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Abstract—Verification has long been recognized as an integral 
part of the hardware design process. When designing a system, 
engineers usually use various design representations and 
concretize them step by step up to a physical layout. At the 
beginning of the process, when there is much of indeterminacy, 
only abstract reference models are applicable to verification; 
when the process is close to the end, more concrete ones can be 
utilized. The article concerns problems of developing reusable 
verification systems (testbenches), which can be used to analyze 
different versions of the same component at different abstraction 
levels. We suggest an approach to construct reusable reaction 
checkers basing on a concept of Transaction Level Modeling 
(TLM). The paper includes general description of the approach, 
considers several particular cases, and outlines our experience. 

Keywords-hardware design; functional verification; simulation-
based-verification; co-simulation; testbench automation; reaction 
checking; transaction level modeling (TLM) 

I.  INTRODUCTION 

Nowadays, hardware systems become more and more 
complex consuming lots of resources for their design and test. 
Two main approaches to overcome the complexity are 
decomposition and abstraction. In general terms, 
decomposition is partitioning of a system into a set of 
components, while abstraction is extraction of essential 
properties of the components with respect to some aspect of 
interest. Hardware designing can be considered as an 
evolutionary process of system decomposition and 
concretization driven by the target requirements and available 
resources. 

To check a design’s compliance with the specification, 
functional verification is used. Many engineers consider 
verification to be one of the final stages of the design process. 
However, that is not true. Verification runs through the entire 
process providing on-time feedback and making the process 
more controllable. Due to the designing nature, verification 
has to deal with individual components as well as with the 
whole system. What is also important is that verification 
should use different kinds of models at different design 
stages – more abstract ones at the beginning and more 
concrete ones at the end. 

The paper focuses on verification of individual 
components of hardware systems. It is assumed that a system 

is divided into a set of components and the general 
functionality of the components does not change. The problem 
we are going to solve is to develop a verification system (so-
called testbench [1]) for a given component so that it could be 
reused during the component’s design cycle. The most usable 
way to develop an automated testbench is based on co-
simulation, when along with the target component an 
independent reference model is created and used for checking 
the component’s behavior (its observable reactions). Since a 
reference model is a core part of a testbench, our research is 
concentrated on organization of such models and their 
adaptation to the co-simulation process. 

We propose a methodology for creating reusable reaction 
checkers (including reference models as a part) that is based 
on Transaction Level Modeling (TLM) [2]. The key feature of 
TLM is separation of communication from computation. 
System communication is modeled by channels, while 
transactions (in other words, data transmission) take place by 
calling interface functions of those channel models. We 
suggest a TLM-based reaction checker’s architecture suitable 
for all abstraction levels (thus applicable to all design stages). 
Reuse of a reaction checker is attained by refining or changing 
the architecture’s components. The architecture is proved to be 
flexible and universal in several real-life industrial projects. 

The article is organized as follows. Section 2 reviews the 
related work. Section 3 introduces TLM and identifies the main 
abstraction levels being used in hardware design. Section 4 
describes the suggested approach to testbench organization. 
Section 5 considers application of the approach at different 
abstraction levels. Section 6 gives a classification of errors in 
hardware basing on the suggested reaction checking scheme. 
Section 7 outlines our experience. Section 8 concludes the 
paper. 

II. RELATED WORK 

Two main approaches to functional verification of 
hardware designs are formal methods and simulation-based 
methods [3]. It is well known that formal methods are 
exhaustive (in a sense) but do not scale well and can be 
applied only at the later design stages, when the requirements 
are rather stable. Simulation-based methods are not 
exhaustive, but they are much more flexible and thereby 
employed at different stages. 
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A testbench is an environment used to verify the design 
correctness via simulation. A typical testbench has three 
components: (1) a stimulus generator, (2) a reaction checker 
(test oracle), and (3) a coverage tracker. The stimulus 
generator creates input stimuli to the design under verification 
(DUV). The reaction checker estimates the correctness of the 
design’s behavior. The coverage tracker evaluates the testing 
completeness. Let us consider the existing approaches to 
reaction checking. Nowadays, there are three basic methods: 
(1) self-checking tests, (2) assertions, and (3) co-simulation. 

Self-checking tests are an old-age approach to testbench 
organization in which each stimulus (to be more precise, each 
test case) is encoded with a procedure of checking for the 
expected results [4]. In this approach, each test case should 
perform reaction checking during and at the end of the test. 
This has certain disadvantages. First, it is really difficult to 
write test cases checking sophisticated test sequences. Second, 
test cases require maintenance during the design process to 
keep up with the design’s changes. Finally, the self-checking 
approach suffers from incompleteness, because each test case 
checks only few aspects of the design’s behavior. 

Assertions are statements about a design’s intended 
behavior, which must be verified [5]. In this method, the 
checks are detached from the stimuli and injected into the 
design’s code (or written in separate files). There is no need 
for hand-written test cases checking for the specific results – 
instead, automatic test generation can be used for verification. 
Assertions usually state the most critical or the most obvious 
DUV’s properties. Therefore, assertion-based checking 
usually lacks for completeness. It should also be said that in 
case of built-in assertions it is impossible to create a reaction 
checker until the design is fully described. 

Co-simulation is a method for reaction checking in which 
an independent reference model is used along with the target 
design model [4]. The two models are co-simulated using the 
same test sequences and their results are compared for 
equality. Every mismatch is tracked down to discover which 
of the models is incorrect. The usage of a reference model 
allows generating tests automatically. However, making two 
models agree for all test sequences is a difficult task, which in 
some cases is almost tantamount to describing two equivalent 
designs. 

Let us analyze the methods described above. Self-checking 
tests do not provide high-level automation and suffer from 
incompleteness of reaction checking. Furthermore, they are 
hard to maintain during the design process. Assertions are a 
perfect solution for checking a few numbers of properties but 
are not suitable for gap-free checking of complex hardware 
components. Co-simulation seems to be the most promising 
approach, but it requires development of a reference model, 
which is labor intensive. To simplify development and 
maintenance of reference models, a special methodology is 
surely needed. In our opinion, TLM is a good basis for such 
kind of methodology. 

These thoughts underlie Open Verification Methodology 
(OVM), a well-known verification approach [6]. According to 
OVM, a testbench should be subdivided into several functional 
components and interfaces between them should be specified 

by means of TLM. The methodology describes the basic 
testbench architecture but says nothing about how the 
architecture’s components are organized. For example, it does 
not answer how to generate complex test sequences and how to 
check the design’s behavior. 

III. TLM AND DIFFERENT ABSTRACTION LEVELS 

TLM is an approach to model hardware systems where 
details of communication between components are separated 
from computation [2]. Communication mechanisms such as 
busses and FIFOs are modeled as channels, which encapsulate 
low-level details of the data transmission. Transactions are 
modeled by calling interface functions of those channels. TLM 
focuses more on the functionality of the data transmission and 
less on its actual implementation. This approach makes it 
easier to experiment, for example, with different busses 
without having to rewrite communication components. 

During the design process engineers usually use a number 
of intermediate models. Since the models can be simulated 
and estimated, the results of each of the design stages can be 
verified. The models are classified using the system modeling 
graph (see Fig. 1) [2]. X-axis represents computation 
(functionality), while y-axis corresponds to communication. 
On each axis, there are three degrees of time accuracy 
(abstraction levels): untimed, timed (approximate timed), and 
cycle-accurate. 
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Figure 1.  System modeling graph 

According to [2], there are six main abstraction levels: (A) 
untimed functional models, (B) timed functional models, (C) 
timed communication models, (D) cycle-accurate 
communication models, (E) cycle-accurate functional models, 
and (F) cycle-accurate models 1 . Table 1 summarizes the 
characteristics of the abstraction levels mentioned. 

TABLE I.  CHARACTERISTICS OF THE ABSTRACTION LEVELS 

Abstraction 
levels 

Communication 
time 

Computation 
time 

Communication 
scheme 

Untimed functional  
model (A) No No 

Variable / 
Abstract channel  

Timed functional  
model (B) No Approximate 

Message-passing 
channel (FIFO) 

Timed communication 
model (C) Approximate Approximate Abstract bus 

channel (arbiter) 

                                                           
1 The terminology we use here slightly differs from [2]. 



Cycle-accurate 
communication model (D) Accurate Approximate 

Detailed bus 
channel (protocol) 

Cycle-accurate functional 
model (E) Approximate Accurate Abstract bus 

channel (arbiter) 

Cycle-accurate 
model (F) Accurate Accurate 

Wire 
(pin-accurate) 

IV. REACTION CHECKER ARCHITECTURE 

In this paper, we consider modeling and verification of 
single components of hardware designs. It is done deliberately 
to abstract away from the inner-design communication. 
Speaking about testbench development (more specifically, 
about reaction checker organization), the main interest is in 
the outer-design communication (interaction with the 
testbench environment). The generalized structure of a 
testbench is shown in Fig. 2. 

St im uli generator
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Coverage t racker

Target  design

St im uli

React ions

St im uli

Verif icat ion report  generator

Sim ulator

Coverage
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Figure 2.  Generalized structure of a testbench 

The stimuli generator creates a test sequence and gives the 
stimuli to the reaction checker which, in turn, transfers them 
into the design representation and applies to the target design. 
Reactions of the design are passed to the reaction checker, 
which estimates their correctness basing on assertions or a 
reference model. Stimuli and reactions are also given to the 
coverage tracker, which evaluates testing completeness using 
some metrics or heuristics. 

This scheme clearly demonstrates the general issues of the 
simulation-based verification. However, the real-life is much 
more difficult. Design projects constantly evolve, and serious 
efforts are needed to make the testbench components be 
consistent with the design’s changes. The most labor-intensive 
maintenance is required for reaction checkers, because they 
describe the reference behavior. We have formulated the 
following requirements for the reaction checkers constructing 
approaches. 

• Possibility of using abstract reference models for 
verification of hardware components at the register 
transfer level (RTL). 

• Easy adaption of a reaction checker to modifications of 
the input or output interfaces of the component being 
verified. 

• Easy adaption of a reaction checker to changes of timing 
properties of the design. 

• Possibility of refining reference models up to a cycle-
accurate level. 

• Provision of as much precise error diagnostics as it is 
possible for a given abstraction level. 

To fulfill the requirements stipulated above, we suggest the 
following reaction checker’s architecture (see Fig. 3). A 
reaction checker is decomposed into several parts, among 
which there are pre- and postcondition checkers, a reference 
model, and a model adapter. In turn, a reference model 
includes input and output interfaces models and a functional 
model of the target design, while a model adapter consists of 
input and output interfaces adapters. For each of the output 
interfaces there are also some components intended for 
reaction detection (a reaction detector) and for bus arbitration 
(a primary arbiter, which is a part of the reference model, and 
a secondary arbiter or reaction matcher, which is a part of the 
model adapter). The suggested architecture is TLM-compliant, 
because there is an explicit separation of communication 
(input and output interfaces models) from computation 
(functional model). 
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Figure 3.  Reaction checker’s architecture 

Let us consider how a reaction checker works. When a 
stimulus (MS, Model Stimulus in Fig. 3) is received, the 
corresponding precondition is checked. If there is a situation 
when the design’s behavior is undefined (for example, if the 



input protocol is violated), then the precondition fails and the 
stimulus is skipped; otherwise it is passed to the model 
adapter, which applies it both to the reference model and to 
the DUV. In the second case, the input interface adapter is 
used, which serializes the abstract message representing the 
stimulus into the concrete series of input signals (DS, Design 
Stimulus). The reference model emulates processing of the 
stimulus at some level of abstraction, calculates references 
reactions (in the explicit form or in the form of constraints2) 
(MR, Model Reaction), and puts them to the reactions queues 
of the corresponding output interface models. 

When the target design’s reaction is detected on an output 
interface (DR, Design Reaction), it is deserialized into the 
model representation (CR, Checked Reaction). Then, the 
reaction matcher tries to find a model reaction corresponding 
to that one. It requests the primary arbiter, which calculates a 
set of candidates. In some situations, there is exactly one 
reaction, but in the general case, when the reference model is 
rather abstract, the primary arbiter cannot choose a reaction 
using only information provided by the model (for example, 
when the reference model expects two reactions on the 
interface, but their order is undefined). In such cases, the 
secondary arbiter is used, which is given with a hint on how 
the model reaction should look like (it tries to match the 
reference reaction that is similar to the detected one). 

Given a set of candidate reactions C={MRi} (provided by 
the primary arbiter), a reaction CR to be checked, and a hint 
function h, the reaction matcher works as follows. If the set C 
is empty, then it fails. If C contains exactly one element, then 
the reaction matcher returns that element; otherwise it 
calculates h(CR) (it is usually a message field, checksum or 
message in whole) and tries to find a model reaction MR∈∈∈∈C 
such that h(MR) = h(CR). If there are no such reactions, then 
it fails. If there is exactly one reaction, then it returns that 
reaction. If there are multiple reactions, then it selects 
randomly one of them. When some reaction is matched, it is 
removed from the reactions queue of the output interface. 

As soon as the reaction is selected, the appropriate 
postcondition is checked to estimate correspondence between 
the design’s reaction (CR) and the selected one (MR). It 
should be noticed that in the majority of cases equality 
CR = MR is tested. If the postcondition is violated, then the 
reaction checker reports the failure and provides the detailed 
diagnostics; otherwise the process continues. 

Using the described arbitration mechanism the approach 
makes it possible to utilize abstract models for verification of 
cycle- and pin-accurate RTL components. It easily copes with 
changes of input and output interfaces with the help of 
interface adapters. What is also important, it is applicable to 
different abstraction levels and allows refining timing 
properties of a reaction checker up to a cycle-accurate level 
(see “Application of the approach at different abstraction 
levels”). Finally, the reaction matching algorithm provides a 
basis for high-quality error diagnostics (see “Classification of 
errors”). 

                                                           
2 Constraints (particularly, undefined values) are used if the design 
specification admits several correct alternatives for the reaction. 

V. APPLICATIONS OF THE APPROACH AT DIFFERENT 
ABSTRACTION LEVELS 

According to the reaction checking scheme, there are two 
main parameters that determine abstractness of a reference 
model (and a reaction checker in whole): (1) reaction detection 
mechanism and (2) reaction arbitration mechanism. The first 
of them decides if the target design produces a reaction on a 
given output interface or not. If there is a reaction, then the 
second mechanism finds a model reaction for that one. 

Reaction detection mechanism for a single output interface 
can be described as a Boolean function depending on the 
reference model’s state (S∈∈∈∈MS) and the design’s outputs 
(O∈∈∈∈DO)3: 

d: MS × DO → {true,  false}. 

Roughly speaking, d-functions are calculated at every 
simulation cycle. If one of them returns true, then a reaction is 
detected. After that, the arbitration mechanism is launched for 
the corresponding output interface. 

Reaction arbitration mechanism (including primary and 
secondary arbiters) is modeled as a function that returns a 
model reaction or a special value failed depending on the 
model’s state and a detected reaction (CR∈∈∈∈MR): 

a: MS × MR → MR ∪ {failed}. 

Using d- and a-functions one can define the basic abstraction 
levels mentioned above.  

In cycle-accurate models, reaction detection does not use 
the design’s outputs. A reference model itself determines 
points of time when reactions should occur. In other words, all 
the d-functions of the model look as follows: 

d: MS → {true,  false}. 

Cycle-accurate model

Funct ional model
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Output  interfaces adapters

Postcondit ion checkers

CR

DR

Get

Verdict

Primary arbiters

 

Figure 4.  Reaction checker of a cycle-accurate model 

Another distinctive feature of cycle-accurate models is that 
such models do not use secondary arbiters. Primary arbiters 
(which are a part of a model) are able to choose a single 
reaction to be compared with the detected one. This property 
means that all the a-functions do not depend on a detected 
reaction and do not fail: 

                                                           
3
 Since we usually use the black-box approach, the inner-design state is not 

considered here. 



a: MS → MR. 

Fig. 4 shows a response checker’s fragment for a cycle-
accurate model. You can see that reaction detectors and 
secondary arbiters are absent. 

In contrast to cycle-accurate models, untimed functional 
models do not specify any timing properties of hardware 
components. Particularly, it implies that they do not have 
primary arbiters and thereby reaction matching is done with 
the help of secondary arbiters only. To determine points of 
time when reactions occur, untimed models (as all kinds of 
approximate timed models) use reaction detectors. d-functions 
of such models usually depend only on the design’s outputs: 

d: DO → {true,  false}. 

A response checker for an untimed model is illustrated in 
Fig. 5. You can see that primary arbiters are removed and all 
model reactions are passed to secondary arbiters directly. 
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Figure 5.  Reaction checker for an untimed model 

Reference models of the other abstraction levels (timed 
functional models, timed communication models, etc.) are 
situated between cycle-accurate and untimed models. Since 
they are not very accurate, they use reaction detectors. 
However, as opposed to pure untimed models, timed models 
employ primary arbiters. The distinction between intermediate 
models consists mostly in different concretization of the 
arbiters. There are two basic classes of arbiters: deterministic 
(order-accurate), which choose no more than one reaction 
from a given set, and nondeterministic (order-inaccurate), 
which might select several reactions failing to determine the 
exact order. If nondeterminism is bounded (in a sense) we can 
identify an order-approximate class of arbiters. 

Let us say few words about transitions between different 
abstract levels. At the beginning of the design process, when 
the requirements are sufficiently incomplete, only untimed 
functional models (A in Fig. 1) are applicable. As soon as the 
requirements are clarified, the models are concretized as well. 
The leading role in reusing a testbench is assigned to the 
communication model (to the primary arbiters in particular). 
In fact, communication aspects are usually more changeable. 

In most of the cases approximate-timed models (B and C) 
are enough to achieve high-quality verification. However, in 
some cases (for critical components with complex control 

logic) cycle-accurate models (D, E, and F) are required [7]. It 
should be emphasized that changing level of a model from 
approximate-timed to cycle-accurate is difficult because it 
involves rather sophisticated computation and communication 
issues. The thing is that it is required only for a little number of 
components and only at the final design stages (i.e. not too 
often). In other cases, timing refinement is generally connected 
with the tuning of the primary arbiters. 

Let us see a trivial example in C++ containing a part of a 
reference model that describes some operation of some DUV: 

  void DUV::Operation(Interface &input, Message &stimulus) { 
    // Apply the stimulus via the input interface adapter 
    RECV(input, stimulus); 
    // Compute the reactions at some abstraction level 
    ... 
    // Inform the testbench on the expected reaction 
    SEND(output, reaction); 
    ... 
  } 

The operation is modeled as a method with two parameters: (1) 
an input interface and (2) a stimulus message. The first thing 
the method does is call RECV that applies the stimulus to the 
inputs. After that, the reference reactions are computed and 
stored by calling SEND. In cycle-accurate models, one can use 
a construct CYCLE to emulate the DUV’s cycle. Calling SEND 
in such models results in immediate reading of the design 
reaction from the outputs and then comparing it with the 
reference value. For untimed and approximate-timed models a 
separate process is created that, first, detects a design reaction, 
then, reads it, and, finally, matches it with one of the model 
reactions expected on the corresponding interface. 

VI. CLASSIFICATION OF ERRORS 

The suggested scheme for the reaction checking provides a 
good foundation for the error classification and diagnostics. 
To classify different types of bugs in hardware components, 
we introduce a reaction checking graph illustrating possible 
alternatives in the checking process (see Fig. 6). 

 
Figure 6.  Reaction checking graph 



The graph shown in Fig. 6 is a bit simplified, but it clearly 
demonstrates the main classes of errors (they are shown as 
black circles). If a testbench expects some reaction, but it is not 
detected within a reasonable amount of time, then a missing 
reaction error is reported and provided with detailed 
information on the expected reaction (message, output 
interface, and estimated time). Every time when a reaction is 
detected, the primary and the secondary arbiters are requested. 
If they both fail, then the testbench reports an unexpected 
reaction error informing about the interface and time. If the 
arbiters provide one-to-one matching, then the selected model 
reaction is compared with the detected one; otherwise the 
testbench warns about nondeterministic behavior and compares 
all the reactions chosen with the detected one. If there is at least 
one coincidence, then the reaction checking is supposed to be 
successful; otherwise the testbench report an incorrect reaction 
error and displays the most probable candidates for the detected 
reaction. 

VII. EXPERIENCE 

The suggested approach for developing testbenches has 
been used in a number of industrial projects on hardware 
verification (mostly for individual units of microprocessors 
[8]). It has demonstrated the ability to detect high-quality errors 
in hardware designs (including hardly detectable bugs in 
control logic), acceptable man-hours, and reusability of 
testbench components. Our experience is summarized in 
Table 2. 

TABLE II.  APPLICATIONS OF THE SUGGESTED APPROACH 

Design under 
verification 

Maximal 
abstractness 

Minimal 
abstractness 

Design stages 

Translation lookaside 
buffer (TLB) 

Detailed-timed 
model 

Cycle-accurate 
model 

Late/final  

Floating point unit 
(FPU) 

Untimed model — Late/final 

Non-blocking L2  
cache 

Approximate-
timed model 

Detailed-timed 
model 

Middle/late 

Northbridge data 
switch 

— 
Cycle-accurate 

model 
Final 

Memory access unit 
(MAU) 

Untimed model 
Cycle-accurate 

model 
Early/middle 

System interrupt 
controller 

Untimed model 
Approximate-
timed model 

Early/middle 

Fig. 7 demonstrates averaged labor-costs for developing 
reference models of hardware components at different 
abstraction levels. Of course, it is rather crude approximation, 
but it works well in real practice. For example, it has taken us 
about 100% of the initial efforts to add approximate timed 
properties to the untimed model of the system interrupt 
controller (1 man-month). The properties we have added 
describe the order of reactions on two output interfaces. It has 
allowed us to find an additional bug in the design (1 of 8). 
Another example is TLB. We have spent 1 man-week of 3 to 
make the reference model to be cycle-accurate and have 
detected 3 additional bugs of 10. 
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Figure 7.  Relative labor-costs for developing reference models 

at different abstraction levels 

VIII. CONCLUSIONS 

It is obvious that usage of more concrete models allows 
detecting more complex bugs. It is also obvious that 
development of more concrete models requires more resources. 
Choosing right abstraction level for verification is a problem 
which is really hard to formalize. Decision making should take 
into account lots of factors, like application domain of the 
hardware being designed, available resources and many others. 
Regardless of the decision, it would be rather useful to have an 
approach making it possible to reuse the available models – 
refine them without changing it considerably. 

The article considers the problems of developing reusable 
testbenches and suggests the approach that is based on the 
TLM concept. It allows using abstract reference models for the 
RTL verification and adapting reaction checkers to changes of 
interfaces and timing properties of the designs. In the future we 
are planning to improve the error diagnostics to detect such 
errors as reaction missequencing and demultiplexing failures. 
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