
A Formal Model of XML Schema

Leonid Novak
Institute for System Programming

Russian Academy of Sciences
25, B. Kommunisticheskaia str.

Moscow 109104, Russia
novak@ispras.ru

Alexandre Zamulin ∗

A.P. Ershov Institute of Informatics Systems
Siberian Branch of Russian Academy of Sciences

Novosibirsk 630090, Russia
zam@iis.nsk.su

Abstract

The semantics of the core features of XML Schema
in terms of XQuery 1.0 and XPath 2.0 data model alge-
braically defined is given. The database state is represented
as a many sorted algebra whose sorts are sets of data type
values and different kinds of nodes and whose operations
are data type operations and node accessors. The values
of some node accessors, such as ”parent”, ”children” and
”attributes”, define a document tree with a definite order of
nodes. The values of other node accessors help to make dif-
ference between kinds of nodes, learn the names, types and
values associated with the corresponding document entities,
etc., i.e., provide primitive facilities for a query language.
As a result, a document can be easily mapped to its imple-
mentation in terms of nodes and accessors defined on them.

1 Introduction

In this paper, we present a formalization of some core
ideas of XML Schema [2, 20] by means of algebraic tech-
niques. The benefits of a formal description are well known:
it is both concise and precise [3]. This is not the first attempt
to formalize an XML language. A detailed review of re-
lated work is given in Section 10. It is sufficient to mention
at the moment that in all previous work an XML document
rather than an XML database is practically formalized. For
this reason, one cannot easily map a document to its imple-
mentation in terms of nodes and accessors defined on them.
Moreover, any operation of an XML algebra should be de-
fined as a function on the underlining sets. Therefore an
algebraic model of the XML database is needed for defini-
tion of such operations.

∗The work of this author is supported in part by Russian Foundation for
Basic Research under Grant 04-01-00272.

A data model [21] is designed to support the query lan-
guage XQuery [9]. Since XML Schema is designed for
defining databases that may be searched by XQuery, it is
natural to use this model as semantics of XML Schema. For
this purpose, we need to define formally the model and map
syntactic constructs of XML Schema to the components of
the model. As a result, we can get an abstract implemen-
tation of XML Schema, which may be helpful both in the
concise description of XML Schema and the understanding
of its implementation.

To save space, we define only the semantics of a rep-
resentative part of XML Schema, simplifying many of its
constructions. We consider only the most important doc-
ument components: elements and attributes, other compo-
nents such as comments, namespaces, and processing in-
structions can be easily added to the presented model with-
out its redefinition.

It is assumed that the reader is familiar with XML and
some document type definition language like DTD. The fa-
miliarity with XML Schema is desirable, but not mandatory.

The rest of the paper is organized as follows. The ab-
stract syntax of element declarations and type definitions in
XML Schema is presented in Section 2, and the abstract
syntax of the document schema is given in Section 3. Basic
types of XML Schema are listed in Section 4. Base classes
of the data model are described in Section 5. The database
itself is defined in Section 6. The document order is defined
in Section 7. It is shown in Section 8 that an XML docu-
ment can be converted into a database tree and vice versa.
Some aspects of practical implementation of the data model
are outlined in Section 9. A review of related work is pre-
sented in section 10, and concluding remarks are given in
Section 11.

2 Element declarations and type definitions

In this section we present an abstract syntax of element
declarations and type definitions in XML Schema. The

syntax is given in terms of syntactic types representing
syntactic domains, and the following type constructors:

Seq(T) — type of ordered sets of values of type T

(empty set included).
FM(T1, T2) — type of ordered sets (empty set included)

of pairs of values of types T1 and T2 defining final map-
pings from T1 to T2.
Union(T1, ..., Tn) — type of the disjoint union of values

of types T1, ..., Tn.
Enumeration — enumeration type constructor.
Pair(T1, T2) — type of pairs of values of the indicated

types.
Interleave(T1, T2) — type of two-item sets of values of

types T1 and T2 (if a and b are values of respective types T1

and T2, then both a&b and b&a are instances of this type).
Tuple(T1, ..., Tn) — type of tuples of values of the

indicated types.

The presentation is supplied with examples written in the
XML Schema language. We hope that the reader will
easily find the correspondence between abstract syntax
constructions and their XML representations.

There is a predefined syntactic type, Name, whose
elements are used for denoting different document enti-
ties. Depending on the context where this type is used,
we denote it either by ElemName or AttrName or
SimpleTypeName or ComplexTypeName.

ElementDeclaration =
Tuple(ElemName, Type, RepetitionFactor,

NillIndicator);
RepetitionFactor = Pair(Minimum, Maximum);
Minimum = NatNumber;
Maximum = Union(NatNumber, {“unbounded”});
NillIndicator = Boolean;

The RepetitionFactor indicates here how many element
information items with this ElemName a document may
have. The NillIndicator indicates whether the element
may have the nil value. NatNumber and Boolean

respectively denote conventional natural numbers and
boolean values.

����������	
�	�����		�
�
��	�

����
���������
��	���	��������
������

����������	
�	����������
���������
����

������	���������������������	���	������

����������	
�	�������

������������� ����

�������!!!

�������������� ����

�����������	
�

Example 1.

Three element declarations are given in Example 1.
The RepetitionFactor is indicated there by the pair
(minOccurs, maxOccurs). In the first and third element
declarations the default value (1, 1) is used, in the second
declaration the value is set explicitly. An anonymous com-
plex type is used in the third declaration. NillIndicator is
set to false by default in the second and third declarations.
Thus only the first element may have the nil value.

GroupDefinition =
Tuple(Seq(LocalGroupDefinition),

CombinationFactor, RepetitionFactor);
LocalGroupDefinition = ElementDeclaration;1

CombinationFactor =
Enumeration(“sequence”, “choice”);

A group definition consists of a sequence of element dec-
larations. The CombinationFactor indicates whether the
group defines a sequence or choice. The element names in
a sequence of local group definitions must be different. A
group definition has the empty content if the sequence of lo-
cal group definitions is empty. The CombinationFactor

and RepetitionFactor do not make sense in this case.
A group as a sequence of elements is defined in Example

2 and as a choice of elements in Example 3.

����������	
��

����������	��	����������

����������	��	����������

�����������	
��

Example 2.

��������	�
��	���������������������������
���

������
�
�
����
���
�������
��������	�
����
���

������
�
�
����
���
�����
��������	�
����
���

���������	�
�

Example 3.

Type =
Union(TypeName, AnonymousTypeDefinition);

A type may be defined inline in an element declaration
(third declaration in Example 1) or supplied with a name in
a type definition (Example 7), which binds the type name
to a type definition. Some type names are predefined, they
denote primitive simple types.

TypeName =
Union(SimpleTypeName, ComplexTypeName)

A simple type in an element declaration means the defi-
nition of zero or more tree leaves. A complex type in an

1In fact, a local group definition may also include another group defi-
nition, see [16] for its formal treatment.

element declaration means, as a rule, the definition of zero
or more intermediate nodes of a tree. We consider in the
sequel that all simple types are predefined and have a name.

AttributeDeclarations =
FM(AttrName, SimpleTypeName);

AttributeDeclarations introduce a number of attributes
with different names. The type of an attribute is always a
simple type. For simplicity, we do not indicate properties
(REQUIRED, PROHIBITED, OPTIONAL) and default
values.
Two attribute declarations are presented in Example 4.

���������	
���������������������������
���������

���������	
������������	������������������	�����

Example 4.

AnonymousTypeDefinition =
Union(SimpleContentDefinition,

ComplexContentDefinition);
SimpleContentDefinition =

Pair(SimpleTypeName, AttributeDeclarations);
ComplexContentDefinition =

Pair(MixedIndicator, ComplexTypeContent),
ComplexTypeContent =

Union(LocalElementDeclarations,

AttributeDeclarations,

Pair(LocalElementDeclarations,

AttributeDeclarations));
MixedIndicator = Boolean;
LocalElementDeclarations = GroupDefinition; 2

A complex type may have either a simple content or
a complex content. In the first case, a simple type is
extended by attribute definitions. In the second case, the
definition of a complex type typically consists of (local)
element declarations or attribute declarations or both. If the
MixedIndicator in the ComplexContentDefinition

is set to true, then a document may contain text nodes in
between the element nodes of the corresponding group.

��������	
���	��

���������	
���������

���������������������������������
��

����������������������������������	����������������

������������������

����������	
���������

���������	
���	��

Example 5.

The definition of a complex type with a simple content is
presented in Figure 5. An element of this type may have a

2In fact, a local element declaration may also be a so called all option
definition, see [16] for its formal treatment.

decimal value and an attribute.

��������	
���	�����������������

���������������

��������
���������������������������������

��������������������������������

�����������	
���	��

������������������

�����������
���������������
�����	����������������

�����������
������������ ��!�����	����������������

�����������
������������"������	����������������

�����������
������������#$�%���	����������������

�����������
������������&�'
��!���

�������������������	����������������

�������������������

������������	
���	��

���������
������

����������������

�����������'����������#�$�������	�������'��
������

�����������'����������(�)��*�����	����������������

���������	
���	��

Example 6.

The definition of a complex type with complex content is
presented in Figure 6. The mixed indicator of the outer type
indicates that ”Book” elements can be interleaved by texts.

3 Document schema

In this model we permit only one element information
item as a child of the document information item. This
model is more restrictive than the one specified in [21]
(where several element information items may be children
of the document information item), but it strictly follows the
model specified in [20] (see also Section 2.2.2 in [7]).

DocumentSchema =
Interleave(ComplexTypeDefinitionSet,

GlobElementDeclaration);
ComplexTypeDefinitionSet =

FM(ComplexTypeName,

AnonymousTypeDefinition);
GlobElementDeclaration =

Tuple(ElemName, Type, NillIndicator);

Thus, a document schema defines a set of documents each
having a root element with the same name. The schema may
contain a number of complex type definitions preceding
or following the GlobElementDeclaration and introduc-
ing type names used within the GlobElementDeclaration

and ComplexTypeDefinitionSet3. For any type T used

3In fact, the document schema may also contain a number of other
element declarations and attribute declarations. However, attributes are
always part of complex types and may be declared inline. Multiple global
element declarations may also be considered as a kind of syntactic sugar
permitting one either to combine several document schemas in one schema
or save space by referencing an element declaration from within several
complex types.

in a document schema with a complex type definition set
ctd, the following requirement on type usage must be sat-
isfied: T ∈ dom(ctd)4 or T ∈ SimpleTypeName or
T ∈ AnonymousTypeDefinition.

���������	

���	��������������������������������������	
�

���
����
	���
���������������!��"������

���	���������������!��"������

�����	��#��	$�%
&����'&
�(%(���)

���������	����*+���
	���,��"-&!�(�
�(��)

����������'&���)

������������	���
	���*(����

������������������+�����������(���)

������������	���
	���.&�����

������������������+�����������(���)

������������	���
	���$
���

������������������+�����������(���)

������������	���
	���/�, �

������������������+�����������(���)

������������	���
	���-&!�(�����

������������������+�����������(���)

�����������'&���)

����������	����*+��)

����������	���
	���,��"������)

����������	����*+��)

�����������'&���)

�������������	���
	���,��"�

�������������������+����,��"-&!�(�
�(��

������������������	
�0��&����&!�&�����)

������������'&���)

�����������	����*+��)

�����������	��)

�����������	
)

Example 7.

One named and one anonymous data type are defined in Ex-
ample 7.

4 Basic types

We consider that the data model contains all primitive
types listed in [2]. An atomic type is a primitive type or a
type derived by restriction from another atomic type [2]. A
simple type is an atomic type or list type or union type or a
type derived by restriction from another simple type.

Simple types create a type hierarchy resembling that
of object-oriented languages. The type xs:anyType is
at the top of the hierarchy (i.e., it is the base type of
all types). The type xs:anySimpleType is a sub-
type of xs:anyType and is the base type of all sim-
ple types. The type xdt:anyAtomicType is a subtype
of xs:anySimpleType and is the base type for all the
primitive atomic types, and xdt:untypedAtomic is its
subtype.

4Here and in the sequel, dom(f) denotes the domain of a finite map-
ping f .

In this paper, we additionally use the type constructor
Seq(T) defining the set of all sequences (ordered sets) of
elements of type T . Any sequence type possesses the fol-
lowing operations among others: the operation |s| returns
the length of the sequence s, the operation s1 + s2 attaches
the sequence s2 to the sequence s1, and the operation s[i]
returns the i-th element of the sequence s.

5 Base classes

The data model defined in [21] has a flavor of an object-
oriented model in the sense that its main building entities
are unique nodes possessing the state that can be viewed by
a number of accessor functions. There are several disjoint
classes of nodes (elements, attributes, etc.) representing dif-
ferent document information items. All of these classes may
be considered as subclasses of the base class Node. There-
fore, the following class hierarchy may be designed:

Node: base class with the following accessors:
base-uri: Seq(anyURI) (empty or one-element sequence),
node-kind: string,
node-name: Seq(QName)

(empty or one-element sequence),
parent: Seq(Node) (empty or one-element sequence),
string-value: string,
typed-value: Seq(anyAtomicType)

(sequence of zero or more atomic values),
type: Seq(QName) (empty or one-element sequence),
children: Seq(Node) (sequence of zero or more nodes),
attributes: Seq(Node) (sequence of zero or more nodes),
nilled: Seq(boolean) (empty or one-element sequence).

Document: a subclass of the class Node with three extra
accessors not considered in this paper.

Element: a subclass of the class Node without extra ac-
cessors.

Attribute: a subclass of the class Node without extra ac-
cessors.

Text: a subclass of the class Node without extra accessors.

Instances of these classes serve for representing document
information items, element information items, attributes
and texts, respectively.

6 Database

6.1 State algebra

Because of frequent insertion of new documents, updat-
ing existing documents and deleting obsolete documents,
a database evolves through different database states. Each
state can be formally represented as a many-sorted algebra

called a state algebra in the sequel5. Each class C is sup-
plied in a state algebra A with a set of object identifiers AC
in such a way that the sets of identifiers ADocument, AElement,
AAttribute, AText, etc. are disjoint and the set ANode is the
union of the above sets. In the sequel, the node identifier
is meant each time a node is mentioned (in the same way
as an object identifier, or reference, represents an object in
object-oriented languages and databases).

Each simple data type T is supplied in any state algebra
A with a set of values AT and a set of meaningful operations.
The following accessor values are set in A:

• for each nd ∈ ADocument: node-kind(nd) =
“document”, node-name(nd), parent(nd),
type(nd), attributes(nd), and nilled(nd)
are set to empty sequences;

• for each nd ∈ AElement: node-kind(nd) = “element”;

• for each nd ∈ AAttribute: node-kind(nd) =
“attribute”, children(nd), attributes(nd),
and nilled(nd) are set to empty sequences;

• for each nd ∈ AText: node-kind(nd) = “text”, node-
name(nd), children(nd), attributes(nd), and
nilled(nd) are set to empty sequences.

A state algebra A sets values of the other accessors. The
following variables are used in the definition of the state al-
gebra:

el, el1, el2, ... — element name,
at, at1, at2, ... — attribute name,
eld — element declaration,
elds — sequence of element declarations,
leds — local element declarations,
ctd — set of complex type definitions,
atds — attribute declarations,
gd, gd1, gd2, etc. — group definition,
gds — sequence of group definitions,
T, T1, T2, ... — data type,
cf — combination factor,
rf — repetition factor,
min1, min2, ... — minimum number of occurrences of

an element or group,
max1, max2, ... — maximum number of occurrences of

an element or group,
mid — mixed content indicator,
nid — nil indicator.

The state algebra extensively uses trees of nodes and se-
quences of trees of nodes. A parent node in such a tree is
either a document node or an element node. The children of
a particular parent node are those nodes that are indicated by

5Algebra components are written in this paper in true type while the
names defined in the document schema are written in italics.

the accessors children and/or attributes. We can formally
define such a tree as follows.

• a node nd is a tree with the root nd;

• if s is a tree with root nd and s1, ..., sn are trees with
roots nd1, ..., ndn such that children(nd) = (nd1, ...,
ndn), parent(nd1) = nd, ..., parent(ndn) = nd, then
〈s, (s1, ..., sn)〉 is a tree with the root nd;

• if s is a tree with root nd and nd1, ..., ndn
are nodes such that attributes(nd) = (nd1, ...,
ndn), parent(nd1) = nd, ..., parent(ndn) = nd, then
〈s, (nd1, ..., ndn)〉 is a tree with the root nd;

The set of these trees constitute the set of values of the data
type Tree. The function

root : Tree → Node

applied to a tree yields its root node, and the function
roots : Seq(Tree) → Seq(Node)

applied to a sequence of trees yields the sequence of their
root nodes.

6.2 Document tree

A document schema S = (eld, ctd) or S = (ctd, eld),
where eld = (el, T) is an element declaration and ctd a set
of complex type definitions, is mapped in a state algebra A
to zero or more trees of nodes. Denote such a tree by s. It
must satisfy the following requirements:

1. nd = root(s) ∈ ADocument, string-value(nd) =
string-value(children(nd)), and base-uri(nd) ∈
AanyUri if the base-uri property exists for this document,
otherwise base-uri(nd) = (). Thus, the string value of
the document node is the string value of its single child.

2. A node end ∈ s is associated with the element decla-
ration eld = (el, T) so that:

3. end ∈ AElement, parent(end) = nd, children(nd)
= (end) (i.e., a document node has only one child, an ele-
ment node; it is the node with name “BookStore” in a tree
associated with the Example 7 schema); and

4. node-name(end) = el, base-uri(end) = base-
uri(parent(end)), type(end) = T if T is a type name and
type(end) = “xs : anyType” if T is an anonymous type
definition, and string-value(end) is computed according
to the algorithms described in [21], Section 6.2.2.

5. If nid = false (i.e., the element may not have the nil
value), then nilled(end) = false, and

5.1. If T is a simple type then:
5.1.1. There is in s a node tnd ∈ AText such

that parent(tnd) = end, base-uri(tnd) = base-
uri(end), type(tnd) = “xdt : untypedAtomic”,
string-value(tnd) ∈ AString, and children(end) =
(tnd).

For instance, a text node is associated with each of the el-
ement nodes with names Title, Author, Date, ISBN and
Publisher in a tree associated with the Example 8 schema.

5.2. If T is a complex type with simple content
(T1, atds), where atds = (at1, T1), ..., (atu, Tu) (at-
tributes are declared), then items 5.1.1 and 5.3.1 hold. For
instance, a text node and attribute node will be associated
with an element declared with the type presented in Exam-
ple 5.

5.3. If T is a complex type with complex con-
tent (mid, leds, atds) or (mid, atds), where atds =
(at1, T1), ..., (atu, Tu) (attributes are declared), then

5.3.1. s contains a sequence of nodes
as = (and1, ..., andu) such that attributes(end) = as

(the sequence consists of two nodes for the attribute
declarations of Example 6) and, having an automorphism
σ on {1, ..., u} (we need it because the sequence of nodes
may be different from the sequence of the correspond-
ing attribute declarations), it holds for each andj ∈ as:
andj ∈ AAttribute, parent(andj) = end, base-uri(andj)
= base-uri(end), node-name(andj) = atσ(j), type(andj)
= Tσ(j), string-value(andj) ∈ AString.

5.4. If T is a complex type with complex con-
tent (mid, leds, atds) or (mid, leds) (subelements are de-
clared), then:

5.4.1. If leds is empty (i.e., the type has the empty con-
tent), then

5.4.1.1. If mid = true (mixed type definition), then

• children(end) = () or

• children(end) = (tnd) where tnd is a text node
(tnd ∈ AText) with the following accessor values:
parent(tnd) = end, base-uri(tnd) = base-
uri(end), type(tnd) = “xdt : untypedAtomic”,
and string-value(tnd) ∈ AString.

Thus, only a text node may be attached to an element node if
it has no element child. For instance, an element node cor-
responding to the element declared with the type presented
in Example 7 may have only one text node as child if there
are no subordinated "Book" elements.

5.4.1.2. If mid = false (no text node is allowed), then
children(end) = ().

5.4.2. If leds is not empty, then there is in s a se-
quence of trees ss such that, for each rnd ∈ roots(ss),
it holds: parent(rnd) = end and rnd ∈ AElement. For
instance, a sequence of trees may be associated with a
BookStore element node (roots of these trees are children
of the BookStore node) and a sequence of trees may be
associated with a Book element node (roots of these trees
are children of the Book node) in a tree associated with the
Example 7 schema.

5.4.2.1. If mid = false (no intermediate text nodes are
allowed), then children(end) = roots(ss).

5.4.2.2 If mid = true (mixed type definition), then

• there is in s a sequence of text nodes ts, such that, for
each tnd ∈ ts, it holds: tnd ∈ AText, parent(tnd) =
end, base-uri(tnd) = base-uri(end), type(tnd) =
“xdt : untypedAtomic”, and string-value(tnd) ∈
AString,

• children(end) = sss, where the sequence of nodes
sss involves all the nodes of the sequences roots(ss)
and ts in such a way that for any i ∈ {1, ..., |sss|− 1}
there do not exist nodes sssi and sssi+1 such that
sssi ∈ AText and sssi+1 ∈ AText (there are no adja-
cent text nodes). Thus, Book nodes of Example 7 may
be interleaved with text nodes (note that the children
nodes of a Book node may not).

5.4.2.3. If leds is a GroupDefinition (gds, cf, (m, n)),
then ss consists of k (m ≤ k ≤ n) subsequences of trees
ss1, ..., ssk (multiple occurrences of complex type val-
ues)6 and it holds for a subsequence ssj, j = 1, ..., k: if
gds = (eld1, ..., eldu), where eldq is an element declaration
(elq, Tq, (minq, maxq)), then

• if cf = “sequence”, then ssj consists of u subse-
quences (one for each element definition)7 of trees ssjq,
q = 1, ..., u, so that ssjq is a sequence of from minq

to maxq trees such that (if ss
j
q is not empty) each

end ∈ roots(ssjq) satisfies the requirements starting
from item 4, assuming that el = elq and T = Tq;

• if cf = “union”, then ssj is associated with an eldq,
q ∈ {1, ..., u} (for instance, ssj is associated either
with the declaration of the element zero or with the
declaration of the element one in Example 3), so that
ssj is a sequence of from minq to maxq trees (exactly
one tree for any element declaration in in Example 3)
such that (if ssj is not empty) each end ∈ roots(ssj)
satisfies the requirements starting from item 4, assum-
ing that el = elq and T = Tq;

6. If nid = true (i.e., the element may have the nil
value), then:

6.1. If T is a simple type, then either children(end) =
() and nilled(end) = true or nilled(end) = false and
item 5.1.1 holds.

6.2. If T is a complex type with simple content
(T1, atds), where atds = (at1, T1), ..., (atu, Tu), then ei-
ther children(end) = () and nilled(end) = true and
item 5.3.1 holds or nilled(end) = false and items 5.1.1
and 5.3.1 hold.

6For instance, an ss associated with the group definition presented in
Example 3 may be empty or consist of any number of such subsequences.

7For instance, each ssj that is part of an ss associated with the group
definition presented in Example 2 consists of two such subsequences.

6.3. If T is a complex type with complex content, then
either children(end) = () and nilled(end) = true and
item 5.3 holds or nilled(end) = false and items 5.3 and
5.4 hold.

7. There are no other nodes in s.

7 Document order

The ordering of nodes in the tree s defines the docu-
ment order, which is used in some operations of XQuery
[9] and other XML query languages. As in XQuery, the
notation nd1 << nd2 means in this paper that the node
nd1 occurs in s before the node nd2 and the notation
tree(nd1) << tree(nd2) means that any node in the tree
with the root node nd1 occurs in s before any node in the
tree with the root node nd2. The relation << is a total order.
Recall that the root node in s is the document node nd. The
tree s is ordered as follows:

• let children(nd) = (end), then nd << end;

• for any element node end ∈ s, let
attributes(end) = (and1, ..., andk) and
children(end) = (end1, ..., endm), then
end << and1, andi << andi+1, i = 1, ..., k-1,
andk << end1, and tree(endj) << tree(endj+1),
j = 1, ..., m-1.

8 XML document vs. document tree

In this section, we address the issue of expressive power
and correctness of the data model presented in the paper.
In order to do this, we formulate the proposition of the ex-
istence of a mapping between XML-documents and docu-
ment trees that preserves the document validity and content.
We respectively write S-document and S-tree for an XML-
document and document tree valid with respect to the doc-
ument schema S.

First, we introduce an equivalence relation on the set of
XML-documents that is based on the document content -
content equality denoted by =c. The relation is an important
basis for formalization of one of the basic notions of the
paper, the XML-document. Second we state and prove the
following theorem:

Theorem. For any document schema S, there is a func-
tion f that maps a set of S-documents to a set of S-trees
and a function g that serializes an S-tree to an S-document
such that g(f(X)) =c X .

The proof of the theorem can be found in [16].

9 Data model physical representation

In this section, we consider the issue of the physical rep-
resentation of the data model presented above. It was de-

veloped as part of the storage system of the Sedna DBMS
[10]. The following features of the Sedna storage system
are presented below: descriptive schema, xml node descrip-
tors, block structure, principles of node distribution be-
tween blocks, and Sedna numbering scheme [17] founda-
tions.

9.1 Descriptive schema

A descriptive schema is a concise and accurate summary
of the structure of an XML document. Formally, the de-
scriptive schema is a tree. Every path (an ordered sequence
of nodes, such that any two contiguous nodes in the se-
quence are in the parent-child relationship) of the document
has exactly one path in the descriptive schema, and, vice
versa, every path of the descriptive schema is a path of the
document.

Let E be the Cartesian product of the set of val-
ues of type Qname and the set of node-type iden-
tifiers, with respective projection functions name and
type: E = Pair(name : Qname, type :
{element, attribute, text, document}). The descrip-
tive schema X′ (also known as DataGuide [13]) of a doc-
ument tree X is then defined as follows:

• X′ is a tree over the nodes (schema nodes in the sequel)
of type E.

• Let e = (root(X), nd1, ..., ndk) be a sequence of
nodes from X , such that parent(ndi) = ndi−1,
parent(nd0) = root(X). Then, there exists
one and only one sequence s = (v0, .., vk)
of the schema nodes of X′ such that:
parent(vi) = vi−1, node-name(ndi) = vi.name,
type(ndi) = vi.type, node-name(root(X)) =
v0.name, type(root(X)) = s0.type.

Consider a simple XML document and its descriptive
schema in Example 8.

The principles of the schema tree organization allow us
to create a surjective mapping f from the set of the nodes in
X to the set of schema nodes in X′.

9.2 Data blocks and node descriptors

The descriptive schema serves as an entry point to the
node storage. Every schema node x has a list of blocks
attached, which store node descriptors (physical represen-
tations of node instances) associated with the schema node
(see Example 9).

Data blocks belonging to one schema node are linked by
pointers creating a bidirectional list. Node descriptors in
the list are partially ordered according to document order.

<library>
 <book>
 <title>Foundations of Databases</title>
 <author>Abiteboul</author>
 <author>Hull</author>
 <author>Vianu</author>
 </book>
 . . .
 <book>
 <title>An Introduction to Database
 Systems</title>
 <author>Date</author>
 <issue>
 <publisher>Addison-Wesley</publisher>
 <year>2004</year>
 </issue>
 </book>
 <paper>
 <title>A Relational Model for
 Large Shared Data Banks</title>
 <author>Codd</author>
 </paper>
 . . .
 <paper>
 <title>The Complexity of
 Relational Query Languages</title>
 <author>Codd</author>
 </paper>
</library>

element
library

element
book

element
title

element
author

element
issue

element
publisher

element
paper

element
title

element
author

textelement
year

texttext text

text text

Example 8.

element
library

element
book

element
title

element
paper

element
title

texttext

Example 9.

It means that every node descriptor in the block i precedes
every node descriptor in the block j in document order,
if i < j (i.e., if the block i precedes the block j in the
list). However, node descriptors in the same block are not
ordered in document order. This decision has been made
to simplify updates [10]. To reconstruct the order of node
descriptors, we have implemented special short pointers
used to link node descriptors from the same block. The
general structure of a node descriptor is shown in Example
10.

nid

parent
pointer

. . .

children
pointers

right sibling
pointer

left sibling
pointer

next in block
pointer

previous in block
pointer

Example 10.

A node descriptor contains a parent pointer,
left sibling pointer, right sibling pointer
(whose meanings are straightforward), nid field (a num-
bering label described below), and some other fields. The
next in block and previous in block pointers
connect nodes in the same block with the goal of recon-
structing the document order as mentioned above. They are
short and take only 2 bytes each. Every node that can have
children (i.e. an element or document node) has a variable
number of pointers to children, in addition. To save space,
we store in a node only a fixed set of pointers to the first
children by schema rather than pointers to all children (this
decision has been made to speed up the Xpath execution
[10]). Consider the element library in Example 8.
It has several child book elements (two of them are
explicited) and several child paper elements (two of them
are explicited as well), but the descriptive schema element
library has only two children. So, pointers only to
two children will be placed in a node descriptor for the
library element. They are the pointers to the first child
book element and the first child paper element. Besides
this, each block contains a header including a pointer to the
corresponding schema node. It is easy to show that the data
stored in the node descriptor together with the data stored
in the corresponding schema node are sufficient to produce
the result of any accessor.

Every decision concerning the content of the node de-
scriptor together with the description of “text-enabled”
nodes and the kind of pointers we use are discussed in [10].

9.3 Numbering scheme

Each node descriptor contains a special identifier, a
numbering label. The set of the numbering labels of the

nodes from a tree X forms the numbering scheme of X
[1, 5, 12, 22]. The numbering label encodes information
about the relative position of the node in the document.
Practically, the main purpose of the numbering scheme is to
provide a mechanism to quickly determine the structural re-
lations between a pair of nodes such as ancestor-descendant
relationship or document order relationship. The number-
ing scheme approach used in Sedna is based on the Dewey
ordering [19] with some enhancements serving to prevent
the growing of numbering labels after updates of the XML-
document.

In a formal setting, let Ω be a finite alphabet with lin-
ear ordered symbols, and Ωmin and Ωmax be the minimal and
maximal symbols of the alphabet. Each numbering label
is a finite non-empty sequence of symbols from Ω. As-
sume x and y are two nodes with respective numbering la-
bels (x1, ..., xk) and (y1, ..., yn). The relationships between
these nodes are checked in the following way:

• x is less then y in document order if one of the follow-
ing holds:

– ∃ i < min(k, n) ∀ j < i : xj = yj and xi < yi
or

– k < n and ∀ i ≤ k : xi = yi;

• x equals y in document order if k = n and

∀ i ≤ k : xi = yi;

• x is the parent of y if k < n and ∀ i ≤ k :
xi = yi, yk+1 ≤ Ωmax.

Other relationships easily outcome from the presented ones.
The following proposition is proved in [17]:

Proposition 1. It is possible to generate the numbering
scheme for any XML-document and to keep its properties
after the updates (insertion or removal of the nodes) of the
document.

10 Related work

There are very few papers devoted to formal foundation
of XML Schema or another document definition language.
More popular subjects are, to our knowledge, validation of
a document against a schema [14, 15] and development of
an algebra for an XML query language [8, 11].

The paper [3] is a work that directly concerns the prob-
lem of formal semantics of XML Schema. Like our pa-
per, it formalizes some core idea of XML Schema. Model
Schema Language (MSL) is designed for this purpose. It is
described with an inference rule notation originally devel-
oped by logicians. These inference rules show in what cases
a document validates against a document schema. Thus, the
main difference between this paper and our paper is in the

fact that this paper does not suggest any internal model of
the document schema. As a result, such important aspects as
node identity constraints and mappings from XML Schema
syntax into internal model components are not touched in
the paper. The authors have mentioned that they had begun
to work on these topics, but we have not managed to find a
paper presenting such a work.

Inference rules are also used in defining the semantics of
another popular XML schema language, RELAX NG [4].
The way of defining the semantics in this work resembles
that of [3] in the sense that the semantics of a schema con-
sists of the specification of what XML documents are valid
with respect to that schema. Like the work [3], this work
has the same shortcomings and the same differences with
our work.

Formal semantics of values, types, and named typ-
ing in XML Schema are defined in [18]. We have not
touched these problems, considering that they are success-
fully solved in that paper.

The representation of an XML document as a data tree is
also described in [11]. However, the work is not related with
both XML Schema and XQuery 1.0 Data Model. For this
reason, the tree consists only of element nodes, the node
does not possess an identifier, the majority of node acces-
sors are not defined, etc. In contrast to this work, our docu-
ment tree is much closer to the tree informally specified in
[21].

11 Conclusion

We have presented the semantics of the core features of
XML Schema in terms of XQuery 1.0 and XPath 2.0 data
model algebraically defined. The database state is repre-
sented as a many sorted algebra whose sorts are sets of data
type values and different kinds of nodes and whose oper-
ations are data type operations and node accessors. The
values of some node accessors, such as parent, chil-
dren and attributes, define a document tree with a
definite order of nodes. The values of other node accessors
help to make difference between kinds of nodes, learn the
names, types and values associated with the corresponding
document entities, etc., i.e., provide primitive facilities for
a query language. As a result, a document can be easily
mapped to its implementation in terms of nodes and acces-
sors defined on them. The main theorem of the paper proves
this.

It is worth to note that, with this kind of semantics,
XQuery 1.0 and XPath 2.0 data model may be considered as
an abstract implementation of XML Schema. Hence, XML
Schema and XQuery 1.0 and XPath 2.0 data model become
tightly related, which may serve as a significant help for the
XML Schema implementor.

Finally, the presented semantics may help in defining

a simple semantics of a data manipulation language like
XQuery. We intend to proceed with this work.

References

[1] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS:
A Robust Numbering Scheme for XML Documents.
Proc. ICDE 2003, pp. 705-707, 2003.

[2] P. V. Biron and A. Malhotra, eds. XML Schema Part
2: Datatypes Second Edition. W3C Working Draft, 28
October 2004, http://www.w3.org/TR/xmlschema-2/.

[3] Allen Brown, Matthew Fuchs, Jonathon Robie, Philip
Wadler. MSL: A model for W3C XML Schema. Proc.
10th Int’l World Wide Web Conf., pp. 191-200, Hong
Kong, May 2001.

[4] James Clarke and Murata Makoto. RELAX
NG specification. Oasis, December 2001,
http://www.relaxng.org/spec-20011203.html/.

[5] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML Trees. Proc. 21st PODS Symposium, pp. 271–
281, 2002.

[6] Roger L. Costello. XML Schemas Reference Manual.
http://www.xfront.com/xml-schema.html

[7] David C. Fallside, ed. XML Schema Part 0: Primer
Second Edition. W3C Working Draft, 28 October
2004, http://www.w3.org/TR/xmlschema-0/.

[8] Mary Fernandez, Jérôme Siméon, and Philip Wadler.
An Algebra for XML Query. FST TCS, Delhi, Decem-
ber 2000, pp. 11-45.

[9] Daniela Florescu, Jonathan Robie, Jérôme Siméon,
et. al., eds. XQuery 1.0: An XML Query Lan-
guage. W3C Working Draft, 29 October 2004,
http://www.w3.org/TR/xquery.

[10] Andrey Fomichev, Maxim Grinev, Sergey
Kuznetsov. Descriptive Schema Driven XML
Storage, Technical Report, ISP RAS, 2004.
http://www.ispras.ru/ grinev/mypapers/sedna-
storage.ps

[11] H. V. Jagodish, L. V. S. Lakshmanan, D. Srivastatva,
and K. Thompson. Tax: A Tree Algebra for XML.
Proc. Intl. Workshop on databases and Programming
Languages, Marino, Italy, Sept., 2001.

[12] Q. Li and B. Moon. Indexing and Querying XML Data
for Regular Path Expressions. Proceedings of the 27th
VLDB Conference, pp. 361-370, 2001.

[13] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: A Database Management System for
Semistructured Data. SIGMOD Record, 26(3), pp. 54-
66, Sept. 1997.

[14] M. Murata, D. Lee, and M. Mani. Taxonomy of XML
Schema Languages using Formal Language Theory.
Extreme Markup Languages, Montreal, Canada, 2001.

[15] L. Novak and S. Kuznetsov. Canonical Forms of XML
Schemas. Programming and Computer Software, No.
5, pp. 65-80, 2003.

[16] L. Novak and A. Zamulin. Algebraic Seman-
tics of XML Schema. Preprint No. 117, In-
stitute of Informatics Systems of the Siberian
Branch of the Russian Academy of Sciences,
2004; http://www.iis.nsk.su/persons/zamulin/zam-
preprint117.ps.

[17] L. Novak Sedna labeling scheme for dynamic XML
documents, Technical Report, ISP RAS, 2005 (to be
published).

[18] Jérôme Siméon and Philip Wadler. The Essence of
XML. POPL’03, January 15-17, 2003, New Orlean,
Loisiana, USA.

[19] Igor Tatarinov, Stratis Viglas, e. a. Storing and Query-
ing Ordered XML Using a Relational Database Sys-
tem, Proc. SIGMOD Conference, pp. 204-215, 2002.

[20] H. S. Thompson, D. Beech, M. Maloney, and
N.Mendelsohn (Eds). XML Schema Part 1: Struc-
tures Second Edition, W3C Working Draft, 28 Octo-
ber 2004, http://www.w3.org/TR/xmlschema-1/.

[21] XQuery 1.0 and XPath 2.0 Data Model, W3C Working
Draft, 29 October 2004. http://www.w3.org/TR/xpath-
datamodel/

[22] Xiaodong Wu, Mong-Li Lee, Wynne Hsu: A Prime
Number Labeling Scheme for Dynamic Ordered XML
Trees. ICDE 2004, pp. 66-78.

