

Building open learning environment for

software engineering students

Alexey Khoroshilov1, Victor Kuliamin1, Alexander Petrenko1,

Olga Petrenko2, and Vladimir Rubanov1

1 Institute for System Programming of the Russian Academy of Sciences

(ISPRAS), Russia {khoroshilov,kuliamin,petrenko,vrub}@ispras.ru,

2 Moscow Institute for Open Education, Russia

o-l-petrenko@yandex.ru

Abstract. The paper discusses principles of open education and possibilities of

implementing these principles for software engineering education on the base

of open source software development projects. A framework of practical

courses for software engineering students built on these ideas is presented.

Experience of building courses on the base of this framework is discussed on

the example of ―Software Engineering‖ course provided to students of the

System Programming departments of the two Russian top-ranked universities,

Moscow State University and Moscow Institute of Physics and Technology.

Keywords. Participatory learning, lifelong learning, open source, software

engineering education

1 Introduction

Educational system should match the needs and tendencies of continuously

developing society to sustain its evolution. That is the reason of evergrowing

demand for innovation education programs, methods, and supporting infrastructure

across all over the world. A conceptual base for innovation education in Russia was

formed by academician M. A. Lavrentev [1] who states a principle of ―sciences —

personnel — industry‖ (triangle of Lavrentev [2,3]). Most of currently applied

approaches of innovation education implement this idea in modern conditions –

education happens during generation of new knowledge as a result of integration of

fundamental science, educational process, and industry.

Traditional system of professional education is mainly based on transition to

students of fundamental knowledge helping them to feel themselves with confidence

in some area and skills that can be applied in some practical work at once. However,

under the conditions of intensive technological evolution, such an approach to

education becomes irrelevant because students slowly become able to transform

fundamental knowledge to practically applicable one as well as concrete practical

knowledge quickly becomes outdated and unclaimed. The main abilities demanded

in these circumstances become adaptability, constant knowledge update, decision

making unbiased from established patterns, dynamic activity planning, etc.

All these issues are applicable to the area of software engineering, which evolves

very quickly. Schematically, the main fields of skills and knowledge of information

technology professionals can be presented as in Fig. 1 [4]. So, just subject

knowledge is not enough for successful work of a good specialist in the modern

society. The Memorandum of European Commission on lifelong learning [5]

emphasizes the need in such social skills as acting with confidence, result-oriented

focus of personal activities, right balancing of risks and responsibility in decision

making, as well as such cognitive skills as ability to learn continuously, adaptability

to changing environment, skills in finding right information in various areas, and

ability to filter necessary information in the huge informational flow that each active

individual in the modern society is subject to.

Figure 1. Main skills of modern IT-professionals.

In general some specific arrangements are required to make high school

graduates more compliant with labor market requirements. In some high schools

teaching Information Technologies undergraduates have few possibilities to work

with real-life examples in their domain, so starting their career they immediately face

with the issues not covered in the traditional university courses. Such courses are

usually focused on scientific and technical aspects of the domain and contain (if any)

only rather shallow presentation of organizational and social issues. Potential of

many undergraduates is inhibited by lack of knowledge and skills at these areas. One

more impediment to their growth is lack of comprehension of relations between

theoretical matter they get in university and their practical work, so many of them

think sincerely that most of that theory has no real use. This usually demonstrates

lack of (and bad training in) an important skill — systematic analysis of routine

technical issues, which force to use scientifically approved methods presented in

theoretical courses.

The first step to change this situation may comprise in introduction of courses

targeted to development of social skills necessary for professional work in the related

technical domain. An objective of such a course is nurturing these social skills that

help to realize technical skills and knowledge obtained and to resolve non-technical

problems met in real professional life.

The necessary skills to develop in these courses are:

 writing technical and scientific texts;

 preparation of presentations and performing them in public;

 organization of technical or scientific presentation, in particular, fitting in time

and attracting the audience;

 various techniques of information classification and systematic analysis;

 professional argumentation based on scientific methods and knowledge;

 adequate answering on questions;

 posing adequate questions.

A course block intended to develop text creation skills may consider the

following topics.

1. Professional communication as a significant component of profession.

Specifics of professional communication.

2. Determine the personal communication style (with the help of a test). Using

personal communication style in developing professional relations.

3. Verbal and written communications.

4. Characteristics of written communications. How to prepare a written report.

5. Styles of writing. Characteristics of different styles. Practice in preparation

of texts written in different styles.

6. Presentations and talks. Time management during talks. Presentation

content change techniques.

7. Specifics and requirements for scientific communication and texts.

Structure of scientific text.

8. Work with information sources during scientific text preparation.

9. Argumentation and reasoning. How to use arguments in texts and what

arguments to use.

10. Practice in scientific text preparation.

11. Scientific presentation. Characteristics and structure of scientific talk. How

to answer questions during a talk.

12. How to choose a talk style. Feedback types. Talk evaluation.

However, introduction of courses focused on social skills necessary in technical

domains is not sufficient. The entire existing education environment should be

modernized in accordance with needs of social development. It is necessary to create

such an environment that helps to prepare graduates adapted to the needs of modern

industry and markets.

Open education

Individualization of

education

Responsibility

for own success

Continuous learning Collaboration

Figure 2. Open education principles.

Acknowledging these principles of continuous lifelong learning stimulates

transition of educational systems towards so called open educational system. This

system is mainly oriented on upbringing independent self-motivated individuals that

are able to effectively collaborate with the quickly changing world - individuals that

can and want to effectively learn constantly rather than just apply known and

established practical skills in some steady work.

In such open educational systems, educational opportunities are open to students

- they can see paths of possible education and evolution and thus it becomes possible

to discuss with its mentor the means and specific actions for achieving individual

goals in the broad space of these opportunities. One of the main characteristics of

open education is responsible decision making by the student about the needed

educational goals and means to meet them. Students have to realize and take full

responsibility in this.

The main principles of open education are [6]:

 individualization of education;

 responsibility for own success;

 collaboration;

 continuous learning.

Transition to the open education may be based on the following principles:

 It is necessary to teach students to be self-dependent in education. Being

active is a key thing for this.

 Students must be involved in the mutual personal communication.

 The starting and the target points of each particular part of the educational

path should be individual.

 Explicit stage of reflection should be introduced in the education process.

The important general step towards open education is creation of special open

learning environment that stimulates students to be actively involved in leading

professional societies in the studied field and to actively communicate and

collaborate within them. Such societies provide various opportunities in

implementing educational goals and students can freely and independently choose

whatever fits them best individually.

In this paper we discuss possibilities of building such open learning environment

for software engineering students on the base of open source software development

projects. We present a framework of practical courses for software engineering

students built on these ideas. Experience of using of the framework is discussed by

the example of ―Software Engineering‖ course.

2 Software Engineering Education and Open Source

Software Development Projects

M. A. Lavrentev once wrote: ―There are many ways by which scientific ideas

come to industry. The forms of cooperation between science and industry themselves

also require scientific approach, creativity, and choice of optimal solutions in each

particular case‖ [7]. Open source software has recently become such a way in the

area of software engineering. Benefits of using open source software in high

education institutes and especially in the area of software engineering are discussed a

lot [8-13]. Traditionally, a possibility to investigate internal software structure is

mentioned at the first place as a consequence of source code availability. But it is

also important that open source software development projects are also open, i.e.

their development process is public and all discussions regarding design and coding

decisions, software architecture evolution, and project documentation development

are available for investigation too. Thus, open source software development projects

provide good material and rich infrastructure for education of software engineering

students.

Moreover open source software development projects can be a good basis for

building participatory learning environment in the area of software engineering.

Such projects can effectively and easily enable the following tools and educational

means for almost any specific technical subject.

 Rich educational materials: feature requests from users and ideas of

developers, requirement documents, the executable software itself,

specifications of its architecture, implementation source code, lists of

already fixed and still standing issues and features elaborated at the

development and maturity phases of the product lifecycle, detailed

argumentation in favor of or against some particular solutions and

approaches in the context of real system.

 Ready infrastructure for practical classes: configured information systems

for version control and project collaboration with possibility to

communicate with real developers of the product.

 Possibility to create strong motivation for students by involving them in the

practical activities in real life development projects, especially if such

projects have high social importance and prestige.

 Help to students in creation of personal portfolio and finding a job in future

by possibility to demonstrate results of their work evaluated by expert

community to potential employers.

Documents and source code of one or several projects can be used as a ready-to-

use education material. But more important is the diversity of open-source software

projects that provides students a wide variety of choice options for thinking and

finding individual learning paths within the general software engineering educational

plan. Also, open source projects provide wide variety of choices of technical aspects

such as programming languages, development technologies and methodologies, even

within a specific topic, because there are usually a number of different competing

projects that use different technical approaches for implementing the same

functionality or a product of the same kind. This variety and freedom of choice

demonstrate real life complexity to students and improve their motivation and

responsibility.

At the same time, using open source software development projects for education

is not a trivial task. Members of open source software projects are not always happy

to be a training ground for a crowd of students. They would like to see future

colleagues (even beginners) but not short term students. This fact has to be given

proper weight in organizing learning environments on the base of open source

software projects. For example, communications between students and open source

developers should not be a mandatory element of an educational process. It may be

an optional element available for most motivated students. In this case some

introduction into professional communications and open source development culture

should be provided for students.

Another conclusion is that solely open source projects are not enough to build an

effective learning environment. Work with open source projects should be

supplemented by a substantial set of activities provided by an educational

organization. These activities should help students to dive into open source

development environment by:

 explaining general models of open software development and hidden details

of open source development culture;

 answering any kind of questions related to the project chosen;

 helping to start communication with open source community;

 advising useful informational sources and transferring patterns and best

practices of work with them.

It is also important to stimulate discussions between students on their experience

in investigation of open source projects and to provide general theoretical materials

constituting a background of practical world of open source projects.

3 Practical Software Engineering Courses Framework

ISP RAS developed a framework of practical courses for software engineering

students based on open source software development projects and principles of open

education. The key elements of the framework are as follows:

 participation in individual open source project;

 personal mentors;

 theoretical lectures;

 colloquiums devoted to joint discussion of students results.

Instead of classic practical classes based on pre-selected model examples and

tasks we introduced a requirement for students to participate in at least one public

open source project that they can choose by their own decision. A possibility to

choose the project on their own is very important to improve students’ motivation as

it was discussed above. Some courses may impose limitations on the projects so that

the project can be used to cover required material in the domain under learning. For

example, learning basic software engineering principles or methods of analysis and

development of huge and complex systems can be supported well by projects of

rather big size. Learning architecture styles and design patterns requires projects

explicitly and adequately using such styles and patterns, while a majority of open

source software cannot be considered as satisfying to this requirement. Learning

algorithms may require spending some time in search for open projects and libraries

that actually use some sophisticated algorithms.

We assign to each student a personal mentor who keeps in close touch with the

student, answers his/her personal questions, monitors student activities, evaluate

their effectiveness for learning the chosen domain, and advises useful informational

sources and rules of work with them. One mentor can serve no more than 4 students.

In parallel to a practical course a corresponding theoretical course should be

provided. It is recommended to keep small time interval between providing

theoretical material and using the material in practice. But it is also possible (and

usually helpful) to have anticipatory practical tasks, theoretical material for which is

provided between a start of the task and the colloquium, where results of the task are

presented. Theoretical lectures can be conducted in classic style, but also may

incorporate elements of active learning and participatory education.

Colloquiums devoted to joint discussion of students results are the main form of

students work control. Students make presentations of their results to the classmates

and mentors and are asked any questions by the audience. Mentors ensure that the

students can make correspondence between the theoretical information taken from

the course with specific practical aspects of their projects by proper questions. Such

organization of learning helps to overcome a gap between pure theory and practice

and in that way to increase efficiency of the lectures. In addition, the joint

colloquiums help to enable inter student experience sharing.

The main stages of a practical course include the following.

 Choice of an open-source development project. The project must have a

public infrastructure and be active, that is it should have on-going

developments or active maintenance. Students may also join any open-

source project, which is performed in ISP RAS itself. Students evaluate

various projects by themselves, mentors just check if the final choice meets

all the necessary requirements from the domain learning viewpoint.

 Acquaintance with the project. Students study their selected projects on

their own with the focus on those aspects important for their personal

educational path and for the specific courses at the faculty. At the end of

this phase, students make presentations of their projects to the classmates

and mentors where they can be asked any questions by the audience to

demonstrate mastering of the project information and understanding of

design solutions made in it. Additionally, students are asked to prepare

written reports with a predefined structure.

 Practical tasks. Mentors prepare a number of tasks for students with some

weight points assigned to each task. Such tasks may include analysis,

refinement, including formal modeling and specification, and documenting

of requirements, extracting design patterns used, modeling and analysis of

anticipated software characteristics after possible change of design

decisions, preparation of design documentation or user/administrator

documentation, implementing new modules, code refactoring, resolving

bugs in existing modules, design and executing of tests with reporting of

issues found and providing possible solutions for them, providing test

documentation, porting the project or its part on some unsupported

platform, implementing automated installation, and so on.

Students may choose a number of tasks to perform to reach a defined target

in terms of these points. Students provide regular presentations of their

work similarly to the presentations at the acquaintance phase. Mentors

ensure that the students can relate adequately the theoretical information

from the course with specific practical aspects of their projects, thus

increasing the efficiency of lectures.

In preparation of the practical tasks it is important to consider the additional

opportunities provided by open source software development projects that can be

useful for educational process, such as communication with project team and domain

experts on professional topics, providing clear argumentation for requirements,

design and test decisions.

Mentors encourage students to directly collaborate with the real project team and

use feedback of the team as indicators of successful direction of their work. If it is

possible, feedback of open source project community should be used to evaluate

results of students' work. This improves students’ motivation as the feedback from

external parties is perceived by students as more objective than the one provided by

teachers and group-mates. But feedback of community should not be a primary tool

of evaluation, in particular, because of existing discrepancies, first, between specific

project objectives and goals of learning process and, second, between open source

community discussion and communication culture and students’ expectations and

habits.

Freedom of task choice also improves significantly students’ motivation and

attitude to his/her education [10,12]. It enables individual choice of depth of

education and allows forming knowledge and skills at his/her own depending on

his/her preferences and needs.

4 A Case Study

An example of a practical course built on base of the framework presented is the

course ―Software Engineering‖. The course is provided to students of the System

Programming departments of the two leading Russian universities — Moscow State

University and Moscow Institute of Physics and Technology. In parallel to the first

two stages of the practice the theoretical course ―Software Engineering —

Component Approach‖ [14] is conducted. In addition, before start of the practice an

extra lecture ―Open Source Software‖ is provided to introduce students with basic

principles of open source software development and open projects organization.

Initially the only limit on choice of open source project was the requirement to

choose a project with an open development process. After analysis of the first

experience we decided to limit choice by mature and big enough (25000-30000 lines

of source code) projects only. General software engineering education requires that

the project chosen has issues specific for complex software development, which

usually correlate with project code size.

Students have two months to choose a project and to acquaint themselves with it

— to read and analyze project documents, to comprehend the main decisions made,

and to understand code-related issues. After that we organize the first colloquium,

where students present their projects and answer questions from some predefined

list. The key idea of the list is to encourage students to find in the project instances of

ideas, techniques, patterns, and approaches discussed in the theoretical course. The

questionnaire used currently consists of the following 5 main areas:

 project as a whole;

 requirements;

 architecture and design;

 quality assurance;

 personal participation.

In addition, during acquaintance with the project students are asked to prepare

one of project documents (project concept description, requirements sketch,

architecture and design outline, test plan, etc.) according to the given template.

The next stage is actual practical work. For this course we have prepared about

30 practical tasks covering various areas of software engineering:

 modeling of business domain;

 requirements management;

 software architecture;

 software quality assurance and control;

 debugging and bug fixing;

 feature planning;

 user documentation;

 user support;

 complex tasks.

The practical work takes about 4 months. Results of the tasks are evaluated by

mentors and discussed on joint colloquiums. If the results are good enough, we

encourage students to publish them for review by open source project team. And as a

result the students get constructive critique as well as positive feedback that are used

to finalize the tasks.

To date, we have provided the practical course for two years as an optional

element complementing the theoretical course ―Software Engineering – Component

Approach‖. The total number of students completed the practical course is about 20.

At the first presentations, students are usually in almost complete confusion because

at the first years at their universities they get used to the traditional system of fixed

information to learn with subsequent exams so that they are always directed what to

do. Only after a while, after working in the more flexible and open environment,

they start realizing the real diversity of the problems in projects and the importance

of proactive position of participants to solve them. Eventually this helps to

understand and learn all the principles of software engineering at the significantly

higher level.

Our experience confirms that possibility to choose domain of open source project

really improve students' motivation in performing consequent tasks. Also an

interesting conclusion is that open source projects can be used for demonstration

both best practices of software development and common mistakes and decisions

that should be avoided.

The experience of this case study demonstrates that many learning objectives can

actually be reached in learning process based on open software development

projects. Information digging and systematization, integral vision, effective

presentation skills are improved. On the other side noticeable improvements in social

skills, decision making, dynamic activity planning require introduction of additional

patterns into organization of learning process. This is issue for further development

of the approach presented. Perhaps, learning all the necessary skills in single

practical course is an idealistic goal, and more realistic method is to build a sequence

of 3-4 courses developing those skills gradually.

5 Conclusions

Open source software development projects provide a good basis for building

open learning environments. They give both a rich set of education materials and

examples of implementation of abstract principles and methods, and possibility to

take part in a real-life activity, communicating with recognized experts in the domain

of learning. However, it is not a simple task to build an adequate and productive

collaboration between students and open source community.

We presented a framework for building practical courses for software

engineering students on the base of open source projects. And our experience

demonstrates positive effects on all the main fields of skills and knowledge of

information technology professionals mentioned in Fig. 1. In particular, feedback of

students shows improvement of motivation and independence in decision making.

References

[1] http://computer-museum.ru/english/galglory_en/Lavrentev.htm

[2] S. A. Khristianovich, M. A. Lavrentev, S. A. Lebedev. Actual tasks of scientific

work organization. Pravda, 14.02.1956.

[3] N. L. Dobretsov. ―Triangle of Lavrentev‖: the principles of science organization

in Siberia. Bulletin of the Russian Academy of Sciences. vol. 71, # 5, 2001,

pp. 428–436.

[4] A. K. Petrenko, O. L. Petrenko, V. V. Kuliamin. Research Organizations in IT

Education. ISP RAS Proceedings, 15:41-50, 2008.

[5] Commission of the European Communities. A Memorandum on Lifelong

Learning. Brussels, 2000.

URL: http://ec.europa.eu/education/policies/lll/life/.

[6] C. Wedemeyer. Characteristics of open learning systems. In Open Learning

Systems, Washington, National Association of Educational Broadcasters, 1974.

[7] M. A. Lavrentev. Highways of Siberian science. Izvestia, 13.02.1971.

[8] K. J. O’Hara, J. S. Kay. Open source software and computer science education.

J. Comput. Small Coll., 18(3):1–7, 2003.

http://computer-museum.ru/english/galglory_en/Lavrentev.htm
http://ec.europa.eu/education/policies/lll/life/

[9] Allen, E.; Cartwright, R.; Reis, C. Production programming in the classroom.

Proc. of the 34-th SIGCSE technical symposium on Computer science

education, Reno, Nevada, USA, pp. 89-93, 2003.

[10] D. Carrington, S.-K. Kim. Teaching software design with open source software.

Proc. of 33-rd ASEE/IEEE Frontiers in Education Conf., pp. 9-14,

November 2003.

[11] C. P. Fuhrman. Appreciation of software design concerns via open-source tools

and projects. Proc. of 10-th Workshop on Pedagogies and Tools for the

Teaching and Learning of Object Oriented Concepts, at ECOOP 2006, Nantes,

France, July 2006.

[12] M. Pedroni, T. Bay, M. Oriol, A. Pedroni. Open source projects in programming

courses. ACM SIGCSE Bulletin, 39(1):454-458, March 2007.

[13] http://www.flosscom.net.

[14] V. V. Kuliamin. Software Engineering. Component-based Approach. Moscow,

INTUIT-Binom, 2007.

http://www.flosscom.net/

