
373

ISSN 0361-7688, Programming and Computer Software, 2015, Vol. 41, No. 6, pp. 373–380. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © V.A. Padaryan, V.V. Kaushan, A.N. Fedotov, 2015, published in Trudy Instituta Sistemnogo Programmirovaniya, 2014, Vol. 26, No. 3, pp. 127–144

Automated Exploit Generation
for Stack Buffer Overflow Vulnerabilities

V. A. Padaryan, V. V. Kaushan, and A. N. Fedotov
Institute for System Programming, Russian Academy of Sciences,

ul. Solzhenitsyna 25, Moscow, 109004 Russia
e-mail: vartan@ispras.ru, korpse@ispras.ru, fedotoff@ispras.ru

Received December 15, 2014

Abstract—An automated method for exploit generation is presented. This method allows one to construct
exploits for stack buffer overflow vulnerabilities and to prioritize software bugs. The method is based on the
dynamic analysis and symbolic execution of programs. It could be applied to program binaries and does not
require debug information. The proposed method was used to develop a tool for exploit generation. This tool
was used to generate exploits for eight vulnerabilities in Linux and Windows programs, of which three were
not fixed at the time this paper was written.

DOI: 10.1134/S0361768815060055

1. INTRODUCTION
As information technologies develop, software

security and tools for ensuring the security become
more and more important. Complex software is inten-
sively used in critical applications—it controls trans-
port, medical equipment in hospitals, operation of
power plants, etc. Failures in the operation of this soft-
ware can lead to serious consequences, and the inten-
tional malicious use of bugs in software can cause even
greater damage. Bugs the use of which can cause the
deliberate violation of a system integrity and disturb its
operation are called vulnerabilities. Many large IT
companies (such as Microsoft, Google, and others)
not only support research on bug and vulnerability
detection but also practically deploy advanced tech-
nologies in the SDLC.

Bugs and vulnerabilities can be detected both at the
level of source code and binary code analysis. The lat-
ter approach is preferable because abstractions of
high-level languages hide specifics of the program
operation that are important for detecting bugs and
evaluating their severity. In addition, source code is
often unavailable. For that reason, computer security
experts have to deal with executable (binary) code and
use appropriate analysis methods [1]. In recent years,
the approach to bug detection based on symbolic exe-
cution has been intensively developed.

Symbolic execution was proposed in the end of the
1970s for software testing [2]. The symbolic execution
is the execution of a program in which specific values
of variables are replaced with symbolic values. Typi-
cally, symbolic values correspond to the input data of
the program. Operations on symbolic values generate

formulas that describe the sequence of operations on
symbolic variables and constants. Each conditional
branch that depends on symbolic data adds an equa-
tion describing the execution flow through a certain
branch. The system of equations thus constructed is
the path predicate because it describes a scenario of
the program execution. This system of equations is
passed to a solver in which the symbolic variables are
unknowns. The solution of this system of equations is
a definite set of values for the symbolic variables.

The idea of symbolic computations was originally
aimed at improving testing coverage. However,
recently this technique was originally aimed at
improving used for guided search of certain program
states. Before calling the solver, the path predicate is
extended by equations that describe the program state
to be achieved. In the context of the present paper, this
is the situation in which vulnerabilities are triggered.
Due to a large number of vulnerability classes and
multiple factors that affect the activation of a vulnera-
bility, attempts to formally describe vulnerabilities at
the binary code level were made only for some partic-
ular cases.

Usually, vulnerabilities are caused by software
bugs. However, not every bug causes a vulnerability.
Modern fuzzing tools used in industrial software
development produce thousands of inputs that cause
abnormal termination [3].

An important issue is bug prioritizing. Bugs that can
be exploited should be fixed first. The bugs that allow an
attacker to execute an arbitrary code are most danger-
ous for users and most desired for attackers.

374

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

PADARYAN et al.

In this paper, we propose a method for evaluating
the detected bugs based on the symbolic execution of
binary code. For a given set of input data that bring the
examined program to an abnormal termination, an
exploit (i.e., a set of input data that exploit the vulner-
ability) is constructed for a widespread type of vulner-
abilities—stack buffer overflow. The bugs for which an
exploit could be constructed are classified as critical—
they must be fixed as soon as possible. The proposed
method can be automated, and we developed a soft-
ware tool implementing it. This tool allows generating
exploits for bugs, so that the shell-code specified by
the user is executed.

The paper is organized as follows. The methods
underlying the proposed approach are discussed in
Section 2. In Section 3, the fundamentals of stack buf-
fer overflow exploits are described. In Section 4, the
proposed method is described, and some implementa-
tion features are presented in Section 5. In Section 6,
the results and directions of future research are dis-
cussed.

2. ANALYSIS TECHNIQUES
The binary code can be analyzed using the static

and dynamic approach [1]. The symbolic execution
within the static approach is limited because of the
high complexity of the resulting system of equations.
Only the dynamic [4] or combined [5] analysis was
reported to be successful.

The studies described in the present paper are
based on the capabilities of the binary code analysis
environment [6]. The main subject of analysis are
traces of machine instructions produced by the full
system emulator described in [7, 8]. The traces contain
register states and information about interrupts and

interaction with peripheral devices, which makes it
possible to reconstruct the combined static-dynamic
representation of all program images executed in the
system and efficiently analyze its properties. The main
purpose of the analysis environment is to automate the
method of extracting algorithms from binary code [9]
and to raise the representation level of these algo-
rithms.

Since the set of input data causing the abnormal
termination of the program is known, the execution
trace with the abnormal termination can be obtained.
To generate an exploit, it suffices to consider only the
instructions that deal with the data processing from
input moment until the abnormal termination. To
select such instructions, a dynamic trace slicing algo-
rithm augmented with the taint analysis is used.

Modern processor architectures contain a lot of
various instructions with complex semantics and side
effects. A widespread approach that makes it possible
to support a variety of architectures is the use of an
intermediate representation. We use Pivot intermedi-
ate representation [10], which provides a unified
description of instruction semantics for various archi-
tectures. This intermediate representation satisfies the
SSA-form, which considerably simplifies the analysis.
The main operators used in Pivot are as follows.

• The operator NOP has no any effect.
• The operator INIT initializes a local variable by

a constant value.
• The operator APPLY applies one of the opera-

tions. Local variables are used as parameters and the
result.

• The operator BRANCH transfers control.
• The operator LOAD loads a value from an address

space.

Fig. 1. Stack organization and methods of placing injected code on it.

D
ir

e
c

ti
o

n
 o

f
a

d
d

re
ss

 g
ro

w
th

argument 3

argument 2

argument 1

argument 3

argument 2

argument 1

return address

old value of

 ebp

pointer to the code pointer to the code
pointer to a

 trampoline

malicious code

malicious code

malicious code

buffer buffer buffer

(a) layout of stack

 frame
(b) code placement (c) use of

trampoline

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

AUTOMATED EXPLOIT GENERATION 375

• The operator STORE writes a value to an address
space.

To describe the memory and registers, Pivot uses
the model of unified address spaces. From the view-
point of this model, all addressable operands of the
target CPU architecture (registers, memory, and
input-output ports) are placed in linear address
spaces. The access to such a space uses a pair (space
identifier, offset). To account for side effects, a model
status word is used, which is similar to the f lag register
in the x86 architecture.

3. EXPLOITATION OF STACK BUFFER
OVERFLOW VULNERABILITIES

Consider a situation in which the size of data writ-
ten into a buffer on the stack exceeds the buffer size.
Figure 1a shows the stack frame of a function in the
situation of buffer overflow. Traditionally for x86, the
stack grows from higher addresses to lower ones (from
top to bottom in Fig. 1a). The parameters are placed
on the stack in reverse order. The call of a function
results in placing the return address on the stack after
which the function can store the old value of the ebp
register and then allocate memory for local variables,
including a buffer. The data are written to the buffer in
increasing order of addresses (from bottom to top in
Fig. 1a).

If the size of data written to the buffer exceeds the
buffer size, then the memory above the buffer on the
stack will be rewritten; in particular, the old ebp
value, the return address, and the function arguments
can be rewritten. If the attacker can control the values
written to the buffer, then he or she can ensure that the
return address will contain the pointer to an arbitrary
code, which can be formed by the attacker. The execu-
tion of such a code can have serious repercussions,
including the compromise of the application data, the
user, or the operating system. Typically, this code calls
the command shell, and it is called shell-code. In real-
ity, the use of shell-code is so popular that any injec-
tion payload is called shell-code. The attacker can
place this code below the return address or above it
(Fig. 1b).

Note that the memory allocated for the stack can
be protected from code execution; in this case, an
attempt to execute a malicious code will result in

abnormal program termination. Then, the attacker
can use the return-oriented programming technique
[11], which makes it possible to compose shell-code
from available code fragments. In addition, address
space randomization hampers exploiting the vulnera-
bility by loading the malicious code at different
addresses for different attempts. In this case, the value
to be written at the place of the return address cannot
be predefined. However, often one of the registers
points to a stack space at the time of returning from the
function. If this space is available for code placing,
then the control can be transferred to this code using
the instruction jmp 〈reg〉 or call 〈reg〉 that is
located at a known address. The instructions of this
type are called trampolines. In this case, upon the
return from the function the control will be transferred
to the trampoline instruction, and from it to the code
placed on the stack (Fig. 1c). Note that the use of
trampolines is useful not only in the case of random-
ization but also when the initial address of the shell-
code contains a null byte. Often, buffer overflow
occurs when a null-terminated string, which cannot
contain nulls, is copied; hence the address cannot be
rewritten by the desired value.

4. WORKFLOW

The exploit generation procedure is subdivided into
four phases of which one is optional (Fig. 2).

First, a subtrace consisting only of instructions that
process the input data is selected. For this purpose, a
slicing algorithm and information about the point
where the input data are received and the point of
abnormal termination are used. For the selected sub-
trace, the path predicate is constructed. The search for
trampolines is the optional phase. Next, the exploit for
the shell code specified by the user is generated.

4.1. Subtrace Selection
A subtrace is selected in order to restrict the num-

ber machine instructions to be examined. Only the
instructions that process the input data directly or
indirectly are selected for the subtrace. The subtrace is
constructed using the trace slicing algorithm [12]. The
slicing algorithm needs the range of trace steps in
which the algorithm traces the data and the initial set
of traced data. The initial step corresponds to the point

Fig. 2. Decomposition of the method into four phases.

Subtrace

selection

Construction

 of the path

 predicate

 Search for

trampolines

 Exploit

construction

 based on the

 system of

 formulas

376

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

PADARYAN et al.

where the input data are received, and the final step
corresponds to the point of abnormal termination.

Initial step and input data buffer. An analyst can
search the input data buffer and the trace step at which
the buffer is complete using one of several possible
methods.

Many programs get data using library functions.
Knowing the data source (e.g., network, file, etc.), the
analyst can find calls of the corresponding functions in
the trace. For example, to get data from the network,
the function recv is typically used, and data are read
from a file using the function ReadFile. The input
data can be also passed as command line parameters;
in this case, the analyst should find the call of the
function main.

Search for the program crash step and memory loca-
tion in which the return address should be rewritten.
This task is subdivided into two subtasks:

• search for the memory location where the return
address that should be rewritten in the case of buffer
overflow is stored;

• search for the trace step at which the control is
transferred to the rewritten address.

The memory location is sought using the slicing
algorithm; the criterion is the found input data buffer.
For each selected instruction, the effective address of
the destination operand is compared with the
addresses of memory locations that store the return
addresses of functions for the current call stack. If
these addresses overlap, then the return address of one
of the functions in the call stack has been overwritten.
In this case, the memory location that stores the
rewritten address is the desired memory location.

Next, using the algorithm described below, the
steps in the trace at which the abnormal termination
seems to have occurred are sought. For each such step,
the value of the ESP register is compared with the
memory address storing the return address (this mem-
ory location was obtained at the preceding step). If
these values are identical, this step is considered as the
step at which the program was crashed.

Information about possible abnormal terminations.
The concept of abnormal termination depends on the
operating system. Since the method proposed in this
paper is designed for working under arbitrary operat-
ing systems on arbitrary processor architectures, the
search for abnormal termination uses an abstract
model of a general-purpose processor. Program crash
is recognized as particular event sequence within this
abstract model. Note that the abnormal termination
almost always occurs as a result of a low level exception
in the program. In turn, the exception forces the pro-
cessor to handle interrupt and transfer control to a
proper interrupt handler. The notion of exception is
not associated with a particular platform and architec-
ture. Hence, the abnormal termination search algo-
rithm is based on the analysis of exception handling.
One must differentiate between interrupts occurring

due to instruction exceptions and the interrupts occur-
ring due to the IO operations or other events. More-
over, since the trace reflects the execution of all pro-
grams in the system, it contains instructions and
exceptions associated not only with the examined
application but with all other applications.

The algorithm used in this paper finds the set of
trace points at which terminations probably occurred.
Since the abnormal termination of the program occurs
due to exceptions and exceptions cause interrupts, it is
reasonable to search for abnormal termination points
among the interrupt trace points. In addition, excep-
tions violate the natural control f low—an exception
handler will return control to process termination rou-
tine rather than the next instruction. This observation
considerably reduces the number of trace points to be
examined.

For each interrupt, addresses of instructions at the
entry and exit points are determined. Next, the
instruction before the interrupt is considered. Here,
two cases are possible—a control transfer instruction
and other instructions. For control transfer instruc-
tions, the target address must be calculated—the
instruction at this address (or at the address after the
control transfer instruction if this is a conditional
transfer) must be executed next. For all other instruc-
tions, the address after the interrupt is compared with
the address after the executed instruction. If they are
identical, the execution sequence was not broken.
Similar checks are performed for control transfer
instructions, but the comparison is with the target
address.

The result is the set of suspected trace points in
which exceptions probably occur. Using the procedure
described above, the abnormal termination point is
found among these points by direct search.

4.2. Construction of the Path Predicate
The path predicate is constructed using trace slic-

ing. The slicing criterion is the input data buffer found
above and the trace step where these data are received.
The trace analysis is limited by the step where the pro-
gram is terminated abnormally.

The result is the trace slice and the sets of tracked
memory cells for each step of this slice. This data is
used to construct the path predicate.

In our case, the path predicate is an SMT-equa-
tions set [13] that describes the transformations of the
input data at the way to a certain program point. The
path predicate is needed to describe constraints on the
input data obtained on the path to the termination
point.

The path predicate construction consists of two
translations. First, a machine instruction is translated
into an intermediate representation, and then this rep-
resentation is translated into the corresponding SMT
equations. Memory and registers address spaces is rep-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

AUTOMATED EXPLOIT GENERATION 377

resented by two arrays of bit vectors. Memory and reg-
ister arrays in SMT are declared as follows:

(declare-const r_0 (Array (_ BitVec
16) (_ BitVec 8)));

(declare-const v_0 (Array (_ BitVec
64) (_ BitVec 8)));

Here, the address size in the space of registers (r) is
16 bits, and in the space of virtual memory (v) the size
is 64 bits. The data granularity in both spaces is 8 bits.

We consider the construction of equations using an
example of two consecutive x86 instructions CMP
BYTE PTR [80553450h], 00h and JB
806EE97Ch. Figure 3 shows the result of binary
translation.

The Pivot instructions are translated one by one,
beginning from the first one. The operator INIT is
translated into a constant expression in SMT. The
operator APPLY is translated into an equivalent oper-
ation of the SMT solver. For example, for the second
operator APPLY of the instruction CMP, the expres-
sion

((_ sign_extend 64) #x80553450)
will be generated.

The operator Load loads the value of an address
space location (memory cell or register) into a local
variable. We should find out if this element is tracked:
the element is sought in the set of tracked elements
when the next instruction is selected.

If the set contains the element, then element is
assumed to be symbolic; otherwise, its concrete value
is used. To obtain concrete values, the buffer recon-
struction algorithm is used. There are situations when
the value could not be reconstructed. Then, the ele-
ment is considered as a symbolic one. Let the memory
byte at the address 0x80553450 be symbolic; then,
the following expression will be generated for the
operator Load:

(select v_0 ((_ sign_extend 64)#x805
53450))

As a result, for the fifth APPLY operator, we obtain

(bvsub (select v_0 ((_ sign_extend
64) #x80553450)) #x00)

The instructions from the sixth to the tenth ones

are not processed because they update the f lag regis-

ter. To avoid redundancy in the equations, we use lazy

flag calculation. The results of translation of the

machine instruction CMP is the expression for the fifth

operator and internal data needed to set f lags. Now,

consider the construction of equations for the instruc-

tion JB 806EE97Ch. The operators from the second

to the fifth ones are not processed because the f lag

register r:[0x88] is not symbolic. The operators 1,

7, 8, and 9 are not processed because the instruction

counter r:[0x80] is not symbolic either. Thus, only

the sixth instruction Branch is processed.

For the condition of Branch, the required f lags

are calculated, and they are loaded into the model sta-

tus word. In this case, the condition is AE (greater than

or equal to for unsigned numbers). The f lag CF is cal-

culated and loaded into the model status word. Next,

an equation for the execution of the instruction

Branch is formed. In the case under consideration,

the f lag CF must be unset. Then, an equation reflect-

ing the execution or nonexecution of conditional con-

trol transfer is added. Let the conditional branch was

executed in the trace. Then, to execute the jump

instruction JB, the equation (CF=0) = false
must be added, which indicates that the Pivot operator

Branch AE is not executed. The constructed equa-

tion becomes a part of the path predicate.

Fig. 3. Translation of CMP and JB x86 instructions.

378

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

PADARYAN et al.

4.3. Search for Trampolines
To find trampolines, an analyst must specify which

modules were loaded into virtual memory of analyzed
applications. The base load addresses for these mod-
ules are known a priori. In the codes of these modules,
the trampoline instructions will be sought. These
instructions are jmp Reg or call Reg. They trans-
fer control to the address specified in the register oper-
and. First, it is reasonable to determine memory buf-
fers in which shell code can be potentially placed.
From the set of tracked (tainted) memory locations at
the time of program crash, the memory locations that
form continuous buffers of the size suitable for shell-
code placement are selected. If there are such memory
locations, registers that point into these locations are
selected. If there are no such registers, the trampoline
search is terminated. In the case of success, trampo-
line instructions are sought for the selected registers.
The binary code (opcode and operand) of such
instructions occupy two bytes that should be found in
any executable sections of the modules. Note that the
needed bytes can even be located on the boundary of
two different instructions. As the size of the sections
looked through increases, the probability to find at
least one trampoline rapidly increases. For 500 Kb
section, this probability is as high as 0.999.

4.4. Exploit Description and Solutions
of the System of Equations

To generate an exploit, the path predicate should
be extended with the equations that describe this
exploit. Equations for control hijack after stack buffer
overflow can be divided into two types:

• equations for placing the shell-code in a memory
buffer controlled by the attacker;

• control transfer to a memory buffer controlled by
the attacker.

For the memory buffers that are tracked at the
point the program crash occurs, we choose the buffers
that are larger than or equal to the size of shell-code. If
there are no such buffers, then we conclude that this

vulnerability cannot be exploited with such a payload.
Otherwise, we build up the following equation for one
buffer. Let the shell-code consist of a string “ABCD”
and the address range be from 1000 through 1003,
respectively. The equation is

v(1000,1) = 0x41 ∧ v(1001,1)=0x42 ∧
v(1002,1)=0x43 ∧ v(1003,1) =0x44,
where ∧ is the conjunction.

To describe the control transfer to the memory buf-
fer controlled by the attacker, we should build up an
equation to describe that fact that the memory loca-
tion storing the return address from the function
should store the shell-code address.

Let x be the address at which the return address is
stored and let l be the shell-code or trampoline
address. Then, the formula has the form

v(x,1) = |[0] ∧ v(x+1,1) = | [1]} ∧
v(x+2,1) = | [2] ∧ v(x+3,1)= | [3],
where ∧ is the junction.

By combining the placement and control transfer
equations with the path predicate, we obtain a set of
equations that are sufficient for generating a working
exploit. Next, these equations are passed to the SMT-
solver, and if the system of equations is consistent, its
solution is a working exploit.

Table 2. Results of the exploit generation algorithm

Operating system Application Slice size Data size, byte Solution time, s
Total execution

time, s

Linux corehttp 0.5.4 18293 565 1024 1367

MCBC libpng (konqueror) 2493 536 8 128

Windows XP SP3 SuperPlayer 3500 4855 594 <1 66

Linux iwcongfig v26 124 80 <1 7

Windows XP SP2 lhhtpd 0.1 20174 320 18 245

Linux getdriver 152 272 2 41

Linux mkfs.jfs 209 407 3 23

Linux alsa_in 241 58 <1 40

Table 1. The list of analyzed applications

Operating system; Application; Vulnerability.

Linux corehttp 0.5.4 CVE:2007-4060

MCBC libpng (konqueror) CVE:2004-0597

Windows XP SP3 SuperPlayer 3500 EDB-ID:27041

Linux iwcongfig v26 CVE:2003-0947

Windows XP SP2 lhhtpd 0.1 CVE:2002-1549

Linux getdriver (sysfsutils)

Linux mkfs.jfs (jfsutils)

Linux alsa_in (jack)

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

AUTOMATED EXPLOIT GENERATION 379

5. IMPLEMENTATION DETAILS
AND EVALUATION

The proposed method was implemented as a plug-
in for the binary code analysis environment. It uses
such capabilities of the environment as raising the rep-
resentation level, general-purpose processor model,
and trace slicing. A third-party SMT solver integrated
into the plug-in is used to solve the system of equa-
tions. Presently, a lot of solvers are available, such as
MiniSat, OpenSMT, STP, Yices, Z3, and others. We
used the Z3 due to the following advantages:

• incremental approach to the solution of equa-
tions;

• support of many data types, including machine-
level data types;

• there is a C API that allows one to directly invoke
the equation solver, which is much more efficient than
the work with text input;

• the source code under the MSR-LA license is
available;

• it is faster than other solvers.

We evaluated the developed tool on a number of
examples. The 32-bit operating systems Windows XP
SP2, Windows XP SP3, Arch Linux (as of April 2014)
and Mobile System of the Armed Forces 3.0 (MSAF)
were used as guest OSs. Applications with known vul-
nerabilities were used, as well as applications from the
Arch Linux distribution in which bugs were found with
the help of black-box fuzzing. The list of analyzed
applications is presented in Table 1.

Fuzzing is based on the method described in [14].
The fuzzer starts the analyzed application with all pos-
sible single-letter command line parameters (from –a
to –z and from –A to –Z) and an additional parame-
ter 6676 bytes long. For 6607 applications, the fuzzer
obtained 748 crashes for 42 different applications.
Among these 42 applications, we selected three appli-
cations distributed in three popular software packages
sysfsutils, jfsutils, and jack.

Table 2 presents the results produced by the exploit
generation algorithm—the size of slice used to process
the input data, the size of input data buffer, the time
taken by the generation of the system of equations, and
the time taken by its solution.

Note that in order to exploit the stack buffer over-
flow vulnerability using the modern Linux distribu-
tion, some protection mechanisms were switched off.

• Address space randomization was switched off.

• The applications were compiled with the f lags -
without line break and –U_FORTIFY_SOURCE; as a
result the canary stack protection mechanism and the
use of safe functions available in the gcc compiler
were switched off.

• For the analyzed applications, code execution on
the stack was turned on using the execstack utility.

In other operating systems (Windows XP and
MSAF) we didn’t turn off any protection mechanisms.
To generate exploits for the Windows XP applications
listed in Table 1, trampolines were used because the
stack memory addresses contained a zero byte; there-
fore, the shell code address could not be written
directly to the return address. For Linux applications,
this difficulty does not arise, and the use of trampo-
lines to overcome randomization was unsuccessful
because the only nonrandomized code fragments
belonged to the applications themselves, due to the
tiny size of applications, the trampoline search algo-
rithm had not find anything. The list of results does
not contain the applications for which no working
exploit was generated. In these applications, the stack
frame included other variables in addition to the over-
flowed buffer; and the modification of these variables
resulted in premature termination, thus no injected
code was executed. As a rule, such variables contained
pointers, and after they have been rewritten, derefer-
encing of pointers resulted in access violation. In other
cases, a loop control variable was rewritten, which
resulted in reading data from an incorrect address. To
make the exploit operate under these conditions, the
corresponding memory locations must be rewritten
with correct values.

6. CONCLUSIONS

An exploit generation method for detected bugs is
presented. The method is based on the symbolic exe-
cution of binary code; it overcomes address space ran-
domization using trampolines and automate some
manipulations that cannot be performed without the
user. The method is implemented as a plug-in of the
binary code analysis environment. Its application
helps the developer to select security critical bugs that
must be corrected first of all.

Close results were obtained at Carnegie Mellon
University. In [14], the first system for the automatic
exploit generation (AEG) was presented. Potentially
exploitable vulnerabilities are sought in the source
code, and the exploit is constructed at the binary code
level. MAYHEM [4] significantly advances the results
of AEG. It is designed to find vulnerabilities and uses
only stripped binary code. These systems iterate over
different execution paths using symbolic execution
and detect exploitable program crashes. Unfortu-
nately, all the tools developed by this research group
are not available. We also note that these tools also
assume that some code protection mechanisms are
switched off.

There are also other symbolic execution systems
working with the binary code—BitFuzz [15], FuzzBall
[16], S2E [17], SAGE [18], Avalanche [19], and oth-
ers. Most of them are primarily designed for searching
execution paths, but they cannot generate exploits.

380

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41 No. 6 2015

PADARYAN et al.

The results presented in this paper form a complete
method that helps prioritize the detected bugs. The
generation of an exploit reliably classifies the bug as a
critical one. In future, we plan to extend our tool by
ROP compilation, which allows one to overcome the
non-executable stack protection, exploit other types of
vulnerabilities, and implement the method for other
processor architectures.

REFERENCES

1. Tikhonov, A.Yu. and Avetisyan, A.I., A combined
(static and dynamic) analysis of binary code, Tr. Inst.
Sist. Program. Ross. Akad. Nauk, 2012, vol. 22, pp. 131–
152.

2. King, J.C., Symbolic execution and program testing,
Commun. ACM, 1976, no. 19, pp. 385–394.

3. Miller, C., Caballero, J., Johnson, N.M., Kang, M.G.,
McCamant, S., Poosankam, P., and Song, D., Crash
Analysis with BitBlaze, BlackHat, 2010.

4. Cha, S.K., Avgerinos, T., Rebert, A., and Brumley, D.,
Unleashing MAYHEM on binary code, in IEEE Sym-
posium on Security and Privacy, 2012.

5. Avgerinos, T., Rebert, A., Cha, S.K., and Brumley, D.,
Enhancing symbolic execution with veritesting, in 36th
Int. Conf. on Software Engineering, 2014, pp. 1083–
1094.

6. Padaryan, V.A., Getman, A.I., Solovyev, M.A.,
Bakulin, M.A., Borzilov, A.I., Kaushan, V.V.,
Ledovskikh, I.N., Markin, Yu.V., and Panasenko, S.S.,
Methods and software tools supporting a combined
analysis of binary code, Tr. Inst. Sist. Program. Ross.
Akad. Nauk, 2014, vol. 26, no. 1, pp. 251–276.

7. Dovgalyuk, P.M., Fursova, N.I., and Dmitriev, D.S.,
Prospects of using the deterministic replay of the virtual
machine operation for ensuring computer security, in
Materialy konferentsii RusKripto'2013 (Proc. of the
Conf. RusCrpto'2013), Moscow, 2013.

8. Dovgalyuk, P.M., Makarov, V.A., Padaryan, V.A.,
Romaneev, M.S., and Fursova N.I., Application of
software emulators for the analysis of binary codes, Tr.
Inst. Sist. Program. Ross. Akad. Nauk, 2014, vol. 26,
no. 1, pp. 277–296.

9. Tikhonov, A.Yu., Avetisyan, A.I., and Padaryan, V.A.,
A technique for extracting the algorithm from binary

code based on dynamic analysis, Inf. Security Probl.
Comput. Syst., 2008, no. 3, pp. 66–71.

10. Padaryan, V.A., Solovyev, M.A., and Kononov, A.I.,
Simulation of operational semantics of machine
instructions, Program. Comput. Software, 2011, vol. 37,
no. 3, pp. 161–170.

11. Schwartz, E.J., Avgerinos, T., and Brumley, D., Q:
Exploit hardening made easy, in Proc. of the USENIX
Security Symposium, 2011.

12. Tikhonov, A.Yu. and Padaryan, V.A., Application of
program slicing for the analysis of binary code repre-
sented by execution traces, Materialy XVIII Obshcher-
ossiisckoi nauchno-tekhnicheskoi konferentsii “Metody n
tekhnicheskie sredstva obespecheniya bezopasnosti infor-
matsii” (Proc. of the All-Russia Conf. on Methods and
Tools for Data Security), 2009, p. 131.

13. Ranise, S. and Tinelli, C., The SMT-LIB format: An
initial proposal, Proc. of PDPAR'03, 2003.

14. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J.,
Woo, M., and Brumley, D., AEG: Automatic exploit
generation, Commun. ACM, 2014, vol. 57, no. 2,
pp. 74–84.

15. Caballero, J., Poosankam, P., McCamant, S., Ba-
bic, D., and Song, D., Input generation via decomposi-
tion and re-stitching: Finding bugs in malware, in Proc.
of the ACM Conf. on Computer and Communications
Security, Chicago, 2010.

16. Martignoni, L., McCamant, S., Poosankam, P., Song, D.,
and Maniatis, P., Path-exploration lifting: Hi-fi tests
for lo-fi emulators, in Proc. of the Int. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems, London, 2012.

17. Chipounov, V., Kuznetsov, V., and Candea, G., S2E: A
platform for in-vivo multi-path analysis of software sys-
tems, in Proc. of the Int. Conf. on Architectural Support
for Programming Languages and Operating Systems,
2011, pp. 265–278.

18. Godefroid, P., Levin, M., and Molnar, D., Automated
whitebox fuzz testing, in Proc. of the Network and Dis-
tributed System Security Symposium, 2008.

19. Isaev, I.K., Sidorov, D.V., Gerasimov, A.Yu., and
Ermakov, M.K. Avalanche: Application of dynamic
analysis for the automatic detection of bugs in programs
that use network sockets, Tr. Inst. Sist. Program. Ross.
Akad. Nauk, 2011, vol. 21, pp. 55–70.

Translated by A. Klimontovich

