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ABSTRACT
The measure of similarity between objects is a very useful
tool in many areas of computer science, including informa-
tion retrieval. SimRank is a simple and intuitive measure of
this kind, based on graph-theoretic model. SimRank is typ-
ically computed iteratively, in the spirit of PageRank. How-
ever, existing work on SimRank lacks accuracy estimation of
iterative computation and has discouraging time complexity.

In this paper we present a technique to estimate the ac-
curacy of computing SimRank iteratively. This technique
provides a way to find out the number of iterations required
to achieve a desired accuracy when computing SimRank. We
also present optimization techniques that improve the com-
putational complexity of the iterative algorithm from O(n4)
to O(n3) in the worst case. We also introduce a threshold
sieving heuristic and its accuracy estimation that further
improves the efficiency of the method.

As a practical illustration of our techniques we computed
SimRank scores on a subset of English Wikipedia corpus,
consisting of the complete set of articles and category links.

1. INTRODUCTION
The requirement for measuring similarity between objects

arises in many fields of computer science; examples include
recommender systems, “related pages” queries of web search
engines, document classification and clustering. Large amounts
and fast growth of information require machine aid to hu-
mans for finding, classifying and analyzing requested infor-
mation. Such a range of challenges includes automatically
detecting objects similar to a given object and ranking them
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in accordance with their similarity scores. While humans
make judgment on object similarity intuitively, based on
their previous experience, the task of systematically com-
puting object similarity by a machine remains nontrivial.
For practical applicability, an effective similarity measure
should both reflect human intuition on objects similarity
and provide reasonable computational complexity.

For the existing similarity measures, two broad categories
can be outlined: (i) content- or text-based similarity mea-
sures that treat each object as a bag of items or as a vector of
word weights, and (ii) link-based ones that consider object-
to-object relations expressed in terms of links. In the recent
research [12], the extensive evaluation of different similar-
ity measures was performed, and link-based measures pro-
duced systematically better correlation with human judg-
ments compared to text-based measures. It is worth men-
tioning that the success of the Google search engine began
with its ability to rank search results in accordance with hu-
man expectations; the latter feature was essentially based on
a purely link-based ranking algorithm called PageRank [1].
From this perspective, it is reasonable to assume that an
effective similarity measure would have a comparable im-
pact for computer science techniques as PageRank ranking
algorithm had for web search.

Considering the outlined state of the art, the similar-
ity measure SimRank [7] can be considered as one of the
promising ones, due to the following reasons. SimRank is a
link-based similarity measure, and builds on the approach of
previously existing link-based measures. SimRank is based
on both a clear human intuition and a solid theoretical
background. Similarly to PageRank, SimRank is defined
recursively with respect to “random surfer” model and is
computed iteratively. Unlike the similarity measures that
require human-built hierarchies, SimRank is applicable to
any domain with object-to-object relationships, including
the Web.

Nevertheless, existing work on SimRank lacks two impor-
tant issues. Firstly, although SimRank iterative similarity
scores are known to converge [7], a real-life computation
naturally involves performing a finite number of iterations.
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However, a potential difference between SimRank iterative
similarity scores and theoretical ones remains an open ques-
tion. The symmetric question is finding out the precise num-
ber of iterations sufficient to guarantee a desired accuracy.

Secondly, optimization issue of SimRank computation is
not the primary focus of the original SimRank proposal [7].
To the best of our knowledge, there exists the only research
work concerning SimRank optimization [3]. That work is
initially oriented on SimRank probabilistic computation, de-
tails are considered in the Related Work section. As for
SimRank iterative computation, optimization has not been
addressed in scientific literature yet, and the time complex-
ity of the straightforward SimRank computation is an ob-
stacle for using SimRank on practical data corpora.

This paper presents a solution to both issues, both math-
ematically proven and practically approved by experimental
results. In summary, the main contributions of this paper
are the following:

• A precise accuracy estimate is presented for SimRank
scores computed iteratively, with respect to the theo-
retical ones. This allows one to find out the number of
iterations required for achieving the desired accuracy.

• Optimization techniques for SimRank computation are
presented that improve SimRank computational com-
plexity from O(n4) to O(n3). A threshold sieving
heuristic is introduced and its accuracy estimation is
given that further improves the efficiency of the method.

• SimRank computational viability for relatively large
object corpora in the presence of the suggested opti-
mization techniques is verified experimentally by com-
puting SimRank similarity scores for a subset of En-
glish Wikipedia corpus, consisting of the complete set
of articles and category links.

The rest of the paper is organized as follows. In the next
section, SimRank overview is given and the necessary no-
tations and formulae are introduced. In Sect. 3, accuracy
estimate for the SimRank iterative computation model is
established. In Sect. 4, SimRank optimization techniques
are suggested and summarized in the general algorithm;
the computational complexity of the proposed algorithm is
given. Sect. 5 gives the overview of the related work. Ex-
perimental results are presented in Sect. 6. Future work is
discussed in Sect. 7.

2. SIMRANK OVERVIEW
In this section, SimRank overview is given, and notations,

formulae and SimRank properties necessary for further dis-
cussion are provided. The material presented in this section
recalls Jeh’s and Widom’s work [7].

SimRank approach is focused on “object-to-object rela-
tionships found in many domains of interest” [7]. From the
relationships perspective, a domain is assumed to be mod-
eled as a (logical) graph, with nodes representing objects
and edges (links) representing relationships.

The basic intuition behind SimRank approach is: “two
objects are similar if they are referenced by similar objects”
[7]. Note that the given intuition is recursive by nature. As
the base case, any object is considered maximally similar to
itself, i.e. having a similarity score of 1 assigned.

Before presenting the mathematical formula that reifies
the basic SimRank intuition, several notations are intro-
duced. Given a graph G(V,E) consisting of a set of nodes V
and a set of links E, the following two mappings are further
assumed defined for each node v in the graph:

• I(v) denotes all in-neighbours of node v, i.e. all nodes
that have a link to v:

I(v) = {u ∈ V | (u, v) ∈ E} .

• O(v) denotes all out-neighbours of v, i.e. all nodes the
node v has a link to:

O(v) = {w ∈ V | (v, w) ∈ E} .

Notations |I(v)| and |O(v)| denote the number of nodes in
I(v) and O(v) respectively. Individual member of I(v) and
O(v) are referred to as Ii(v), 1 ≤ i ≤ |I(v)| and Oi(v), 1 ≤
i ≤ |O(v)|; a particular order of members when associated
with indices is not important for further discussion.

With the similarity score between objects a and b denoted
by s(a, b) ∈ [0, 1], the basic SimRank intuition is then writ-
ten as follows:

s(a, a) = 1 ,

s(a, b) =
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b)) , (1)

with a constant C being the decay factor, 0 < C < 1. For
preventing division by zero in the general formula (1) in case
of I(a) or I(b) being an empty set, s(a, b) is specially defined
as zero for I(a) = ∅ or I(b) = ∅.

We will further refer to s(∗, ∗) as SimRank theoretical sim-
ilarity function, and refer to its value s(a, b) as theoretical
similarity score between nodes a and b.

A solution to the SimRank equations (1) is reached by
iteration to a fixed-point. For each iteration k, an itera-
tive similarity function Rk(∗, ∗) is introduced, with Rk(a, b)
denoting the iterative similarity score between a and b on it-
eration k. The iterative computation is started with R0(∗, ∗)
defined as

R0(a, b) =

{
1 , if a = b ,

0 , if a 6= b .
(2)

On the (k + 1)-th iteration, Rk+1(∗, ∗) is defined in special
cases as

Rk+1(a, b) = 1 , if a = b ,

Rk+1(a, b) = 0 , if I(a) = ∅ or I(b) = ∅ ,

and is computed from Rk(∗, ∗) in the general case as follows:

Rk+1(a, b) =
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

Rk(Ii(a), Ij(b)) . (3)

The following SimRank properties stated in [7] are worth
noting for the purposes of our further discussion:

1. A solution s(∗, ∗) to SimRank equations (1) always
exists and is unique, and s(∗, ∗) ∈ [0, 1].

2. For each k, Rk(∗, ∗) is a lower bound on the theoretical
SimRank function s(∗, ∗), i.e. Rk(a, b) ≤ s(a, b).
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3. Iterative functions Rk(∗, ∗) converge to SimRank the-
oretical function s(∗, ∗), i.e. limk→∞Rk(a, b) = s(a, b).

We will further refer to these properties by their correspond-
ing item numbers within the above list.

Symbol K further denotes the total number of iterations
performed; n denotes the number of nodes in a graph.

3. ITERATIVE SIMILARITY ACCURACY
ESTIMATE

Although Jeh and Widom proved iterative similarity con-
vergence [7], SimRank practical computation naturally im-
plies performing a finite number of iterations. From this per-
spective, no quantitative estimates were given for a potential
difference between SimRank iterative similarity scores and
theoretical ones. In this section, we fill in this gap and esti-
mate the accuracy of computing SimRank iteratively.

The following proposition establishes the accuracy esti-
mate for iterative similarity function Rk(∗, ∗) obtained after
k iterations with respect to theoretical similarity function
s(∗, ∗).

Proposition 1. The difference between SimRank theo-
retical and iterative similarity scores decreases exponentially
in the number of iterations and uniformly for every pair of
nodes. Precisely, for every iteration number k = 0, 1, 2, . . .
and for every two nodes a, b, the following estimate holds:

s(a, b)−Rk(a, b) ≤ Ck+1 . (4)

In conjunction with SimRank Property 2 listed above, the
proposition gives the following estimate:

0 ≤ s(a, b)−Rk(a, b) ≤ Ck+1 .

Proof. If a = b then s(a, a) = Rk(a, a) = 1 by definition
for every k = 0, 1, 2, . . ., the left-hand side of (4) is zero, and
thus (4) obviously holds.

Similarly, if I(a) = ∅ or I(b) = ∅ then by definition
s(a, b) = Rk(a, b) = 0, and the left-hand side of (4) is zero
as well.

For the general case of a 6= b, I(a) 6= ∅ and I(b) 6= ∅, the
proof is organized by mathematical induction.

Induction Basis Let us prove that (4) holds for k = 0, i.e.
that for every two nodes a, b:

s(a, b)−R0(a, b) ≤ C . (5)

Since a 6= b, I(a) 6= ∅ and I(b) 6= ∅, then R0(a, b) = 0
by definition, s(a, b) is defined by the general recursive
equation (1), and consequently

s(a, b)−R0(a, b) = s(a, b) =

=
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b))︸ ︷︷ ︸
≤1

≤

≤ C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

1 = C ,

which proves (5).

Inductive step Provided that (4) holds for a given k for
all node pairs, let us prove that (4) holds for (k + 1)

b u u u� � . . . u u�

du
�
�	

@
@I

a u u u� � . . . u u�

︸ ︷︷ ︸
path with k edges

Figure 1: Illustration of the upper bound stated in
Proposition 1 reached: Rk(a, b) = 0, Rk+1(a, b) = Ck+1

as well:

s(a, b)−Rk+1(a, b) =

=
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

s(Ii(a), Ij(b))−

− C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

Rk(Ii(a), Ij(b)) =

=
C

|I(a)| |I(b)| ×

×
|I(a)|∑
i=1

|I(b)|∑
j=1

{s(Ii(a), Ij(b))−Rk(Ii(a), Ij(b))}︸ ︷︷ ︸
≤Ck+1 by inductive hypothesis

≤

≤ C · |I(a)| |I(b)| · Ck+1

|I(a)| |I(b)| = C · Ck+1 = C(k+1)+1 .

The latter finally proves (4).

As an accompanying result, it follows from the above
proposition that Rk(∗, ∗) converges to s(∗, ∗) uniformly.

Note 1. The upper bound stated in Proposition 1 is pre-
cise.

Indeed, let us consider an arbitrary k = 0, 1, 2, . . . and a
pair of nodes a, b in a graph presented in Fig. 1 for the
chosen k. In this figure, each of the nodes a and b has an
incoming directed path of length (k+1) that starts from some
common node d. In such a graph configuration, it can easily
be seen that Rk(a, b) = 0, whereas Rk+m(a, b) = Ck+1, m =
1, 2, 3, . . ., which gives s(a, b) = Ck+1. Subtracting Rk(a, b)
from s(a, b), we obtain

s(a, b)−Rk(a, b) = Ck+1 ,

which gives the precise upper bound stated in Proposition 1.

For PageRank iterative computation [13], a condition on
whether the current iteration can be considered the last one
has to be checked on every iteration: the iterative loop is
terminated when the L1 norm between PageRank iterative
vectors for two consecutive iterations becomes no greater
than the constant ε:

‖Rk+1 −Rk‖1 ≤ ε . (6)

On the contrary, Proposition 1 presented in this paper for
SimRank allows finding out the precise number of iterations
required for achieving a desired accuracy a-priori. This ob-
servation provides additional freedom for optimizing Sim-
Rank computation, the subject of our discussion in the next
section.
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Proposition 1 shows that the number of iterations K re-
quired for achieving a desired accuracy depends on neither
the number of nodes in an input graph nor on any other
graph characteristics like the degree of nodes. Jeh and Wi-
dom observed K independence from an input graph experi-
mentally [7]; Proposition 1 now gives the theoretical founda-
tion for this observation. The observation has an important
implication for SimRank computational complexity, as the
latter naturally depends on the number of iterations. In ac-
cordance with Proposition 1, the number of iterations can
now be considered constant with respect to different input
graphs.

It is worth noting that Jeh and Widom [7] suggested
choosing the decay factor value C = 0.8 and the total num-
ber of iterations K = 5, which in accordance with Proposi-
tion 1 stated above imply a relatively large potential differ-
ence between theoretical and computed similarity scores:

0.85+1 = 0.86 > 0.26 ,

that could be unacceptable for many domains recalling that
similarity scores fall into the [0..1] segment. For guarantee-
ing more accurate computation results, it can be advised
using either a smaller decay factor or more iterations. The
recommendation for using a smaller decay factor is approved
from the viewpoint of similarity scores quality by the exper-
imental results obtained in [3].

Depending on the needs of a particular application, Propo-
sition 1 provides a precise mechanism for finding out (i) ei-
ther the accuracy value for the given decay factor C and
the number of iterations k, or (ii) vice versa, the number of
iterations required for achieving a desired accuracy. A more
detailed discussion on the subject is given in Subsect. 4.3
below.

Proposition 1 provides an estimate for absolute difference
between theoretical and iterative similarity scores; for rank-
ing purposes, the relative order of nodes with respect to
their similarity to a given node is generally more important
than absolute scores. From this perspective, the following
ranking accuracy estimate can be established.

Proposition 2. The minimum difference between theo-
retical similarity scores that allows correctly ranking two nodes
with respect to a third node in accordance with their pair-
wise iterative similarity scores decreases exponentially in the
number of iterations. Precisely, if

s(a, b) > s(a, d) + Ck+1 , (7)

then it necessarily follows that

Rk(a, b) > Rk(a, d) . (8)

Proof. Let us estimate the difference:

Rk(a, b)−Rk(a, d) > {using (7)} >
> Rk(a, b)−Rk(a, d)− s(a, b) + s(a, d) + Ck+1 =

= s(a, d)−Rk(a, d)︸ ︷︷ ︸
≥0

− (s(a, b)−Rk(a, b))︸ ︷︷ ︸
≤Ck+1 using (4)

+Ck+1 ≥

≥ 0− Ck+1 + Ck+1 = 0 ,

which gives (8).

The proposition states that the iterative SimRank compu-
tation appropriately grabs exponentially smaller differences
in theoretical similarity scores.

Propositions 1 and 2 are important not only on their own,
establishing an a-priori correlation between the number of
iterations k and iterative similarity scores accuracy, but also
as a theoretical basis for one of the optimization techniques
suggested in the next section.

4. OPTIMIZATION TECHNIQUES
In this section, optimization techniques for SimRank com-

putation are suggested.
The optimization techniques cover three consecutive as-

pects in SimRank computation. Firstly, a technique for se-
lecting essential node pairs is presented, aimed at skipping
node pairs that do not require similarity scores computing
for a given iteration. Secondly, the notion of partial sums
is suggested for reducing the number of access operations
to the iterative similarity function and for facilitating effi-
cient clustering. Thirdly, threshold-sieved similarities are
introduced for speeding up subsequent iterations.

Each of the three outlined aspects is covered in its own
subsection accordingly. In the fourth subsection, the sug-
gested optimization techniques are integrated into a general
SimRank optimized computation algorithm.

4.1 Selecting Essential Node Pairs
In this subsection, techniques for selecting essential node

pairs are suggested for not computing iterative similarity
scores for the remaining node pairs while preserving the cor-
rect semantics of SimRank iterative similarity functions.

Definition 1. Let essential paired nodes for a given node
a over a similarity function Rk(∗, ∗) denote all nodes from
the following set of nodes1:

EssentialRk (a) =

= {b | ∃u ∈ I(a), ∃v : Rk(u, v) 6= 0, b ∈ O(v)} . (9)

The reason for referring to nodes from a thus defined set
as “essential paired nodes” for a given node becomes clear
from the following proposition.

Proposition 3. For a given node a, Rk+1(a, b) is zero
for every node b such that

b 6∈ {a} ∪ EssentialRk (a) . (10)

Proof (by contradiction). Suppose thatRk+1(a, b) is
non-zero for some node b from (10). Since it follows from
(10) that b 6= a, and since I(a) 6= ∅ and I(b) 6= ∅ in accor-
dance with our supposition Rk+1(a, b) 6= 0, then Rk+1(a, b)
is computed by general iterative formula (3). As all items
in (3) are non-negative, it follows from Rk+1(a, b) 6= 0 that
there exists at least a single pair of indexes (i0, j0) such that
Rk(Ii0(a), Ij0(b)) 6= 0. Let us denote Ii0(a) = u, Ij0(b) = v.

By their notation, u ∈ I(a), v ∈ I(b). By symmetry, it fol-
lows from v ∈ I(b) that b ∈ O(v). Thus b ∈ EssentialRk (a),
since the chosen nodes u and v are the ones that satisfy (9).
The latter result leads to a contradiction with the initial
terms of the proposition.

Definition 1 and Proposition 3 provide an algorithm for
considering only essential node pairs and thus skipping iter-
ative scores computation for the remaining ones. From the

1Recall that notation O(v) denotes the set of all out-
neighbour nodes of node v, as mentioned in Sect. 2.
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computational viewpoint, the set of essential paired nodes
EssentialRk (a) for a given node a can be obtained by first
constructing a temporary set of nodes TempRk (a) that con-
sists of all nodes having non-zero similarity scores with some
I(a) member:

TempRk (a) = {v | ∃u ∈ I(a) : Rk(u, v) 6= 0} . (11)

It can easily be verified that the set of essential paired nodes
for a can then be obtained by taking all out-neighbours for
every node in TempRk (a), i.e.:

EssentialRk (a) = {b | ∃v ∈ TempRk (a) : b ∈ O(v)} . (12)

Computational complexity for both (11) and (12) for a given
node a is quadratic in the number of nodes in a graph,
intermediate memory consumption is linear. As a single
SimRank iteration generally involves calculating (11) and
(12) for every node a in the graph, their computational
complexity is O(n3) for a single iteration. Memory con-
sumption remains linear, since TempRk (a) can be freed af-
ter EssentialRk (a) is constructed, and EssentialRk (a) can be
freed after essential paired nodes for node a are processed.
Further discussion in this section shows that computational
complexity is no more than O(n3) for subsequent processing
within a SimRank iteration as well.

Essential node pairs provide a better selectivity when the
iterative similarity function Rk(∗, ∗) has a relatively small
fraction of non-zero values with respect to zero ones. We will
refer to such a similarity function as a sparse one. A tech-
nique for keeping an intermediate iterative similarity func-
tion sparse is suggested in Subsect. 4.3.

Iterative similarity scores computation can be skipped not
only for node pairs with a-priori zero scores, but also for
the ones that are not required for a subsequent iterative
computation.

Proposition 4. If a node u in a graph has no outgoing
links, then Rk+1(∗, ∗) does not depend on Rk(u, ∗).

Proof (by contradiction). Suppose that there exists
a pair of nodes a, b ∈ V such that Rk+1(a, b) depends on
Rk(u, ∗). Note that a 6= b, I(a) 6= ∅ and I(b) 6= ∅, since in a
otherwise case Rk+1(a, b) is constant by definition and thus
does not depend on Rk(u, ∗).

It follows from a 6= b, I(a) 6= ∅ and I(b) 6= ∅ thatRk+1(a, b)
is calculated by the general iterative formula (3). Since
Rk(∗, ∗) is presented in the right-hand side of (3) in the
form of Rk(Ii(a), Ij(b)), the only way for Rk+1(a, b) to de-
pend on Rk(u, ∗) is to have u = Ii0(a) for some index i0, i.e.
to have u ∈ I(a). But u ∈ I(a) implies by symmetry that
a ∈ O(u). The latter contradicts the proposition terms on
O(u) = ∅.

Corollary 1. If a node u in a graph has no outgoing
links, then it is sufficient to calculate Rk(u, ∗) on just the
last iteration without violating the semantics of SimRank it-
erative computation.

An a-priori knowledge of the precise number of iterations
provided by Proposition 1 plays the crucial role for the prac-
tical applicability of Corollary 1. If the number of iterations
were unknown a-priori, all non-zero similarity scores would
have had to be computed anyway for the reason of finding
out when to terminate the iterative computation—recall (6)
in PageRank approach.

From the computational viewpoint, checking the applica-
bility of Corollary 1 for a given node u can be performed in
constant time and requires no additional memory, and thus
constitutes a practical pruning mechanism.

While Proposition 3 is focused on pruning node pairs with
zero similarity from consideration, Proposition 4 and Corol-
lary 1 cover a different pruning aspect. Indeed, even if a
node u has no outgoing links, it can still have many incoming
links and thus have a non-zero similarity with many other
nodes in a graph. Moreover, calculating all these similarity
scores can involve a large computational effort. However, if
the node u has no outgoing links, then this computational
effort can be saved on intermediate iterations and performed
for the last iteration only. We will show the practical impor-
tance of this proposition when considering the experimental
results.

4.2 Partial Sums
After essential node pairs for a given node are selected,

optimization technique presented in this subsection allows
reducing the number of access operations to Rk(∗, ∗) re-
quired for computing Rk+1(∗, ∗). The main idea behind the
optimization is that a sum of Rk(∗, ∗) values over a cer-
tain set of arguments is used for computing several values
of Rk+1(∗, ∗) and can thus be effectively memoized for pre-
venting repeated computation.

For an elaborate discussion on the subject, let us first
introduce the notion of a partial sums function.

Definition 2. Let f(∗, ∗) be a binary function X×Y → R
and let S be a finite subset in X: S = {x1, x2, . . . , xp}, xi ∈
X, i ∈ 1, p. By partial sums for the function f over the set S
we will call a unary function Y → R denoted as PartialfS(∗)
and defined as follows:

PartialfS(y) =
∑
xi∈S

f(xi, y) , y ∈ Y .

A partial sums function is introduced for being applied to
SimRank iterative similarity scores computation:

Proposition 5. For a 6= b, I(a) 6= ∅ and I(b) 6= ∅,
Rk+1(a, b) can be computed iteratively as

Rk+1(a, b) =
C

|I(a)||I(b)|

|I(b)|∑
j=1

Partial
Rk
I(a)(Ij(b)) . (13)

Proof. The proposition is proved by simply swapping
the summation signs in the iterative formula (3):

Rk+1(a, b) =
C

|I(a)||I(b)|

|I(b)|∑
j=1

|I(a)|∑
i=1

Rk(Ii(a), Ij(b))︸ ︷︷ ︸
PartialRk

I(a)(Ij(b))

and by noting that the internal summation is the value of
the partial sums function for Rk(∗, ∗) over I(a) for argument
Ij(b).

Although trivial in its proof, Proposition 5 provides the
efficient speedup technique for SimRank computation, based
on the following corollary:

Corollary 2. For a given fixed node a, the same partial
sums function Partial

Rk
I(a)(∗) is used for computing Rk+1(a, b)

for every node b in a graph.
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The key point in optimizing Rk+1(a, ∗) computation via

a partial sums function Partial
Rk
I(a)(∗) is that once calcu-

lated partial sums values are memoized and are thus not
recalculated when subsequently required. For example, if
Ij(b) = Il(d) = u for some nodes b and d, then the par-

tial sum value Partial
Rk
I(a)(u) is calculated once and is used

in both Rk+1(a, b) and Rk+1(a, d) computation. Since for

some nodes w, the partial sum values Partial
Rk
I(a)(w) will

probably not be required for computing the Rk+1(a, ∗) val-
ues, it is reasonable to calculate the partial sums function
in a delayed fashion.

Analyzing computational complexity, the straightforward
iterative SimRank computation involves |I(a)| · |I(b)| access
operations to Rk(∗, ∗) for computing Rk+1(a, b) for a single
pair of nodes (a, b), resulting in n2avga,b(|I(a)||I(b)|) oper-

ations per iteration [7], being O(n4) in the worst case [17].
For comparison, computing a single partial sum value in-
volves |I(a)| access operations to Rk(∗, ∗); and at most n
partial sums values are required for computing Rk+1(a, ∗)
for a fixed node a as the first argument and every other
node as the second one. The latter approach requires only
O(n3) operations per iteration in the worst case, which is a
definite improvement achieved by partial sums.

Partial sums allow additionally speeding up SimRank com-
putation by Rk(∗, ∗) values clustering. Precisely, before par-
tial sums were introduced, computing Rk+1(a, b) for a single
pair of argument nodes generally required accessing Rk(∗, ∗)
for a Cartesian product of I(a) × I(b); such argument val-
ues spread hardly made any clustering strategy provide ac-
cess time speed up. For comparison, partial sums usage
allows clustering the underlying storage for Rk(∗, ∗) values
by the first argument. Indeed, due to Rk(∗, ∗) symmetry,

Partial
Rk
I(a)(u) can be computed from Rk(u, ∗) involving a

single node for the first argument:

Partial
Rk
I(a)(u) =

|I(a)|∑
i=1

Rk(Ii(a), u) =

|I(a)|∑
i=1

Rk(u, Ii(a)) .

Moreover, all other operations overRk(∗, ∗) required through-
out this paper for SimRank computation use batch access to
Rk(u, ∗), for a fixed first argument node and a set of second
argument nodes:

• Essential node pairs selection facilitates obtaining all
essential paired nodes for a given node a; calculating
the set of essential paired nodes in accordance with
(11) involves obtaining all non-zero values Rk(u, ∗) for
a given first argument node u.

• Corollary 2 facilitates computing Rk+1(a, ∗) for a given
first argument node and all second argument nodes
from the essential paired nodes set before proceeding
to another node as the first argument.

The above made observations allow achieving access opera-
tions speed up by clustering Rk(∗, ∗) by the first argument
from the underlying storage viewpoint.

4.3 Threshold-Sieved Similarity
For certain graphs classes like scale-free graphs [8], the

iterative similarity function Rk(∗, ∗) has an abundance of
non-zero values after just a few iterations. However, many of
these values, although being non-zero, denote low similarity

between node pairs and thus contain little practical infor-
mation for the result similarity scores. On the other hand,
keeping all these small but nevertheless non-zero similarity
scores requires considerable storage amounts and slows down
subsequent iterations.

Since scale-free graphs constitute the underlying represen-
tation for many practical corpora including Wikipedia [18]
and the Web, we propose the notion of a threshold-sieved
similarity function for effectively handling desired similarity
scores. The necessary theoretical results are presented to
ensure that a threshold-sieved similarity function provides a
user-controlled effect over the result similarity scores.

Let us choose some non-negative parameters δ1, δ2, . . . , δK ,
where each δk is treated as a threshold for iterative similarity
scores on the k-th iteration. Conceptually, similarity score
for a pair of nodes (a, b) on the k-th iteration will be treated
as zero if this value is not greater than the threshold δk, and
the thus formed threshold-sieved similarity score for (a, b)
was zero for the previous iteration as well.

Formally, let us define a threshold-sieved iterative simi-
larity function R

δk
k (∗, ∗) over a set of threshold parameters

{δk} as follows:

Rδ00 (a, b) = R0(a, b) ;

R
δk+1
k+1 (a, a) = Rk+1(a, a) = 1 ; (14)

R
δk+1
k+1 (a, b) = 0 , if I(a) = ∅ or I(b) = ∅ ; (15)

R
δk+1
k+1 (a, b) =

C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

R
δk
k (Ii(a), Ij(b)) ,

if either (right-hand side > δk+1)

or R
δk
k (a, b) 6= 0 ; (16)

R
δk+1
k+1 (a, b) = 0 , otherwise . (17)

In R
δk+1
k+1 (a, b) definitions (15) – (17), a and b are assumed

to be different nodes; when a and b are the same node, the

definition of R
δk+1
k+1 (a, a) is given separately in (14).

For textually distinguishing Rk(∗, ∗) and R
δk
k (∗, ∗), we will

further refer to Rk(∗, ∗) as conventional iterative similarity.
It can easily be proven by mathematical induction that

conventional similarity function is an upper bound for a
threshold-sieved one, i.e.

R
δk
k (a, b) ≤ Rk(a, b) , ∀a, b , ∀k . (18)

Moreover, the following estimate for threshold-sieved it-
erative similarity function with respect to conventional iter-
ative similarity function can be established:

Proposition 6. For every iteration k = 0, 1, 2, . . . and
for every two nodes a, b ∈ V the following estimate holds:

Rk(a, b)−Rδkk (a, b) ≤ ∆ ,

where

∆ =

k∑
m=1

Ck−mδm . (19)

Proof. For a = b, I(a) = ∅ or I(b) = ∅, the same reason-
ing as for Proposition 1 applies. We thus further consider
a 6= b, I(a) 6= ∅ and I(b) 6= ∅ and prove the proposition by
induction over the iteration number k.
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Induction Basis For k = 0, the estimate obviously holds,
as R0(a, b)−Rδ00 (a, b) = 0.

Inductive Step During the inductive step, we refer to ∆
as ∆(k) when stressing that summation is performed
from 1 to k, and as ∆(k+ 1) when stressing that sum-
mation is performed from 1 to (k + 1).

Provided that the proposition holds for k, let us esti-

mate the difference Rk+1(a, b)−Rδk+1
k+1 (a, b) for (k+1).

Two possible cases will be considered separately: the

one for R
δk+1
k+1 (a, b) = 0 and the other for R

δk+1
k+1 (a, b) 6=

0:

1. If R
δk+1
k+1 (a, b) = 0, then it follows from (16) and

(17) that

C

|I(a)||I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

R
δk
k (Ii(a), Ij(b)) ≤ δk+1 ,

(20)

and the difference Rk+1(a, b) − Rδk+1
k+1 (a, b) is es-

timated thus:

Rk+1(a, b)−Rδk+1
k+1 (a, b) = Rk+1(a, b) ≤

≤ {using (20)} ≤ Rk+1(a, b) + δk+1 −

− C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

R
δk
k (Ii(a), Ij(b)) =

= δk+1 +
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

{

Rk(Ii(a), Ij(b))−Rδkk (Ii(a), Ij(b))︸ ︷︷ ︸
≤∆(k) by inductive hypothesis

} ≤

≤ δk+1 + C

k∑
m=1

Ck−mδm = ∆(k + 1) .

2. Otherwise R
δk+1
k+1 (a, b) 6= 0, and thus it is defined

by (16) and consequently

Rk+1(a, b)−Rδk+1
k+1 (a, b) =

=
C

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

{

Rk(Ii(a), Ij(b))−Rδkk (Ii(a), Ij(b))︸ ︷︷ ︸
≤∆(k)

} ≤

≤ C

k∑
m=1

Ck−mδm ≤ ∆(k + 1) .

The latter finishes the induction.

The parameter ∆ is intended as a user control over maxi-
mum potential difference between threshold-sieved and con-
ventional iterative similarity functions, and thus ∆ is gen-
erally chosen by a user. Provided that δ1, δ2, . . . , δk are
selected to fulfill (19), Proposition 6 states that difference
between threshold-sieved and conventional similarity scores
does not exceed ∆.

Note from the proposition proof that the equation (19)
gives the worst-case upper bound. In practice, we noted the

differences between Rk(∗, ∗) and R
δk
k (∗, ∗) for k = 5 being

smaller than ∆ by one order of magnitude.
It should be noted that if ∆ is chosen to be zero, then

δ1 = δ2 = . . . = δK = 0 and a threshold-sieved iterative
similarity function R

δk
k (∗, ∗) becomes a conventional itera-

tive similarity function Rk(∗, ∗). From this perspective, a
threshold-sieved similarity can be considered as a general-
ization for a conventional similarity.

One of the possible ways for choosing threshold parame-
ters δ1, δ2, . . . , δk is to specify every iteration make an equal
contribution to the ∆ value:

Ck−mδm =
∆

k
, m = 1, k ,

which gives

δm =
∆

kCk−m
, m = 1, k . (21)

Due to general commonalities between a threshold-sieved
and a conventional similarity functions, previously stated
Propositions 3 and 4 straightforwardly apply to threshold-
sieved similarity function. With partial sums introduced in
the previous subsection, equations (16) and (17) are rewrit-
ten correspondingly as:

R
δk+1
k+1 (a, b) =

C

|I(a)||I(b)|

|I(b)|∑
j=1

Partial
R
δk
k

I(a)(Ij(b)) ,

if either (right-hand side > δk+1)

or R
δk
k (a, b) 6= 0 ; (22)

R
δk+1
k+1 (a, b) = 0 , otherwise . (23)

The combination of Propositions 1 and 6 provides the up-
per bound for a maximum potential difference between a
threshold-sieved similarity function and the theoretical sim-
ilarity function:

Proposition 7. For every pair of nodes (a, b) and for
every iteration number k = 0, 1, 2, . . ., the following estimate
holds:

s(a, b)−Rδkk (a, b) ≤ ε ,

where

ε = Ck+1 + ∆ , (24)

and threshold parameters δ1, δ2, . . . , δk are chosen with re-
spect to ∆ as specified by (19).

Proof. The proposition immediately follows from Propo-
sitions 1 and 6.

In combination with (18) and SimRank Property 2, the
estimate stated in Proposition 7 has the following form:

0 ≤ s(a, b)−Rδkk (a, b) ≤ ε .

Based on Proposition 7, the analogue of Proposition 2 for
ranking accuracy estimate can be straightforwardly stated
for a threshold-sieved similarity function, replacing Ck+1

with ε.
A threshold-sieved iterative similarity function R

δk
k (∗, ∗)

may at first seem as an approximation for a conventional it-
erative similarity function Rk(∗, ∗); however, Proposition 7
shows that both actually follow the same nature of uniformly
converging to the theoretical similarity function s(∗, ∗) for
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k → ∞, ∆ → 0. When a user wishes to achieve a desired
accuracy ε, she or he is free to follow on of the two possible
options. The user can turn threshold sieving off by specify-
ing ∆ = 0, which in accordance with (24) would result in a
fewer number of iterations K required for achieving accuracy
ε:

K = dlogC εe − 1 .

Alternatively, the user can perform one more iteration and
assign additional accuracy tolerance to ∆:

K = dlogC εe ;

∆ = ε− CK+1 .

As our experimental results presented in Sect. 6 show, the
latter option provides a faster computation due to a more
freedom for applying the suggested optimization techniques,
even though the additional SimRank iteration is performed.

4.4 The Optimized SimRank Computation Al-
gorithm

All optimization techniques suggested in the previous sub-
sections are collected within Algorithm 1 for SimRank opti-
mized computation. As different strategies for choosing K
and ∆ for achieving the desired accuracy can be applied, the
algorithm accepts both parameters as input.

Algorithm 1 SimRank optimized computation

Input: G(V,E), C, K, ∆

Output: RδKK (∗, ∗)
1: Calculate δ1, δ2, . . . , δK
2: Initialize R0(∗, ∗)
3: for k = 0 to K − 1 do
4: for all a ∈ V do
5: if O(a) = ∅ and k 6= K − 1 then
6: Continue for next a
7: end if
8: Initialize Partial

Rk
I(a)(∗)

9: Calculate EssentialRk (a)
10: for all b ∈ {a} ∪ EssentialRk (a) do

11: Calculate R
δk+1
k+1 (a, b)

12: end for
13: Free EssentialRk (a)

14: Free Partial
Rk
I(a)(∗)

15: end for
16: end for

As algorithm statements are described in high-level terms,
the following list collects references to underlying formulae
and theoretical justifications given earlier in the paper and
implied in a corresponding algorithm line:

• In line 1, each δm can be calculated by equation (21).
A different strategy for choosing δ1, δ2, . . . , δK can be
used; the only requirement is that (19) be fulfilled.

• In line 2, R0(∗, ∗) is defined by (2).

• In lines 5 – 7, the conditional expression is justified by
Corollary 1.

• In line 9, EssentialRk (a) is calculated by (11), (12).

• In line 10, the condition in the header of the for loop
is justified by Proposition 3.

• In line 11, R
δk+1
k+1 (a, b) is calculated by (14), (15), (22)

and (23).

• In lines 13 and 14, the free statement is used to denote
that EssentialRk (a) and Partial

Rk
I(a)(∗) are not required

for further computation and can be dropped.

Collecting complexity analysis for all suggested optimiza-

tion techniques, it follows that computing R
δk+1
k+1 (a, ∗) re-

quires quadratic time and linear intermediate memory in the
number of nodes in a graph in the worst case. Performing
a single iteration for all node pairs in a graph thus requires
O(n3) time and O(n) intermediate memory; intermediate
memory consumptions are negligible with respect to storage
involved in keeping computed similarity scores.

A complete sequence of iterations consequently has com-
putational complexity ofO(Kn3). As it was shown in Propo-
sitions 1 and 7 that the number of iterations K required for
achieving the desired accuracy does not depend on the num-
ber of nodes n in the graph, we finally obtain that SimRank
computation in the presence of the suggested optimization
techniques is O(n3).

5. RELATED WORK
Due to practical importance of measuring object-to-object

similarity, different approaches to defining similarity mea-
sures were suggested in scientific literature, e.g. the ones
based on domain hierarchies [5], information theory [9], net-
work flow computation [11]. With respect to the focus of this
paper, a detailed discussion is given to related work that ei-
ther correlate with SimRank or present similarity measures
with complexity analysis claimed applicable for large data
corpora.

Xi et al. suggested a similarity-calculating algorithm called
SimFusion that aims at “combining relationships from mul-
tiple heterogeneous data sources” [17]. The basic intuition
behind SimFusion approach somewhat resembles the one for
SimRank: “the similarity between two data objects can be
reinforced by the similarity of related data objects from the
same and different spaces” [17]. SimFusion provides the fol-
lowing extensions with respect to SimRank: (i) support for
different kinds of intra-nodes relations, e.g. outgoing links,
content commonality; (ii) support for different weights as-
sociated with different kinds of relations; (iii) support for
several information spaces.

Iterative similarity computation formula for SimFusion
has much in common with the one for SimRank. Indeed,
with Lurm being a row-stochastic matrix that combines all
the relationships between nodes, SimFusion reinforcement
assumption is reified as follows:

Skusm = LurmS
k−1
usmL

T
urm , (25)

where Susm is a “unified similarity matrix” that represents
similarity values between node pairs [17]. Let us denote a
row in Lurm that corresponds to node a as Lurm(a), and a
matrix element in Skurm that corresponds to a pair of nodes
(a, b) as Skusm(a, b). If we then consider node relations of
the kind “has an incoming link” and treat all incoming links
as of an equal priority, then Lurm(a) contains 1

|I(a)| in col-

umn Ii(a), i = 1, n and zeroes in all remaining columns. In
accordance with (25), SimFusion iterative similarity value
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between nodes a and b thus takes the form:

Skusm(a, b) = Lurm(a)Sk−1
usm(Lurm(b))T =

=
1

|I(a)| |I(b)|

|I(a)|∑
i=1

|I(b)|∑
j=1

Sk−1
usm(Ii(a), Ij(b)) , (26)

which is the same as for SimRank iterative formula minus
the decay factor C. Unlike SimFusion, SimRank similar-
ity score for any node with itself always equals to 1, and
these initial similarity scores are iteratively propagated to
the other node pairs. In SimFusion, initial similarity scores
are redistributed in a flow fashion through node relations,
and thus node similarity with itself may not be equal to 1.

If a node has no incoming links, it has zero SimRank sim-
ilarity score with every other node except for itself. In Sim-
Fusion, a node with no relationship to the other nodes in
data space has each element in the corresponding row of re-
lationship matrix set to 1/n for preventing similarity sinks.
This treatment has the same effect as introducing a source
of rank in PageRank [13].

In spite of the noted differences between SimRank and
SimFusion, equation (26) shows that the overall iterative for-
mulae for SimRank and SimFusion have much resemblance
to each other. Consequently, some of the optimization tech-
niques presented in this paper should apply to SimFusion
computation as well, e.g. essential node pairs selection in
terms of sparse matrices. We also believe that there should
exist an analogous accuracy estimate for SimFusion as the
one revealed for SimRank.

Computational complexity for SimFusion is O(Kn3) in
the worst case [17]. Cubic computational complexity in the
number of nodes for SimFusion directly follows from matrix
representation (25); as for SimRank, the double summation
in the iterative formula (3) misleaded SimRank computa-
tional complexity, which was previously considered O(Kn4)
in the worst case [7, 17]. The idea of partial sums suggested
in this paper fixes this inconsistency between SimRank and
SimFusion, for now both are known to have cubic computa-
tional complexity in the number of nodes.

Fogaras and Rácz [3] suggested a scalable framework for
SimRank computation based on Monte Carlo method. The
main idea of their approach is to generate reversed random
walks for each node in a graph, calculate the first meeting
time τa,b for a pair of random walks started in nodes a and
b, and estimate s(a, b) by Cτa,b . In their work, Fogaras and
Rácz suggest several excellent ideas, in particular, finger-
print trees, random permutations on graph nodes for effec-
tively generating coupled random walks, parallelization pos-
sibilities for SimRank computation under their framework.
The probabilistic approach they took allowed them signif-
icantly reduce the computational complexity and create a
framework for similarity computation scalable enough for
performing SimRank precomputation phase for a graph with
79M nodes. Fogaras and Rácz provide a solid theoretical ba-
sis for approximations they make and a (probabilistic) error
estimate for their Monte Carlo similarity function. Valu-
able experimental results are obtained for path length and
the decay factor value; surprisingly however, Monte Carlo
similarity was not compared with iterative SimRank simi-
larity from the scores quality perspective. The differences
in our approaches are that Fogaras and Rácz initially base
their framework on Monte Carlo method, and thus their
computation is inherently probabilistic, whereas our work is

focused on iteratively computing the exact similarity scores.
For improving time and space requirements for SimRank

computation, Jeh and Widom [7] suggested pruning the log-
ical graph G2. Their proposal is to “set the similarity be-
tween two nodes far apart to be 0, and consider node-pairs
only for nodes which are near each other” [7]. This tech-
nique is based on the assumption that “it is very likely that
the neighborhood (say, nodes within a radius of 2 or 3) of
a typical node will be a very small percentage (< 1%) of
the entire domain” [7]. Firstly, this assumption does not
hold for scale-free graphs, as these have a very small average
distance (or diameter) between nodes [2]. As our early ex-
perimental studies over practical scale-free graphs showed,
even the neighbourhood within the radius of 2 contains a
considerable proportion of graph nodes.

Secondly, pruning graph G2 in the suggested way is an
approximation; Jeh and Widom provide no theoretical ar-
gument about the error of approximating [3], but admit that
“the quality of the approximation needs to be verified” [7].
Finally, removing node pairs not near each other from con-
sideration undermines the basic SimRank design principle
of being a generalization to a conventional immediate in-
neighbours analysis [15]. As verified by Fogaras and Rácz in
their experiments, “the multi-step neighborhoods of pages2

contain valuable similarity information” [3].
For comparison, optimization techniques suggested in this

paper are free from the above mentioned drawbacks. Select-
ing essential node pairs does not affect iterative similarity
scores. Threshold sieving has a controllable effect over iter-
ative scores precision that can be restored by performing an
additional iteration. The techniques do not decrease the ra-
dius of a node neighbourhood considered for similarity scores
computation.

Maguitman et al. [12] introduce an information-theoretic
measure of semantic similarity that exploits human-generated
topical directories metadata and relies on “both hierarchical
and non-hierarchical structure of an ontology” [12]. Magui-
tman et al. suggest a flexible mechanism for extending the
previously existing tree-based semantic similarity measures
to a graph-based semantic similarity; however, their results
are based on the assumption that a graph necessarily has a
“hierarchical (tree) component” T .

Maguitman et al. claim computational complexity O(n3)
for their semantic similarity measure for n topics [12]; how-
ever, that is computational complexity for just a single ma-
trices product A � B used in their reasoning. Precisely,
semantic similarity measure requires the closure matrix T+

computed; the latter is defined as T+ = limr→∞ T
(r), with

T (r+1) = T � T (r), T (0) = T . Consequently, obtaining T+

alone implies computational complexity O(n3h), where h is
“the maximum depth of the tree T” [12]. Generally, h de-
pends on n, and the worst case computational complexity
for T+ is actually O(n4), not O(n3).

Maguitman et al. required significant computational and
storage resources for computing similarity scores for their
semantic similarity measure for a data corpus consisting of
0.5M topics containing totally 1.23M pages [12]. For com-
parison, our claim is that SimRank optimization techniques
suggested in this paper allow computing SimRank similarity
scores on a desktop machine in reasonable time even for a
larger data corpora, as our experimental results illustrate.

2The term “page” there is used in the same semantics as
the term “node” throughout this paper.
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Using once computed semantic similarity scores as a base-
line, Maguitman et al. introduce and compare several ap-
proximation measures. Notably, link-based similarity mea-
sures systematically produced better correlation with se-
mantic similarity measure and correspondingly with human
judgments compared to text-based measures [12]. This im-
portant result can in particular serve as an approval for Sim-
Rank being a purely link-based similarity measure.

Lin et al. [10] suggest a similarity measure based on Page-
Rank scores propagation through link paths. With r stand-
ing for the propagation radius and d for an average node
degree, finding similar nodes to a given node with respect
to that measure has computational complexity of O(d2r),
which we believe being too ineffective for on-line computa-
tion assumed in [10].

Geerts et al. [6] introduce the concept of a database graph
for expressing relationships between partial tuples in a re-
lational database and explore methods for ranking partial
tuples. Defining similarity measures in a database graph
is pointed out as an interesting question for future work.
We believe that SimRank can be a candidate measure for
this domain, since a database graph contains enough infor-
mation for computing SimRank similarity scores for partial
database tuples, and the suggested optimization techniques
provide viable computational complexity.

6. EXPERIMENTAL RESULTS
In this section, experimental results are presented for il-

lustrating the practical quantitative effect of applying the
optimization techniques presented in this paper.

We implemented a prototype that provides SimRank simi-
larity scores computation and incorporates the suggested op-
timization techniques in accordance with algorithm 1 given
in Sect. 4. From the implementation perspective, each graph
node is identified by a distinct non-negative integer. Iter-
ative SimRank similarity function for each iteration is rep-
resented by a square matrix, with a matrix element stand-
ing for the similarity score between nodes identified by the
corresponding row and column numbers. From the storage
perspective, a matrix is sparse, in that constant 1s across
the main diagonal and zero similarity scores are not stored.
Matrix storage in external memory is implemented on top
of Oracle Berkeley DB3. As noted in Subsect. 4.2, the sug-
gested optimization techniques facilitate clustering similar-
ity function values by the first argument, corresponding to
clustering a matrix by rows in matrix terms. For each row
number, the associated (column number, similarity score)
pairs are stored adjacently. Each of the mappings I(v) and
O(v) is implemented as an association between a node iden-
tifier for v and a list of node identifiers for the corresponding
in-neighbours and out-neighbours respectively.

Two kinds of experiments are reported in this section: one
for generated graphs and the other for the English Wikipedia
corpus.

6.1 Experiment over Generated Graphs
The purpose of the experiment over generated graphs is to

investigate the dynamics in SimRank computation time with
respect to the number of nodes in a graph and particular op-
timization techniques employed. We have chosen scale-free

3http://www.oracle.com/technology/products/berkeley-
db/index.html

Computation time, seconds
Number No Selecting turn on turn on
of nodes optimi- essential Partial Threshold

in a zation node sums sieving,
graph pairs K = 6

1000 42 11 2 2
2000 348 157 25 13
5000 8061 5181 588 309

10000 165902 131675 8145 2799

Table 1: SimRank computation time w.r.t. the num-
ber of nodes in a graph. For each subsequent col-
umn, another optimization technique is turned on.
For the last column, ∆ < C6 − C7.

graphs for this experiment, because scale-free graphs have a
very small diameter [2], and a node thus generally has non-
zero similarity scores with a significant proportion of other
nodes in the graph after several SimRank iterations, rather
than with a fixed number of nodes. The described feature of
a scale-free graph thus allows investigating a pessimistic case
in SimRank computation, rather than an optimistic case.

Two sets of generated graphs were used: one set was pro-
duced by scale-free graph generator4 and the other – by
XMark generator [14]. For the purposes of the experiment,
the implementation was made configurable, with the abil-
ity of turning each optimization technique on and off at
compile-time. For properly taking access operations time
into account, unbiased by cache speed, the cache size in Or-
acle Berkeley DB was chosen proportionally to the number
of nodes in a graph and sufficient for keeping just several
matrix rows. The following machine configuration was used:
2.1GHz Intel Pentium processor, 1Gb RAM and Linux OS.

The averaged computation time with respect to the num-
ber of nodes in a graph and the particular optimization tech-
niques used is shown in Table 1. For a correspondence with
experiment conditions performed by Jeh and Widom [7], the
decay factor C was chosen as 0.8; the number of iterations
K was set to 5 for all table columns except for the last
one. First computing SimRank with no optimization, opti-
mization techniques are consequently turned on one by one
for each subsequent column in Table 1, thus illustrating the
speedup achieved by each individual optimization technique.
For the last column, six iterations were performed instead
of five, with threshold sieving turned on for ∆ chosen as
∆ = 0.05 < C6 − C7, which in accordance with Proposi-
tion 7 gives the same total accuracy of computed similarity
scores as for all the remaining columns.

Two important conclusions can be drawn from the exper-
imental results presented in Table 1. Firstly, even for a rel-
atively small graph sizes considered, using partials sums ex-
poses radical speedup that fully corresponds with the theo-
retical expectations presented in Sect. 4. Secondly, SimRank
computation benefits from using threshold-sieved similarity
functions, even with the additional iteration performed for
recovering the total accuracy of similarity scores. The lat-
ter result approves the recommendation made in the end of
Subsect. 4.3.

For graphically illustrating the effect of introducing par-

4Dreier, D. Manual of Operation: Barabasi Graph Genera-
tor v1.0. University of California Riverside, Department of
Computer Science. (2002)
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Figure 2: SimRank computation time with and
without partial sums usage w.r.t. the number of
nodes n in a graph.

tial sums for SimRank computation, Fig. 2 shows computa-
tion time with respect to the number of nodes in a graph in a
more detail in the form of bar charts, for SimRank computed
(a) without and (b) with partial sums. For illustrating the
correlation between the computation time and the number
of nodes in a graph, each bar chart is approximated by a
polynomial curve. Note that different scale is chosen across
the vertical axis in Fig. 2 (a) and (b) for providing a more
illustrative look for each curve shape.

Constants P and Q in Fig. 2 were calculated in accordance
with minimum mean square error estimator; quartic and
cubic functions respectively showed the best approximation
for SimRank computation time without and with partial
sums, compared to the other polynoms in the number of
nodes in a graph. This experimental result fully agrees with
the theoretical considerations made in Sect. 4.

6.2 Experiment over Wikipedia Corpus
Our practical interest for implementing the suggested op-

timization techniques was to compute SimRank over the
complete set of articles from English Wikipedia corpus.

Wikipedia is an open content online encyclopedia project
that is “created in a collaborative effort of voluntary con-
tributors”5. Wikipedia is available in many languages, with
the English version being the largest one, containing 2.2M
articles. In addition to being a popular online encyclopedia,
Wikipedia has recently obtained a big academic interest as

5http://wikipedia.org/

an information corpus by itself6, e.g. [16, 4]. However, to the
best of our knowledge, nobody has yet reported the expe-
rience in computing SimRank scores for English Wikipedia
corpus.

Since each Wikipedia article is generally dedicated to de-
scribing a single encyclopedic concept, we have naturally
chosen an individual article to be a node in SimRank model.
As Wikipedia articles are organized into categories being ar-
ticles themselves, we chose the relationship “a category con-
tains an article” to be a link from the category to the article.
We will further refer to a thus built graph as the Wikipe-
dia graph. Computing SimRank scores over the Wikipedia
graph has the semantics of obtaining similarity scores for
encyclopedic concept pairs. Note that the Wikipedia graph
covers only a subset of Wikipedia corpus, since category
links constitute a subset of links available in Wikipedia.

As we had a practical interest in computing SimRank over
the Wikipedia graph from the beginning of our research, our
implementation evolved throughout the optimization tech-
niques development. Before any optimization techniques
were introduced, preliminary experiments showed that Sim-
Rank computation over the Wikipedia graph would have
taken months at least to complete, which was unacceptable.

After the set of optimization techniques presented in this
paper has been worked out, SimRank computation over the
Wikipedia graph takes approx. 17 hours to complete on a
single machine, making it possible to perform the compu-
tation on a nightly basis. We use a machine with 3GHz
Intel Pentium 4 processor, 4Gb RAM and 32-bit Linux OS;
the cache size of 256Mb is specified for Oracle Berkeley DB.
The following SimRank computation parameters are used:
C = 0.6, K = 5, ∆ = 0.05. The chosen parameters val-
ues provide reasonable accuracy ε = 0.65+1 + 0.05 < 0.1 for
computed SimRank scores. Note that due to the polyno-
mial dependence between the decay factor C and accuracy
ε, even a relatively small decrease in the decay factor results
in a considerable improvement in accuracy.

Note that the Wikipedia graph provides a practical illus-
tration for Corollary 1 presented in Subsect. 4.1: Wikipedia
graph nodes not being categories have no outgoing links,
and thus SimRank scores for them are computed on the last
iteration only, while correctly preserving the semantics of
SimRank iterative model.

SimRank similarity scores for Wikipedia concepts pairs
provide a valuable practical source of information. We are
using the computed scores for extending search engines func-
tionality and for word sense disambiguation. Our further
plans include using the computed scores for automatic news
feeds classification.

7. FUTURE WORK
Although optimization techniques presented in this paper

provide a considerable improvement to SimRank computa-
tional complexity, our profiling experiments revealed that a
significant proportion of computation time is occupied by
graph access operations I(v) and O(v). Although SimRank
computational complexity is guaranteed to remain at most
cubic in the number of nodes, graph access operations may
become a performance bottleneck in the growing size of in-
put graphs. Our future work thus involves developing fur-

6Wikipedia in academic studies. – http://en.wikipedia.org/
wiki/Wikipedia:Wikipedia in academic studies
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ther optimization techniques for speeding up graph access
operations. Our current vision to achieving scalability in the
growing size of input graph is splitting the graph into several
(generally, intersecting) subgraphs in such a way that

1. each subgraph could be passed to its own parallel com-
putation instance as if the complete graph without
changing the result of similarity scores computation
for node pairs processed by that instance; and

2. each subgraph is small enough to fit into main memory
for maximizing the speed of access operations.

Our future plans include developing a systematic procedure
for splitting a general graph into subgraphs that satisfy the
above listed requirements. In particular, we believe that
scale-free graphs theory [8] can be exploited for developing
such a procedure for scale-free graphs, which constitute an
underlying model for many existing practical domains.

8. CONCLUSION
The paper addresses the issues missing for similarity mea-

sure SimRank, namely, accuracy estimate and optimization
techniques, for facilitating SimRank wider application.

A precise accuracy estimate for SimRank iterative com-
putation is established. The estimate reveals that SimRank
computation parameters suggested in the original SimRank
proposal implied a relatively low accuracy, and the choice
for different parameter values is suggested. The accuracy
estimate allows a-priori finding out the correct number of
iterations required for achieving a desired accuracy. The
number of iterations turns out to be independent of input
graph characteristics, the fact to benefit scalability.

Optimization techniques are suggested and integrated into
the general algorithm to provide a systematic improvement
for SimRank computational complexity.

Experimental results show a 50 times speedup achieved by
the optimization techniques for a graph with 10K nodes, and
relative improvement in computation time further increases
for larger graphs. The experience in computing SimRank
scores over the English Wikipedia corpus exhibits practical
viability of the approach for relatively large data corpora.

We believe that the results presented in the paper would
facilitate a wider application of SimRank to computer sci-
ence techniques, as this similarity measure definitely de-
serves.
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