
A TLM-based approach to functional verification of
hardware components at different abstraction levels

Mikhail Chupilko
Institute for System Programming of RAS

A. Solzhenitsyn st. 25, 109004
Moscow, Russia

chupilko@ispras.ru

Alexander Kamkin
Institute for System Programming of RAS

A. Solzhenitsyn st. 25, 109004
Moscow, Russia

kamkin@ispras.ru

Abstract—Verification has long been recognized as an integral
part of the hardware design process. When designing a system,
engineers usually use various design representations and
concretize them step by step up to a physical layout. At the
beginning of the process, when there is much of indeterminacy,
only abstract reference models are applicable to verification;
when the process is close to the end, more concrete ones can be
utilized. The article concerns problems of developing reusable
verification systems (testbenches), which can be used to analyze
different versions of the same component at different abstraction
levels. We suggest an approach to construct reusable reaction
checkers basing on a concept of Transaction Level Modeling
(TLM). The paper includes general description of the approach,
considers several particular cases, and outlines our experience.

Keywords-hardware design; functional verification; simulation-
based-verification; co-simulation; testbench automation; reaction
checking; transaction level modeling (TLM)

I. INTRODUCTION

Nowadays, hardware systems become more and more
complex consuming lots of resources for their design and test.
Two main approaches to overcome the complexity are
decomposition and abstraction. In general terms,
decomposition is partitioning of a system into a set of
components, while abstraction is extraction of essential
properties of the components with respect to some aspect of
interest. Hardware designing can be considered as an
evolutionary process of system decomposition and
concretization driven by the target requirements and available
resources.

To check a design’s compliance with the specification,
functional verification is used. Many engineers consider
verification to be one of the final stages of the design process.
However, that is not true. Verification runs through the entire
process providing on-time feedback and making the process
more controllable. Due to the designing nature, verification
has to deal with individual components as well as with the
whole system. What is also important is that verification
should use different kinds of models at different design
stages – more abstract ones at the beginning and more
concrete ones at the end.

The paper focuses on verification of individual
components of hardware systems. It is assumed that a system

is divided into a set of components and the general
functionality of the components does not change. The problem
we are going to solve is to develop a verification system (so-
called testbench [1]) for a given component so that it could be
reused during the component’s design cycle. The most usable
way to develop an automated testbench is based on co-
simulation, when along with the target component an
independent reference model is created and used for checking
the component’s behavior (its observable reactions). Since a
reference model is a core part of a testbench, our research is
concentrated on organization of such models and their
adaptation to the co-simulation process.

We propose a methodology for creating reusable reaction
checkers (including reference models as a part) that is based
on Transaction Level Modeling (TLM) [2]. The key feature of
TLM is separation of communication from computation.
System communication is modeled by channels, while
transactions (in other words, data transmission) take place by
calling interface functions of those channel models. We
suggest a TLM-based reaction checker’s architecture suitable
for all abstraction levels (thus applicable to all design stages).
Reuse of a reaction checker is attained by refining or changing
the architecture’s components. The architecture is proved to be
flexible and universal in several real-life industrial projects.

The article is organized as follows. Section 2 reviews the
related work. Section 3 introduces TLM and identifies the main
abstraction levels being used in hardware design. Section 4
describes the suggested approach to testbench organization.
Section 5 considers application of the approach at different
abstraction levels. Section 6 gives a classification of errors in
hardware basing on the suggested reaction checking scheme.
Section 7 outlines our experience. Section 8 concludes the
paper.

II. RELATED WORK

Two main approaches to functional verification of
hardware designs are formal methods and simulation-based
methods [3]. It is well known that formal methods are
exhaustive (in a sense) but do not scale well and can be
applied only at the later design stages, when the requirements
are rather stable. Simulation-based methods are not
exhaustive, but they are much more flexible and thereby
employed at different stages.

�
�
�
�
�������	������
�
�����
��

��

��������

A testbench is an environment used to verify the design
correctness via simulation. A typical testbench has three
components: (1) a stimulus generator, (2) a reaction checker
(test oracle), and (3) a coverage tracker. The stimulus
generator creates input stimuli to the design under verification
(DUV). The reaction checker estimates the correctness of the
design’s behavior. The coverage tracker evaluates the testing
completeness. Let us consider the existing approaches to
reaction checking. Nowadays, there are three basic methods:
(1) self-checking tests, (2) assertions, and (3) co-simulation.

Self-checking tests are an old-age approach to testbench
organization in which each stimulus (to be more precise, each
test case) is encoded with a procedure of checking for the
expected results [4]. In this approach, each test case should
perform reaction checking during and at the end of the test.
This has certain disadvantages. First, it is really difficult to
write test cases checking sophisticated test sequences. Second,
test cases require maintenance during the design process to
keep up with the design’s changes. Finally, the self-checking
approach suffers from incompleteness, because each test case
checks only few aspects of the design’s behavior.

Assertions are statements about a design’s intended
behavior, which must be verified [5]. In this method, the
checks are detached from the stimuli and injected into the
design’s code (or written in separate files). There is no need
for hand-written test cases checking for the specific results –
instead, automatic test generation can be used for verification.
Assertions usually state the most critical or the most obvious
DUV’s properties. Therefore, assertion-based checking
usually lacks for completeness. It should also be said that in
case of built-in assertions it is impossible to create a reaction
checker until the design is fully described.

Co-simulation is a method for reaction checking in which
an independent reference model is used along with the target
design model [4]. The two models are co-simulated using the
same test sequences and their results are compared for
equality. Every mismatch is tracked down to discover which
of the models is incorrect. The usage of a reference model
allows generating tests automatically. However, making two
models agree for all test sequences is a difficult task, which in
some cases is almost tantamount to describing two equivalent
designs.

Let us analyze the methods described above. Self-checking
tests do not provide high-level automation and suffer from
incompleteness of reaction checking. Furthermore, they are
hard to maintain during the design process. Assertions are a
perfect solution for checking a few numbers of properties but
are not suitable for gap-free checking of complex hardware
components. Co-simulation seems to be the most promising
approach, but it requires development of a reference model,
which is labor intensive. To simplify development and
maintenance of reference models, a special methodology is
surely needed. In our opinion, TLM is a good basis for such
kind of methodology.

These thoughts underlie Open Verification Methodology
(OVM), a well-known verification approach [6]. According to
OVM, a testbench should be subdivided into several functional
components and interfaces between them should be specified

by means of TLM. The methodology describes the basic
testbench architecture but says nothing about how the
architecture’s components are organized. For example, it does
not answer how to generate complex test sequences and how to
check the design’s behavior.

III. TLM AND DIFFERENT ABSTRACTION LEVELS

TLM is an approach to model hardware systems where
details of communication between components are separated
from computation [2]. Communication mechanisms such as
busses and FIFOs are modeled as channels, which encapsulate
low-level details of the data transmission. Transactions are
modeled by calling interface functions of those channels. TLM
focuses more on the functionality of the data transmission and
less on its actual implementation. This approach makes it
easier to experiment, for example, with different busses
without having to rewrite communication components.

During the design process engineers usually use a number
of intermediate models. Since the models can be simulated
and estimated, the results of each of the design stages can be
verified. The models are classified using the system modeling
graph (see Fig. 1) [2]. X-axis represents computation
(functionality), while y-axis corresponds to communication.
On each axis, there are three degrees of time accuracy
(abstraction levels): untimed, timed (approximate timed), and
cycle-accurate.

A B

C

D F

E

Com m unicat ion

Funct ionality

A. Unt im ed funct ional model
B. Timed funct ional m odel
C. Tim ed com m unicat ion m odel
D. Cycle-accurate com m unicat ion m odel
E. Cycle-accurate funct ional m odel
F. Cycle-accurate model
X. Other m odels

Unt im ed Timed Cycle-accurate

Unt im ed

Tim ed

Cycle-accurate

Figure 1. System modeling graph

According to [2], there are six main abstraction levels: (A)
untimed functional models, (B) timed functional models, (C)
timed communication models, (D) cycle-accurate
communication models, (E) cycle-accurate functional models,
and (F) cycle-accurate models 1 . Table 1 summarizes the
characteristics of the abstraction levels mentioned.

TABLE I. CHARACTERISTICS OF THE ABSTRACTION LEVELS

Abstraction
levels

Communication
time

Computation
time

Communication
scheme

Untimed functional
model (A) No No

Variable /
Abstract channel

Timed functional
model (B) No Approximate

Message-passing
channel (FIFO)

Timed communication
model (C) Approximate Approximate Abstract bus

channel (arbiter)

1 The terminology we use here slightly differs from [2].

Cycle-accurate
communication model (D) Accurate Approximate

Detailed bus
channel (protocol)

Cycle-accurate functional
model (E) Approximate Accurate Abstract bus

channel (arbiter)

Cycle-accurate
model (F) Accurate Accurate

Wire
(pin-accurate)

IV. REACTION CHECKER ARCHITECTURE

In this paper, we consider modeling and verification of
single components of hardware designs. It is done deliberately
to abstract away from the inner-design communication.
Speaking about testbench development (more specifically,
about reaction checker organization), the main interest is in
the outer-design communication (interaction with the
testbench environment). The generalized structure of a
testbench is shown in Fig. 2.

St im uli generator

React ion checker

Coverage t racker

Target design

St im uli

React ions

St im uli

Verif icat ion report generator

Sim ulator

Coverage

Verdict

Figure 2. Generalized structure of a testbench

The stimuli generator creates a test sequence and gives the
stimuli to the reaction checker which, in turn, transfers them
into the design representation and applies to the target design.
Reactions of the design are passed to the reaction checker,
which estimates their correctness basing on assertions or a
reference model. Stimuli and reactions are also given to the
coverage tracker, which evaluates testing completeness using
some metrics or heuristics.

This scheme clearly demonstrates the general issues of the
simulation-based verification. However, the real-life is much
more difficult. Design projects constantly evolve, and serious
efforts are needed to make the testbench components be
consistent with the design’s changes. The most labor-intensive
maintenance is required for reaction checkers, because they
describe the reference behavior. We have formulated the
following requirements for the reaction checkers constructing
approaches.

• Possibility of using abstract reference models for
verification of hardware components at the register
transfer level (RTL).

• Easy adaption of a reaction checker to modifications of
the input or output interfaces of the component being
verified.

• Easy adaption of a reaction checker to changes of timing
properties of the design.

• Possibility of refining reference models up to a cycle-
accurate level.

• Provision of as much precise error diagnostics as it is
possible for a given abstraction level.

To fulfill the requirements stipulated above, we suggest the
following reaction checker’s architecture (see Fig. 3). A
reaction checker is decomposed into several parts, among
which there are pre- and postcondition checkers, a reference
model, and a model adapter. In turn, a reference model
includes input and output interfaces models and a functional
model of the target design, while a model adapter consists of
input and output interfaces adapters. For each of the output
interfaces there are also some components intended for
reaction detection (a reaction detector) and for bus arbitration
(a primary arbiter, which is a part of the reference model, and
a secondary arbiter or reaction matcher, which is a part of the
model adapter). The suggested architecture is TLM-compliant,
because there is an explicit separation of communication
(input and output interfaces models) from computation
(functional model).

React ion checker

Precondit ion checkers

M S

Failed

St im uli generator

Model adapter

Ref. m odel

Input interfaces m odels

Funct ional m odel

Control logic

Datapath

Comm utat ion

Output interfaces models

React ions queues

React ion m atchers

Postcondit ion checkers

Input interfaces adapters

React ion detectors

Output interfaces adapters

M R M R

M R M R

M R

M R

CR

DS
Input interface

Target design

DR
Output interface

Verdict
St im uli generator

MS - Model st im ulus (abst ract m essage)
DS - Design st im ulus (cycle- and pin-accurate serializat ion of MS)
MR - Model react ion (reference message or constraint)
DR - Design react ion (cycle- and pin-accurate series)
CR - Checked react ion (deserializat ion of DR)

Primary arbiters

Secondary arbiters

Figure 3. Reaction checker’s architecture

Let us consider how a reaction checker works. When a
stimulus (MS, Model Stimulus in Fig. 3) is received, the
corresponding precondition is checked. If there is a situation
when the design’s behavior is undefined (for example, if the

input protocol is violated), then the precondition fails and the
stimulus is skipped; otherwise it is passed to the model
adapter, which applies it both to the reference model and to
the DUV. In the second case, the input interface adapter is
used, which serializes the abstract message representing the
stimulus into the concrete series of input signals (DS, Design
Stimulus). The reference model emulates processing of the
stimulus at some level of abstraction, calculates references
reactions (in the explicit form or in the form of constraints2)
(MR, Model Reaction), and puts them to the reactions queues
of the corresponding output interface models.

When the target design’s reaction is detected on an output
interface (DR, Design Reaction), it is deserialized into the
model representation (CR, Checked Reaction). Then, the
reaction matcher tries to find a model reaction corresponding
to that one. It requests the primary arbiter, which calculates a
set of candidates. In some situations, there is exactly one
reaction, but in the general case, when the reference model is
rather abstract, the primary arbiter cannot choose a reaction
using only information provided by the model (for example,
when the reference model expects two reactions on the
interface, but their order is undefined). In such cases, the
secondary arbiter is used, which is given with a hint on how
the model reaction should look like (it tries to match the
reference reaction that is similar to the detected one).

Given a set of candidate reactions C={MRi} (provided by
the primary arbiter), a reaction CR to be checked, and a hint
function h, the reaction matcher works as follows. If the set C
is empty, then it fails. If C contains exactly one element, then
the reaction matcher returns that element; otherwise it
calculates h(CR) (it is usually a message field, checksum or
message in whole) and tries to find a model reaction MR∈∈∈∈C
such that h(MR) = h(CR). If there are no such reactions, then
it fails. If there is exactly one reaction, then it returns that
reaction. If there are multiple reactions, then it selects
randomly one of them. When some reaction is matched, it is
removed from the reactions queue of the output interface.

As soon as the reaction is selected, the appropriate
postcondition is checked to estimate correspondence between
the design’s reaction (CR) and the selected one (MR). It
should be noticed that in the majority of cases equality
CR = MR is tested. If the postcondition is violated, then the
reaction checker reports the failure and provides the detailed
diagnostics; otherwise the process continues.

Using the described arbitration mechanism the approach
makes it possible to utilize abstract models for verification of
cycle- and pin-accurate RTL components. It easily copes with
changes of input and output interfaces with the help of
interface adapters. What is also important, it is applicable to
different abstraction levels and allows refining timing
properties of a reaction checker up to a cycle-accurate level
(see “Application of the approach at different abstraction
levels”). Finally, the reaction matching algorithm provides a
basis for high-quality error diagnostics (see “Classification of
errors”).

2 Constraints (particularly, undefined values) are used if the design
specification admits several correct alternatives for the reaction.

V. APPLICATIONS OF THE APPROACH AT DIFFERENT
ABSTRACTION LEVELS

According to the reaction checking scheme, there are two
main parameters that determine abstractness of a reference
model (and a reaction checker in whole): (1) reaction detection
mechanism and (2) reaction arbitration mechanism. The first
of them decides if the target design produces a reaction on a
given output interface or not. If there is a reaction, then the
second mechanism finds a model reaction for that one.

Reaction detection mechanism for a single output interface
can be described as a Boolean function depending on the
reference model’s state (S∈∈∈∈MS) and the design’s outputs
(O∈∈∈∈DO)3:

d: MS × DO → {true, false}.

Roughly speaking, d-functions are calculated at every
simulation cycle. If one of them returns true, then a reaction is
detected. After that, the arbitration mechanism is launched for
the corresponding output interface.

Reaction arbitration mechanism (including primary and
secondary arbiters) is modeled as a function that returns a
model reaction or a special value failed depending on the
model’s state and a detected reaction (CR∈∈∈∈MR):

a: MS × MR → MR ∪ {failed}.

Using d- and a-functions one can define the basic abstraction
levels mentioned above.

In cycle-accurate models, reaction detection does not use
the design’s outputs. A reference model itself determines
points of time when reactions should occur. In other words, all
the d-functions of the model look as follows:

d: MS → {true, false}.

Cycle-accurate model

Funct ional model

M RM R

Output interfaces adapters

Postcondit ion checkers

CR

DR

Get

Verdict

Primary arbiters

Figure 4. Reaction checker of a cycle-accurate model

Another distinctive feature of cycle-accurate models is that
such models do not use secondary arbiters. Primary arbiters
(which are a part of a model) are able to choose a single
reaction to be compared with the detected one. This property
means that all the a-functions do not depend on a detected
reaction and do not fail:

3
 Since we usually use the black-box approach, the inner-design state is not

considered here.

a: MS → MR.

Fig. 4 shows a response checker’s fragment for a cycle-
accurate model. You can see that reaction detectors and
secondary arbiters are absent.

In contrast to cycle-accurate models, untimed functional
models do not specify any timing properties of hardware
components. Particularly, it implies that they do not have
primary arbiters and thereby reaction matching is done with
the help of secondary arbiters only. To determine points of
time when reactions occur, untimed models (as all kinds of
approximate timed models) use reaction detectors. d-functions
of such models usually depend only on the design’s outputs:

d: DO → {true, false}.

A response checker for an untimed model is illustrated in
Fig. 5. You can see that primary arbiters are removed and all
model reactions are passed to secondary arbiters directly.

Unt imed funct ional m odel

Funct ional unit

M RM R

Output interfaces adapters

Postcondit ion checkers

CR

DR

Verdict

React ions queues

M RM R

React ion detectors

Secondary arbiters

Figure 5. Reaction checker for an untimed model

Reference models of the other abstraction levels (timed
functional models, timed communication models, etc.) are
situated between cycle-accurate and untimed models. Since
they are not very accurate, they use reaction detectors.
However, as opposed to pure untimed models, timed models
employ primary arbiters. The distinction between intermediate
models consists mostly in different concretization of the
arbiters. There are two basic classes of arbiters: deterministic
(order-accurate), which choose no more than one reaction
from a given set, and nondeterministic (order-inaccurate),
which might select several reactions failing to determine the
exact order. If nondeterminism is bounded (in a sense) we can
identify an order-approximate class of arbiters.

Let us say few words about transitions between different
abstract levels. At the beginning of the design process, when
the requirements are sufficiently incomplete, only untimed
functional models (A in Fig. 1) are applicable. As soon as the
requirements are clarified, the models are concretized as well.
The leading role in reusing a testbench is assigned to the
communication model (to the primary arbiters in particular).
In fact, communication aspects are usually more changeable.

In most of the cases approximate-timed models (B and C)
are enough to achieve high-quality verification. However, in
some cases (for critical components with complex control

logic) cycle-accurate models (D, E, and F) are required [7]. It
should be emphasized that changing level of a model from
approximate-timed to cycle-accurate is difficult because it
involves rather sophisticated computation and communication
issues. The thing is that it is required only for a little number of
components and only at the final design stages (i.e. not too
often). In other cases, timing refinement is generally connected
with the tuning of the primary arbiters.

Let us see a trivial example in C++ containing a part of a
reference model that describes some operation of some DUV:

 void DUV::Operation(Interface &input, Message &stimulus) {
 // Apply the stimulus via the input interface adapter
 RECV(input, stimulus);
 // Compute the reactions at some abstraction level
 ...
 // Inform the testbench on the expected reaction
 SEND(output, reaction);
 ...
 }

The operation is modeled as a method with two parameters: (1)
an input interface and (2) a stimulus message. The first thing
the method does is call RECV that applies the stimulus to the
inputs. After that, the reference reactions are computed and
stored by calling SEND. In cycle-accurate models, one can use
a construct CYCLE to emulate the DUV’s cycle. Calling SEND
in such models results in immediate reading of the design
reaction from the outputs and then comparing it with the
reference value. For untimed and approximate-timed models a
separate process is created that, first, detects a design reaction,
then, reads it, and, finally, matches it with one of the model
reactions expected on the corresponding interface.

VI. CLASSIFICATION OF ERRORS

The suggested scheme for the reaction checking provides a
good foundation for the error classification and diagnostics.
To classify different types of bugs in hardware components,
we introduce a reaction checking graph illustrating possible
alternatives in the checking process (see Fig. 6).

Figure 6. Reaction checking graph

The graph shown in Fig. 6 is a bit simplified, but it clearly
demonstrates the main classes of errors (they are shown as
black circles). If a testbench expects some reaction, but it is not
detected within a reasonable amount of time, then a missing
reaction error is reported and provided with detailed
information on the expected reaction (message, output
interface, and estimated time). Every time when a reaction is
detected, the primary and the secondary arbiters are requested.
If they both fail, then the testbench reports an unexpected
reaction error informing about the interface and time. If the
arbiters provide one-to-one matching, then the selected model
reaction is compared with the detected one; otherwise the
testbench warns about nondeterministic behavior and compares
all the reactions chosen with the detected one. If there is at least
one coincidence, then the reaction checking is supposed to be
successful; otherwise the testbench report an incorrect reaction
error and displays the most probable candidates for the detected
reaction.

VII. EXPERIENCE

The suggested approach for developing testbenches has
been used in a number of industrial projects on hardware
verification (mostly for individual units of microprocessors
[8]). It has demonstrated the ability to detect high-quality errors
in hardware designs (including hardly detectable bugs in
control logic), acceptable man-hours, and reusability of
testbench components. Our experience is summarized in
Table 2.

TABLE II. APPLICATIONS OF THE SUGGESTED APPROACH

Design under
verification

Maximal
abstractness

Minimal
abstractness

Design stages

Translation lookaside
buffer (TLB)

Detailed-timed
model

Cycle-accurate
model

Late/final

Floating point unit
(FPU)

Untimed model — Late/final

Non-blocking L2
cache

Approximate-
timed model

Detailed-timed
model

Middle/late

Northbridge data
switch

—
Cycle-accurate

model
Final

Memory access unit
(MAU)

Untimed model
Cycle-accurate

model
Early/middle

System interrupt
controller

Untimed model
Approximate-
timed model

Early/middle

Fig. 7 demonstrates averaged labor-costs for developing
reference models of hardware components at different
abstraction levels. Of course, it is rather crude approximation,
but it works well in real practice. For example, it has taken us
about 100% of the initial efforts to add approximate timed
properties to the untimed model of the system interrupt
controller (1 man-month). The properties we have added
describe the order of reactions on two output interfaces. It has
allowed us to find an additional bug in the design (1 of 8).
Another example is TLB. We have spent 1 man-week of 3 to
make the reference model to be cycle-accurate and have
detected 3 additional bugs of 10.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Untimed model Approximate-
timed model

Detailed-timed
model

Cycle-accurate
model

Figure 7. Relative labor-costs for developing reference models

at different abstraction levels

VIII. CONCLUSIONS

It is obvious that usage of more concrete models allows
detecting more complex bugs. It is also obvious that
development of more concrete models requires more resources.
Choosing right abstraction level for verification is a problem
which is really hard to formalize. Decision making should take
into account lots of factors, like application domain of the
hardware being designed, available resources and many others.
Regardless of the decision, it would be rather useful to have an
approach making it possible to reuse the available models –
refine them without changing it considerably.

The article considers the problems of developing reusable
testbenches and suggests the approach that is based on the
TLM concept. It allows using abstract reference models for the
RTL verification and adapting reaction checkers to changes of
interfaces and timing properties of the designs. In the future we
are planning to improve the error diagnostics to detect such
errors as reaction missequencing and demultiplexing failures.

REFERENCES
[1] J. Bergeron. “Writing testbenches: functional verification of HDL

models”. Kluwer Academic Publishers, 2000.

[2] L. Cai, D. Gajski. “Transaction level modeling: an overview”. In Proc.
The International Conference on Hardware-Software Codesign and
System Synthesis (CODES+ISSS), 2003, pp. 19-24.

[3] W. Lam. “Hardware design verification: simulation and formal method-
based approaches”. Prentice Hall, 2005.

[4] C.-M.R. Ho. “Validation tools for complex digital designs”. PhD thesis,
Stanford University, 1996.

[5] H.D. Foster, A.C. Krolnik, D.J. Lacey. “Assertion-based design”.
Kluwer Academic Publishers, 2004.

[6] OVM User Guide – http://www.ovmworld.org.

[7] M. Chupilko, A. Kamkin. “Developing cycle-accurate contract
specifications for synchronous parallel-pipeline hardware: application to
verification”. In Proc. The Baltic Electronic Conference (BEC), 2010,
pp. 185-188.

[8] M. Chupilko, A. Kamkin, D. Vorobyev. “Methodology and experience
of simulation-based verification of microprocessor units based on cycle-
accurate contract specifications”. In Proc. The Spring Young
Researchers’ Colloquium on Software Engineering (SYRCoSE), 2008,
vol. 2, pp. 25-31.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

