
b 364 B 9 364 B 9 364 B [EImSharp.SmartEvent:l.NativeCaIIback[]] in?? ()

Samsung R&D Institute Russia

Stacks

Selected Stack: 1/63

Backtrace

[Systemn.Stringl in 77 ()
Calculator.Calculator.OnOrientationCh...
Calculator.Tizen.Program.QnCreate in ...
Tizen.Applications.CoreBackend.UlCor...
Tizen.Applications.CoreBackend.UICor...
Tizen.Applications.CoreApplication.Run...
Tizen.Applications.CoreUlApplication.R...
Calculator.Tizen.Program.Main in 77 ()

Page 21

Managed flame

graph

[System.Char[]]

System.Text.S5tringBuild

System.Text.StringBuild [System.String]
System.Text.StringBuild System.Text.StringBu:
System.I0.StreamReader.ReadToEnd ”

Xamarin.Forms.Xaml.XamlLoader.ReadResourceAsXaml |'

Xamarin.Forms.Xaml.XamlLoader.GetXamlForType

Xamarin.Forms.Xaml.XamlLoader.Load [System.O0..

Calculator.Views.CalculatorMainPage.InitializeComponent
Calculator.Views.CalculatorMainPage. .ctor
Calculator.Calculator.OnOrientationChanged Kaw
Calculator.Tizen.Program.OnCreate
Tizen.Applications.CoreBackend.UICoreBackend.OnCreateNative
Tizen.Applications.CoreBackend.UICoreBackend.Run
Tizen.Applications.CoreApplication.Run
Tizen.Applications.CoreUIApplication.Run
Calculater.Tizen.Program.Main
256.7 KB contribution to peak consumption

Samsung R&D Institute Russia

| [Syste. |
System.R..
System.Reflection..
System.Reflectiun.c|
| || System.Reflection.R

System.Attribute.Ge

|XEmarin.Form5.Platform.Tizen.1 Xamarin.Forms.Internals.Rec

|Xamarin.Form5.Platfurm.Tizen.Furms.SetupInit

[System.String]
System.Text.StringBuilder.
|System.AppDumain.NormaliL-
System.AppDomain.Setup

[Syste..

Page 22

293.0 KB

195.3 KB

-0B

II
J||||||||||||||||||||\\II\HIII\IIIIHIIH\IIIHIII\\IHHIIH“"'

Consumed managed memory

10s

Samsung R&D Institute Russia

Js

30s
Elapsed Time

60s

50s

40s

20s

Page 23

