
Application Programming Interface for XML DBMS:

design and implementation proposal

c© Maria Rekouts

Institute for System Programming of Russian Academy of Sciences
rekouts@ispras.ru

Ph.D. Advisor A.N. Tomilin

Abstract

As XML becomes ubiquitous, there are a
growing number of applications that uti-
lize it. Most of such applications working
with some kinds of XML storages, in par-
ticular with Native XML Databases, need
to perform navigation over XML data re-
trieved from the database. The Application
Programming Interface with efficient navi-
gational facilities, that XML DBMS must
provide these applications with, is still un-
der discussion among XML DBMS develop-
ers. In this paper we present design and
implementation of XML DBMS Application
Programming Interface that provides effi-
cient navigational facilities.

1 Introduction

XML [4] is finding its way into applications beyond
those that traditionally utilize markup languages.
In particular, XML is becoming popular as a data
interchange notation for database-oriented applica-
tions. On the other hand the need to process and
store XML has prompted researches and develop-
ers to create Native XML DBMS (NXD). Currently,
there are about 20 different native XML DBMS on
the market: commercial and open source. Most of
them are quite raw. And some of the main mech-
anisms are still under discussion. API (Application
Programming Interface), that NXD should provide
applications with, is one of those mechanisms. In
this paper we discuss design and implementation as-
pects of the API for a Native XML Database named
Sedna [8].

We have marked out a number of basic notions
that do not depend on the data model and com-
mon to databases of different kinds. While devel-
oping the design we could not pass over relational
and object-oriented databases APIs, and in partic-
ular much was borrowed from the JDBC API. But
in our paper the Navigational API, that is a subin-
terface of XML DBMS API, is of greater interest.
In this paper we focus on design of XML DBMS

Proceedings of the Spring Young Researcher’s Collo-

quium On Database and Information Systems SYR-

CoDIS, St.-Petersburg, Russia, 2004

Navigational API and present our implementation
proposal of Navigational API.

2 The Sedna API

The API must provide programmatic access to XML
data from some programming language. We chose
Java for this language because of the number of rea-
sons: mostly because of its flexibility and opportune
mechanisms such as garbage collection, also because
of its popularity, some of the reasons we will discuss
below. Using the API, application written in the
Java programming language can establish a connec-
tion with DBMS server, manage user sessions, man-
age transactions, pass query as a string to server for
execution, get the result and navigate over the result
of a query.

We do not propose exact list of all API interfaces
and methods but below we consider API functions
in more detail. When we say object of an interface
we mean an object of a class that implements that
interface.

2.1 Establishing a connection

DatabaseManager interface is an entry point. The ap-
plication starts its work with DBMS by calling static
method getConnection of the DatabaseManager inter-
face.

The API defines the Connection interface to
represent a connection to a DBMS server. The
Connection can also be considered as a user session.
Using static method getConnection(String DB-

Name, String user, String password) of the
DatabaseManager interface, application connects
to the DBMS server and the server performs
authorization with the parameters specified. If
authorization succeeds the object of Connection

interface is returned. When finishing its work with
DBMS application can break the connection using
close() method of a Connection interface.

2.2 Managing Transaction

Ones a connection has been established, an appli-
cation using the API can execute queries and up-
dates against the DBMS server in defined trans-
action boundaries. Connection consists of transac-
tions, which are held one after another. Sedna API

allows specifying transaction attributes by provid-
ing methods in the Connection interface: begin(),
commit(), rollback() and createStatement().

2.3 Managing Statements

To execute XQuery statements and to retrieve
results application can use Statement inter-
face. createStatement() of a Connection in-
terface is used to get object of the Statement

interface. Statement interface provides two
methods for executing XQuery queries:
executeQueryLite and executeQueryHeavy.
executeQueryLite(String query) is used to get
the result in a serialized form (as a String).
executeQueryHeavy(String query) returns an object
of a Sequence interface as a result. Sequence

represents the result of XQuery query evaluation.
It provides navigational facilities over XML data
and its mechanisms we will consider properly.

2.4 Navigational API

Today most applications that utilize XML data
stored in XML DBMS need to be provided with easy
and versatile navigational facilities over that XML
data. That is, XML DBMS API must include Nav-
igational API. Such an API must allow the applica-
tion to navigate over XML data that was retrieved
as a result of a query evaluation.

Today Document Object Model (DOM) [1] is one
of the most popular APIs for navigation over XML
data. DOM is a prevailing W3Cs proposal that is a
platform- and language-neutral interface that allows
programs and scripts to dynamically access and up-
date the content, structure of documents. Because
of its prevalence it is also often considered as an in-
terface for navigation over XML data retrieved from
XML database. But in our API proposal we do not
use DOM because of the following reasons: first, it
does not support data types of the XML Schema.
Second, it is designed to model XML documents,
but not the result of evaluation of XQuery expres-
sion (this we discuss in 2.4.2 of this paper).

We believed, that the ways of navigation over
some data (or the Navigational API functionality)
are determined mostly by the data model of those
data. Thus, the Sedna XML DBMS API must pro-
vide functionality for navigation over XML data that
rests upon XML Data Model. So, Navigational API
is the part of the whole XML DBMS API that rad-
ically differs from API for DBMS of another kind.
Its design demands a new approach.

In this section we will discuss our proposal for
navigational API over XML data. But before that,
let us consider the issue in case of relational data in
order to explore that experience for our goals.

2.4.1 Navigation over relational data using

the JDBC API

The JDBC API [7] provides programmatic access
to relational data from the Java programming lan-
guage. Using the JDBC API, applications written

in the Java can execute SQL statements and retrieve
results.

To navigate over retrieved data application uses
the ResultSet interface of the JDBC API. ResultSet
objects can have different functionality and charac-
teristics. These characteristics are result set type,
result set concurrency and cursor holdability. The
type of a Result Set object determines the level of
its functionality in two main areas: (1) the way in
which the cursor can be moved and (2) how concur-
rent changes made to the underlying data source are
reflected by the ResultSet object. We consider only
the first item in this section because it is relational
data model specific.

The ResultSet object is most often created as the
result of executing SQL statement. A ResultSet ob-
ject maintains a cursor, which points to its current
row of data. When a ResultSet object is first cre-
ated, the cursor is positioned before the first row.
The following methods can be used to move the cur-
sor:

• next()— moves the cursor forward one row,

• previous()– moves the cursor backwards one
row,

• first()– moves the cursor to the first row in
the ResultSet object,

• last()– moves the cursor to the last row in the
ResultSet object,

• absolute(int row)– positions the cursor on the
row-th row of the result set object.

After the cursor is set to the row required the val-
ues of the column can be retrieved. The ResultSet
interface provides methods for retrieving the values
of the columns from the row where the cursor is cur-
rently positioned. Two getter methods exist for each
JDBC type: one that takes the column index as its
first parameter and one that takes the column name
or label.

From this short JDBC review we can conclude
that the navigation over relational data is completely
simple because of its flat structure. First, you po-
sition a cursor at the row required; second, you re-
trieve a value from the column specified. In addi-
tion, we take into account the fact that in up-to-
date relational DBMS the length of the row is often
restricted by the length of the server physical data
pages. Thus, such navigation is easy to implement as
every item of the ResultSet object – the row – need
not to be divided into parts and may be processed
as one unit of data.

2.4.2 Navigation over XML data

In this section we consider the issue for the XML
data. Here we fully rely on the XQuery 1.0 and
XPath 2.0 Data Model [14].

The Navigational API of the Sedna XML DBMS
must implement the notions and concepts of the
XQuery 1.0 and Xpath 2.0 Data Model. In this

Sequence

Item

getItem()

Atom
Node

asNode()
 asAtom()

accesor-functions
 getType()

getValue()

ItemType

NodeType
 AtomType

‘document’

‘element’

‘attribute’

‘text’

‘namespace’

‘processing-instruction’

‘comment’

XML Schema Types

getType()

QName

next()

Figure 1: Interrelation between the interfaces

section we consider the data model and present the
following interfaces that implement its notions and
concepts: Sequence, Item, Node, Atom, ItemType,
AtomType, NodeType and QName. We also con-
sider node accessors as a mechanism for navigation.
Figure 1 shows the interrelation between the inter-
faces.

According to [14] the value of an XQuery query
expression is a sequence of zero or more items. An
item is either a node or an atomic value. A node
is one of seven node kinds: document, element, at-
tribute, text, namespace, processing instruction, and
comment. An atomic value encapsulates an XML
Schema atomic type and a corresponding value of
that type. A sequence is an ordered collection of
nodes, atomic values, or any mixture of nodes and
atomic values. A sequence cannot be a member of
a sequence. A single item appearing on its own is
modeled as a sequence containing one item.

Thus, turning back to our Sedna XML DBMS
API, calling executeQueryHeavy method of a State-
ment interface produces the object of a Sequence
interface.

The Sequence interface represents the sequence
as it is defined above. Similar to the JDBC API
navigation over the sequence can be of two kinds:
first, you can iterate over sequence items; second,
you can navigate over the Item itself.

For iterating over items of the sequence method
next() of the Sequence interface is provided. Next()
returns false if the sequence has finished. If true
is returned the current item can be accessed using
method getItem() that returns the object of the Item
interface and navigation over this item can be pro-
cessed.

Item interface represents the item of a sequence as
it was defined above. It is a superinterface for Atom
and Node interfaces. It provides methods getType()
and isNode() that allows to determine whether the
current item is a node or an atomic value. Method
isNode() returns true if the current item is a Node
and false if it is an Atom. Method getType() returns
an object of an ItemType class.

ItemType interface is a superinterface for Atom-
Type and NodeType interfaces. An object of
the AtomType interface describes one of the XML
Schema atomic types [13]. An object of the Node-

Type interface describes one of the seven node kinds:
document, element, attribute, text, namespace, pro-
cessing instruction, and comment.

When the type of item has been determined a
node or an atomic value can be retrieved using
asNode() and asAtom() methods. asNode() returns
an object of the Node interface, asAtom() returns
an object of the Atom iterface.

Atom interface represents an atomic value. The
object of Atom class encapsulates the AtomType
field that describes the type of the atomic value, and
the value.

In order for applications to be able to operate on
instances of the data model, the model must expose
properties of the items it contains. The XQuery 1.0
and XPath 2.0 Data Model does this by defining
a family of accessor functions. We consider acces-
sors as a mechanism for navigation over XML data
and associate a corresponding method in the Naviga-
tional API with every accessor. In XQuery 1.0 and
XPath 2.0 Data Model a set of accessors is defined
on all seven kinds of Nodes.

Thus, in the Sedna Navigational API we define a
Node interface to represent the node as it is defined
in [14]. The Node class encapsulates its type and
provides methods that implement accessors accord-
ing to this Node type.

Below we give an overview of the methods of Node
class that implements accessors with some explana-
tions. When we use the term QName we mean the
QName class of the API that encapsulates the pair
of values consisting of a namespace URI and a local
name. Listing all the accessors with their behavior
for every kind of nodes is out of this paper size. Our
proposal fully relies on [14] and all the details can
be found there.

• base-uri returns an object of the Sequence
class containing zero or one reference. Doc-
ument, element, and processing-instruction
nodes have a base-uri property. The base-uri
of all other node types is the empty sequence
(an object of the Sequence class containing zero
items). If the base-uri property of a document,
element, or processing-instruction node is non-
empty, its value is returned. If the accessor is
called on a node that does not have a base-uri
property, or whose base-uri property is empty,
the base-uri of that node’s parent is returned.
If the node has no parent, the empty sequence
is returned.

• node-kind - returns a string value identifying the
kind of node on which the accessor was called.
One of the following values is returned:

– ”document” for document nodes.

– ”element” for element nodes.

– ”attribute” for attribute nodes.

– ”text” for text nodes.

– ”namespace” for namespace nodes.

– ”processing-instruction” for processing in-
struction nodes.

– ”comment” for comment nodes.

• node-name returns a sequence of zero or one
QNames.

– For element and attribute nodes node-
name returns the qualified name of the el-
ement or attribute.

– For processing-instructions nodes, node-
name returns a QName with the process-
ing instruction target name in the local-
name and no namespace URI.

– For namespace nodes, node-name returns
an empty sequence.

• parent returns a sequence containing zero or
one nodes. For nodes that have a parent, parent
returns the parent node. For all other nodes,
it returns the empty sequence. If the return
value is not the empty sequence, it will always
be either an element node or a document node.

• string-value - every node has a string value;
the way in which the string value of a node
is computed is different for each kind of node
and is specified in the [14]. The string value of
an atomic value is computed by casting it to a
string.

• typed-value for element nodes and attribute
nodes returns the typed value of a node, which
is a sequence of zero or more atomic values
derived from the string value of the node and
nodes type in a way that is specified in [14].

• type - returns the name of the type of the node
(as a string) if it has one. If the type is anony-
mous, or if no type information exists, the name
returned is no-type. For text nodes type returns
untypedAtomic. For other nodes kinds, it re-
turns an empty string.

• children - returns a sequence containing zero or
more nodes. For document and element nodes,
it returns the nodes that are the children of that
node in document order. It returns the empty
sequence for document and element nodes that
have no children. If children exist, they will al-
ways consist exclusively of element, processing-
instruction, comment, and text nodes. At-
tribute, namespace, and document nodes can
never appear as children. For all other nodes,
it always returns the empty sequence.

• attributes - returns a sequence containing zero
or more attribute nodes. For element nodes,
these are the attributes of the node. For all
other nodes, it always returns the empty se-
quence.

• namespaces - returns a sequence containing zero
or more namespace nodes. For element nodes,
these are the namespaces of the node. For all
other nodes, it always returns the empty se-
quence.

In this section we have presented our proposal
of Navigational API for XML data. Because of the
informality of our presentation some points could
remain unclear, and so in the next section we give an
illustrative example of the application program that
uses Sedna XML DBMS API. The example will also
be a material for discussion of the implementation
of the API that is the second part of our paper.

3 Example Program

In this section we provide the example of application
program that uses Sedna API to access the DBMS.
Suppose there are documents named persons and
pets in the database.

persons:

<persons>

<person>

<name>John</name>

<nick>Joe</nick>

</person>

<person>

<name>Mike</name>

</person>

<person>

<name nick="Tom">Tomas</name>

</person>

<person>

<name>Mark</name>

<nick>Mark</nick>

</person>

<person>

<name nick="Sam">Samuel</name>

</person>

</persons>

A person can contain an information about its
nick: 1) as an attribute nick of element name 2) as
an element nick.

pets:

<pets>

<cat>Tom</cat>

<dog>Sam</dog>

</pets>

The example application has to retrieve all the
persons and pets data, determine the nick of every
person if there are any and the nick of every pet and
prints out the equal nicks. That is, as a result of its
work application prints out the persons nicks that
are pet names.

import ru.ispras.sedna.driver.*;

String comp = computerName;

String dbName = xmark;

String login = user;

String password = pasw;

Connection con = DatabaseManager.

getConnection(comp, xmark, user, pasw);

con.begin();

Statement st1 = con.createStatement();

Statement st2 = con.createStatement();

Vector person_nicks = new Vector();

Sequence seq1 =

st1.executeQuery(document(\person\)/*/person);

Sequence seq2 =

st2.executeQuery(document(\pet\)/*/*/text());

while(seq1.next())

{

Item item = seq1.getItem();

if (item.isNode())

{

Node node = item.asNode();

Sequence children = node.children();

while(children.next())

{

Item i = children.getItem();

if (i.isNode())

{

Node child = i.asNode();

if (child.node-name().equals(nick))

{

String nick = child.string-value();

Person_nicks.addElement(nick);

}

if (child.node-name().equals(name))

{

Sequence attrs = child.attributes();

while(attrs.next())

{

Node at = ((Item)attrs.getItem()).asNode();

If(at.node-name().equals(nick))

{

String nick = at.string-value();

Person_nicks.addElement(nick);

}

}

}

}

}

}

}

while(seq2.next())

{

Atom atom = ((Item)seq2.getItem()).asAtom();

String pet_nick = atom.value();

if (person_nicks.contain(pet_nick))

System.out.println(pet_nick);

}

4 Implementation

In this section we present our proposal for imple-
mentation of the XML DBMS API described in this
paper. Before going into detail we consider the basic
assumptions.

4.1 Assumptions

According to the common terminology under the
term driver we understand the implementation of

the DBMS API.
Our work is based on a client-server architecture.

There are an XML database server and client appli-
cations running on the same computer or on different
computers in LAN. Client applications use driver to
work with XML database server.

We assume that client applications are poorly re-
sourced, particularly in memory resources. While
working with DBMS client applications can obtain
big portions of data for navigation. As clients are
critical in their resources the situation when a por-
tion of data is too large for clients memory is quite
reasonable. Thus, our implementation must provide
some mechanisms that would allow poorly resourced
clients to navigate over large portions of XML data.

4.2 Caching Model

Client applications navigation over big portions of
XML data that is not in memory at the client leads
to network and/or server bottlenecks. Such bottle-
necks can arise due to the volume of data requested
by the clients. Caching data items in memory at
the clients can reduce the volume of data that must
be obtained from server. Therefore, in our imple-
mentation we use client data caching technique as
a fundamental technique for improving the perfor-
mance and scalability of database systems [6].

There are two basic types of client caching:
intra-transaction caching refers to the caching of
data within a single transaction; inter-transaction

caching allows clients to keep data cached lo-
cally even across transaction boundaries. Intra-
transaction caching requires only that a client appli-
cation be able to manage its own buffer pool (cache).
This is because the transaction mechanisms will en-
sure that any data that has been accessed by a trans-
action (and hence, brought into a clients memory)
is valid. In contrast, inter-transaction data caching
raises the need for a cache consistency protocol to
ensure the application always see a consistent (seri-
alizable) view of the database. This greatly compli-
cates the issue [5].

In this paper we consider the implementation of
intra-transaction caching technique as it is easily im-
plemented that allows us to focus on navigational
aspects.

4.3 Representation of Data Items in Client’s

Cache

According to the intra-transaction caching technique
application obtains data items from the server dur-
ing a transaction, stores some of the data items in its
local cache, and when the transaction commits, the
cache flushes. Thus, cache always contains the data
that was obtained by the current transaction only.
Now we consider how the data items are represented
in client cache. As it is shown in our example in Sec-
tion 3, application uses the executeQuery method to
pass the XQuery query to the server for execution.
If the execution succeeds application obtains the Se-
quence as a result. When an object of the Sequence
interface is returned, the portion of the first item (or

the whole item if it is smaller than specified portion)
is shipped into the applications cache.

In cache XML data is represented as a set of ob-
jects. These objects form trees referring one to an-
other. The kind of object references we discuss in
the next section. Each object represents a node of a
tree or an atomic value and can be associated with
the Node or Atom the elements of the Navigational
API.

The atomic value nodes are simple, they contain
the value and the type of the value and do not refer
to other nodes.

The objects that are nodes have more compli-
cated structure. Each object that is a node is one of
the seven node kinds: document, element, attribute,
text, namespace, processing instruction, and com-
ment. It contains all the information that is needed
to implement the accessors-functions that are pro-
vided by the Node interface of the API:

• Base-uri property;

• Kind of a node;

• The value of a node;

• The type of a node;

• Reference to a parent node;

• Reference to a first child node;

• Reference to a next sibling node;

• Reference to a first attribute node;

• Reference to a first namespace node.

The values of these fields depend on the node kind
and on the node itself. That is, for example, doc-
ument nodes has NULL reference to parent node, at-
tribute nodes has NULL reference to a first child node
and their reference to a sibling node is a reference to
the next attribute node.

Note, every node has reference only to the first
child (attribute, namespace). Due to the reference
to a next child (attribute, namespace) every node of
a tree is reachable, i.e. these references is enough
for exhaustive tree traversal. Such a node struc-
ture provides an advatages: first, each node is of a
fixed structure; second, each node is of a compact
structure, since it does not contain references to all
children (attributes, namespaces).

By means of the references containg in each node
every node of a tree is reachable directly or indi-
rectly via the parent, children, attributes or names-

paces accessors-functions.

4.4 Unique Object Identifiers

While designing this implementation we confronted
with such questions as: how to determine what piece
of the data from the server is in cache, what is the
objects reference to an object that is not in cache?
All these leads to the need to associate with an ob-
ject its unique object identirier (OID).

OID is used to identify the object uniquely and
to implement inter-object references. It is indepen-
dent of the state of the object, and it is not changed
during the whole life-time of the object.

Basically, there are two kinds of OIDs: physical
and logical OIDs [2, 3]. A physical OID is con-
structed in such a way that it contains the perma-
nent address of the object it refers to (i.e., the id of
the disk, the page number and the slot). An object
can directly be loaded from server on the basis of a
physical OID. On the other side, the reorganization
and reclustering of the database is difficult because
an object cannot simply be moved to another place if
physical OIDs are used. To move an object, a place-
holder must be established; but, these placeholders
annihilate the advantage of physical OIDs as often
two page faults are required to read an object on the
basis of a physical OID and the placeholder, and the
storage utilization is reduced as the placeholders of
moved objects fragment the data pages.

In Sedna XML DBMS logical OIDs are used: ev-
ery node of XML data on the server is associated
with its logical OID. Logical OIDs are more flexi-
ble than physical OIDs, since they do not contain
the permanent address of the object they reference.
Objects can, therefore, be moved freely, and thus,
the database can well be reorganized if logical OIDs
are used. There are number of techniques to imple-
ment logical OIDs [2], in this paper we will not go
into dicussion of how they are implemented in Sedna
DBMS. So, in our implementation of the Sedna API
we rely on the fact that logical OID is provided for
a node by the server.

Thus, every object in client applications cache
contains its OID. The object reference to another
object, that was talk about in section 4.3, is the
OID of the referenced object.

If the object is in cache, application needs to lo-
cate it in the cache [9, 3]. The cache object table

(COT), in which all objects that are in cache are
registered, realizes the mapping from OIDs to client
main-memory addresses.

4.5 Application Iteraction with Cache Ob-

jects

In this section we consider what caching means for
application navigating over a big portion of data us-
ing API and how it iteracts with cache objects.

Application working with API can obtain an ob-
ject of Node class (see example from Section 3). Ob-
ject of Node class encapsulates an OID of the cor-
responding node (see figure 2). The object of Node
class implements accessors-functions working with
cached object through COT. Having OID, it reaches
the node from cache through COT and obtaines all
the information, contained in cached object, needed
to implement accessors-functions. Thus, application
iteracts with cache object indirectly, through the
COT.

Such indirect iteraction has an important advan-
tage. Application can operate with Node objects
equally, and its work is independent of the fact if
the object is in cache at the moment or has been

Application

Cache

. . .

Node node = item.asNode();

. . .

OID 1

OID
 1

OID 2

11

5

COT

Client

Server

Figure 2: Application Iteraction with Cache Objects

flushed. Every time when application operates with
its object of the Node class it consults the COT,
and, if the COT doesnt contain the OID of the ob-
ject, this object is shipped from the server into the
applications cache.

To illustrate aforesaid, we return to our example.

Sequence seq1 =

st1.executeQuery

(document(\’person\’)/*/person);

As a result of query execution application obtains
the object of Sequence class. That means a portion
of first item of the result sequence is shipped into
the applications cache.

Item item = seq1.getItem();

If (item.isNode())

{

Node node = item.asNode();

}

Here application is provided with an object node
of the Node class. It encapsultes OID and iteract
with cache object through COT.

4.6 Cache Flush

For the sake of completeness we consider cache flush
mechanism in this section.

During application navigation over data, the data
items are shipped from the server into the applica-
tions cache. At some moment cache become full and
to put a new piece of data into the cache another
piece of data must be flushed from the cache. Such
replacement performs according to some replace-
ment policy. In our implementation we use com-
mon cache replacement policy named LRU (Least

Recently Used).
According to LRU policy the objects that are

least recently used are flushed from the cache. For
this purpose we add a column to our COT. In that
column the number of object usage by application is
registered. That is, every time the application iter-
acts with the cache object through COT, the index
of this column increases by one. When the cache is
full, the objects that have minimal indexes of usage
in COT are flushed.

5 Related Work

From the works related to the issue discussed in
the paper, we would like to mention XML:DB API
[12, 10]. XML:DB Working Group has made an
effort to develop API for XML DBMS that would
become a common standard for XML DBMS like
JDBC for relational DBMS. A few XML DBMS now
provide their implementation of the XML:DB API,
but in whole XML:DB API has not made a great
impression on the XML database developers.

In the Sedna XML DBMS we do not use this
XML:DB proposal because of the reason that it pro-
vides DOM as navigational subinterface. Why DOM
does not suit for navigation over XML data we have
discussed in 2.4.

6 Conclusion

In this paper design and implementation of API for
XML DBMS are provided. The focus was made
upon the navigation over XML data. We discussed
the features of the navigation over XML data, com-
pared them with those for relational data and on
this basis provided the design of Navigational API
as part of the whole API. We also provided our pro-
posal for implementation the Navigational API for
poorly resourced clients. This proposal is used in
the Sedna XML DBMS.

References

[1] ”Document Object Model (DOM)”,
World Wide Web Consortium,
http://www.w3.org/DOM/.

[2] Andre Eickler, Carsten A.Gerlholf, Donald
Kossmann, ”A Performance Evaluation of OID
Mapping Techniques”. Proceedings of the 21st
VLDB Conference Zurich, Switzerland, 1995.

[3] J. Eliot, B.Moss, ”Working with Persistent Ob-
jects: To Swizzle or Not To Swizzle”.

[4] ”Extesible Markup Language (XML) 1.0”,
W3C Recomendation. 2nd edition (2000),
http://www.w3.org/TR/2000/REC-xml-
20001006

[5] Michael J. Franklin, Michael J. Carey, Miron
Livny, ”Transactional Client-Server Cache Con-
sistency: Alternatives and Performance”.

[6] Michael J. Franklin, Donald Kossmann, ”Cache
Investment Strategies”.

[7] ”JDBC 3.0 Specification”, Sun Microsystems,
Inc. October 2001.

[8] M. Grinev, A. Fomichev, S. Kuznetsov, K.
Antipin, A. Boldakov, D. Lizorkin, L. Novak,
M. Rekouts, P. Pleshachkov, ”Sedna: A Na-
tive XML DBMS”, Submitted to International
Workshop on XQuery Implementation, Experi-
ence and Perspectives (XIME-P), 2004.

[9] Alfons Kemper, Donald Kossmann, ”Adaptable
Pointer Swizzling Strategies in Object Bases:
Design, Realization, and Quantitative Analy-
sis”, VLDB Journal, 4, 519-567 (1995), Malcom
Atkinson, Editor.

[10] Kimbro Staken, ”An Introduction to the
XML:DB API”, http://www.xml.com.

[11] Lien Hua Chou, Herry Hamidjaja and Hongyan
Yang, ”Caching Techniques in Object Oriented
Database”.

[12] XML:DB Initiative for XML
Databases, ”Application Program-
ming Interface for XML Databases”,
http://www.xmldb.org/xapi/index.html.

[13] ”XMLSchema Part 2”, World Wide Web Con-
sortium, 2002.

[14] ”XQuery 1.0 and XPath 2.0 Data Model”, W3C
Working Draft. 02 May 2003.

