NETWORK VERIFICATION: CALCULUS AND SOLVERS

as network invariants. Sample (slightly simplified from the
ones checked for Azure) network invariants are:

Network Invariant 1: Traffic from a host leaf directed
to a different cluster from the leaf is forwarded to a router
in a layer above. In other words, suppose that Router
belongs to a cluster given as a predicate Cluster, and that
RouterAbove is the set of routers above Router, then

V

nc RouterAbove

dst & Cluster A Router = n

On the other hand,

Network Invariant 2: Traffic from a host leaf directed to
the same cluster is directed to the local VLAN or a router
in the layer above that belongs to the same cluster as the
host leaf router:

dst € Cluster A Router =
VLAN V V. c routerapove (N AT € Cluster)

The routing behavior of routers at the same level from
the same cluster should also act uniformly for addresses
within the cluster (they can behave differently for ad-
dresses outside of a cluster range).

Network Invariant 3: Let Routery, Routers be two
routers at the same layer within the cluster Cluster, then

dst € Cluster = Routery = Routers

IV. DIFFERENTIAL NETWORK REACHABILITY

In the previous section we described how SecGuru per-
forms local checks on routers. These local checks often im-
ply global properties of the network. This approach works
fine in the context of the Azure architecture, which is fixed
and data-centers are deployed in cookie-cutter form. Find-
ing local invariants, however, is an entirely manual process
and the approach does not generalize to arbitrary networks
(though there is a really good point to capturing and check-
ing architecture based invariants for Azure). The behavior
of a router is commonly a combination of ACLs, forward-
ing rules, and packet rewriting. It is therefore not generally
possible to check global network invariants from a fixed set
of local network invariants. To check global network prop-
erties we developed a specialized tool in Z3 that handles
configurations for packet switching networks efficiently.

This time we represent forwarding logic and networks
as a set of constrained Datalog rules. Suppose that n,. is
a predicate representing the current router from our ex-
ample, and ni,ns,... are the names of next-hop routers,
represented as predicates, then the rules for representing
the routing behavior can be written:

n,(dst)
Vdst . nq(dst) < | A dst #10.91.114.0/25
A dst #£10.91.114.128/25 A ...
n,(dst)
Vdst . no(dst) « | A dst £10.91.114.0/25
A dst #£10.91.114.128/25 A ...

39

n,(dst)
dst =10.91.114.0/25V
vdst . mg(dst) = | A < dst =10.91.114.128/25 >
A

Constrained Datalog with stratified negation provides logi-
cal expressitivity that makes it easy to encode queries over
pairs of paths. Thus, one can use Datalog to query for
packets that are dropped along one route but not another.

Header Space Algebra (HSA) [9] was introduced to rea-
son efficiently about reachability over sets of headers. The
basic data-structure used by HSA is a difference of cubes
(DOC) representation of three-valued bit-vectors. Three-
valued bit-vectors encode address masks compactly using
don’t cares. An example DOC is the expression:

T 110 % % \ (%1 % % % 11 U %0 % % 00)
It is shorthand for the set
{1011011, 1011001, 1011010, 1111000, 1111001, 1111010}.

In [11] we adapt DOC encodings as an underlying table
representations for a Datalog engine in Z3. For a set of
benchmarks extracted from Azure and Stanford networks
we observed that the DOC representation scales well be-
yond competing representations, such as BDDs, or SAT
based bounded model checking. Model checking tech-
niques for (software defined) networks is actively investi-
gated in several contexts, including the Anteater tool [12]
and in [18].

V. PROGRAMMABLE CONTROLLERS

Network controller programs operate at their core by re-
ceiving packets from routers. The packets are rewritten,
forwarded and used to update both local state and routing
tables. In [1] we developed a language, VeriCon, capturing
core features of network controllers relevant to verification
of network controllers. State, local and external routing
tables, are uniformly represented as predicates (Boolean
arrays). Proving invariants of the controllers turns out to
requite a limited expressive logical power close in style to
the Bernays-Schonfinkel-Ramsey, otherwise known as Ef-
fectively Propositional Reasoning (EPR). EPR formulas
are of the form: Vy . ¢[c,y], where ¢'is a set of constant
symbols, and the formula ¢ is quantifier-free over equal-
ities and uninterpreted relations over the constants and
bound variables. Thus, EPR formulas do not have nested
functions.

The VeriCon verification conditions are discharged au-
tomatically by Z3, or in case of properties that are not
invariants, Z3 provides counter-examples. Furthermore,
invariants that were not already inductive are in some
cases inductive after conjoining the invariants with their
weakest pre-conditions. Weakest pre-condition strengthen-
ing is a folklore approach used in variations in deductive-
algorithmic model checking. While it is simple to imple-
ment it does not scale very well and current efforts in-
clude replacing the strengthening by more sophisticated

approaches and also ensuring that the assertion language
remains within a decidable extension of EPR.

VI. THE LocicAL POWER OF NETWORKS

A common experience so far has been that network ver-
ification is matched well by logics and solvers that exploit
how ACLs, forwarding rules and controller programs han-
dle sets of packets the same way: Transitions are guarded
by predicates on bit-ranges and state updates copy or up-
date bit-ranges to constant values. In other words, the
tools exploit and support packet ranges and how the state
of controllers is updated based on a few enumerable at-
tributes. Yet, the underlying algorithms from our ex-
periences are orthogonal. The bit-vector solver used in
SecGuru reduces verification to propositional SAT; DNA
pairing requires a Datalog engine; controller verification
uses invariants expressed over quantified first-order logic
so it requires efficient quantifier instantiation. The 73
SMT solver exposes much richer functionality than the
fragments we used here: Z3 supports reasoning about logi-
cal formulas using linear integer, linear and non-linear real
arithmetic, algebraic data-types and arrays. It contains
specialized engines for solving Horn clauses over arith-
metic [3], [7], [13] that so far target applications from sym-
bolic software model checking.

We believe the mutual exposure of formal methods to

modern packet switched network engineering is a signif-
icant area of opportunity for both camps. An indication
that this is broadly the case is that we are not the only ones
who apply SMT, SAT, QBF, finite state model checking
and other verification and synthesis technologies for pro-
grammable packet switched networks [14], [17], [19], [16].
More narrowly, the use of SMT solving and other theorem
proving technologies for Network Verification offers mutual
opportunities to improve scale and reliability of modern
(large scale) data-center networks. On the other hand, the
applications that emerge from Network Verification inspire
new algorithms and data-structures for theorem proving
and model checking.
Acknowledgment Our experiences with network verifi-
cation is based on joint work with several collaborators,
including: George Varghese, Mooly Sagiv, Charlie Kauf-
man, Geoff Outhred, Nuno Lopes, Mingchen Zhao, Jeff
Jensen, Monika Machado, Garvit Juniwal, Ratul Maha-
jan, Ari Fogel, Jim Larus, Thomas Ball, Aaron Gember,
Shachar Itzhaky, Aleksandr Karbyshev, Michael Schapira
and Asaf Valadarsky.

REFERENCES

[1] Thomas Ball, Nikolaj Bjgrner, Aaron Gember, Shachar Itzhaky,
Aleksandr Karbyshev, Mooly Sagiv, Michael Schapira, and Asaf
Valadarsky. VeriCon: towards verifying controller programs in
software-defined networks. In Michael F. P. O’Boyle and Keshav
Pingali, editors, PLDI, page 31. ACM, 2014.

Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A
decade of software model checking with SLAM. Commun. ACM,
54(7):68-76, 2011.

Nikolaj Bjgrner, Kenneth L. McMillan, and Andrey Ry-
balchenko. Program Verification as Satisfiability Modulo Theo-
ries. In Pascal Fontaine and Amit Goel, editors, SMT@IJCAR,
volume 20 of EPiC Series, pages 3—11. EasyChair, 2012.

40

[10]

(11]

(12]

[13

14]

[15]

[16]

(17]

(18]

(19]

Achim D. Brucker, Lukas Briigger, and Burkhart Wolff. hol-
TestGen/fw - An Environment for Specification-Based Firewall
Conformance Testing. In Zhiming Liu, Jim Woodcock, and
Huibiao Zhu, editors, ICTAC, volume 8049 of Lecture Notes
in Computer Science, pages 112-121. Springer, 2013.

Leonardo Mendonga de Moura and Nikolaj Bjgrner. Z3: An
Efficient SMT Solver. In C. R. Ramakrishnan and Jakob Rehof,
editors, TACAS, volume 4963 of Lecture Notes in Computer
Science, pages 337-340. Springer, 2008.

P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani,
W. Schulte, N. Tillmann, and M. Y. Levin. Automating Soft-
ware Testing Using Program Analysis. I[EEE Software, 25(5):30—
37, 2008.

Krystof Hoder and Nikolaj Bjgrner. Generalized Property Di-
rected Reachability. In Alessandro Cimatti and Roberto Sebas-
tiani, editors, SAT, volume 7317 of Lecture Notes in Computer
Science, pages 157-171. Springer, 2012.

Karthick Jayaraman, Nikolaj Bjgrner, Geoff Outhred, and Char-
lie Kaufman. Automated Analysis and Debugging of Network
Connectivity Policies. Technical Report MSR-TR-~2014-102, Mi-
crosoft Research, July 2014.

Peyman Kazemian, George Varghese, and Nick McKeown.
Header space analysis: static checking for networks. In NSDI,
2012.

K. Rustan M. Leino. Developing verified programs with dafny.
In David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors,
ICSE, pages 1488-1490. IEEE / ACM, 2013.

Nuno Lopes, Nikolaj Bjgrner, Patrice Godefroid, Karthick Ja-
yaraman, and George Varghese. DNA Pairing: Using Differ-
ential Network Analysis to find Reachability Bugs. Technical
Report MSR-TR-2014-58, Microsoft Research, 2014.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Cae-
sar, P. Brighten Godfrey, and Samuel Talmadge King. Debug-
ging the Data Plane with Anteater. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, New York, NY,
USA, 2011. ACM.

Kenneth L. McMillan. Lazy Annotation Revisited. In Armin
Biere and Roderick Bloem, editors, CAV, volume 8559 of Lecture
Notes in Computer Science, pages 243-259. Springer, 2014.
Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul.
Declarative Infrastructure Configuration Synthesis and Debug-
ging. J. Netw. Syst. Manage., 16(3):235-258, September 2008.
Timothy Nelson, Christopher Barratt, Daniel J. Dougherty,
Kathi Fisler, and Shriram Krishnamurthi. The Margrave tool
for firewall analysis. In LISA, pages 1-8, Berkeley, CA, USA,
2010. USENIX Association.

Andrew Noyes, Todd Warszawski, Pavol Cerny, and Nate Fos-
ter. Toward synthesis of network updates. In Bernd Finkbeiner
and Armando Solar-Lezama, editors, SYNT, volume 142 of
EPTCS, pages 8-23, 2014.

Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik, and
Sanjai Narain. Verification and synthesis of firewalls using SAT
and QBF. In ICNP, pages 1-6. IEEE, 2012.

Shuyuan Zhang and Sharad Malik. SAT Based Verification of
Network Data Planes. In Dang Van Hung and Mizuhito Ogawa,
editors, AT VA, volume 8172 of Lecture Notes in Computer Sci-
ence, pages 496-505. Springer, 2013.

Shuyuan Zhang, Sharad Malik, and Rick McGeer. Verification
of computer switching networks: An overview. In ATVA, 2012.

On QoS Management in SDN by Multipath Routing

E. Chemeritskiy
Lomonosov Moscow State University
Moscow, Russia
tyz@lvk.cs.msu.su

Abstract—The Quality of Service (QoS) management is one of
the urgent problems in networking which doesn’t have an
acceptable solution yet. In the paper the approach to this
problem based on multipath routing protocol in SDN is
considered. The proposed approach is compared with other QoS
management methods. A structural and operation schemes for its
practical implementation is proposed.

Keywords—Quality of Service; Multipath Routing; Software-
Defined Networks; Network Management

I. INTRODUCTION

QoS (Quality of Service) as a term is a general description
of the performance of a network connection. This term is
treated either as qualitative assessment of the connection
performance by a user, or as a set of objective quantitative
parameters characterizing the one. Qualitative evaluation of
QoS is defined as the degree of satisfaction of a user by
communication quality as for example in Skype — the sound
quality, the presence of a distortion, the appearance of echo,
jitter, quality of the picture etc. There are two basic methods
for QoS qualitative evaluation: Mean Opinion Score and
Quality of Experience [1]. These methods provide an
integrated assessment of all subjective assessment of service.

In this paper we are primarily interested in the second
interpretation of the term QoS as a set of the parameters a
network connection. Under term QoS requirements we will
mean a set of the QoS parameters a network connection has to
meet. The term QoS management we will treat as ability of
network to maintain a set of connection parameters compliant
with the QoS requirements of the application it is due to.
Saying “connection” we mean end-to-end (e2e) connection. A
set of QoS parameters includes:

. Throughput — a part of the channel bandwidth
available to the particular connection;

. End-to-end delay — time is needed to deliver a packet
from one source host to a destination host;

. Jitter — a deviation of the end-to-end delay from its
mean value;

. Error Rates - the share of packets lost or damaged
during a transmission through connection.

Different parameters of QoS play a different role for
different applications. For example, multimedia application

This research is supported by the Ministry of education and science of
the Russian Federation, Unique ID RFMEFI60914X0003 and Russian
Foundation for Basic Research, project 14-07-00625

41

R. Smelansky

Applied Research Center for Computer Networks
Moscow, Russia
smel@arccn.ru

requires high throughput, videoconferencing and real time
simulation — small jitter and end-to-end delay, telemedicine
(distance surgery) — high throughput and low error rate.

Providing a connection with an appropriate QoS require a
certain network resources. However, the network has only a
limited amount of the resources to handle data flows. Thus we
get a problem how to allocate network resources to meet QoS
requirements of different applications operate at the same time?
In practice usually there is problem connected to the previous
one - what level of utilization (efficiency) of the network
resources under allocation have been made? Thus, a network
has to be selective while spreading bandwidths of its channels
and capacities of its switching devices over the applications.
Thereby, the solution for the quality of service problem we are
looking for should meet the following criteria: (1) ensure
compliance of granted e2e connections with the QoS
requirements of applications, (2) provide a small resource
fragmentation, and (3) to be a practical method delivering a
suboptimal resource allocation.

Although QoS issue has been addressed since the first
attempts to transmit voice over a packet switched network [2],
and the community has developed a set of diverse approaches
to conquer it, none of them is successful enough to be
implemented by default. They are either too expensive to
deploy or provide insufficient increase to the admissible
utilization of a network. Thereby, the existing practices of the
network management advice to obtain the missing resources by
a straightforward resource extension, rather than to invest into
an intricate piece of hardware, gain better control over the
resource distribution and attune the performance in an
intelligent way.

In this paper we propose a new approach to QoS
management in SDN networks [3] based on Multi Path Routing
(MPR) called MPRSDN with the following features:

e MPRSDN refuses resource reservation in favor of their
efficient utilization. Thereby, it provides no strict
guarantees and implements a best effort approach.

e Although we propose to construct a QoS-compliant
resource allocation with a heuristic search, our
approach uses a considerably large search space to
allocate the resources for each of the requested
connections. Thus, if it fails to meet the requirements
of a given application, most likely, there are no more
suitable resources left.

e It does not require specialized hardware and may be
deployed in any SDN network with an appropriate

control over the switches. The hosts have to be
preinstalled with the software agent for multipath
routing enabling to involve some idling resources.

In section I we provide the comparative analysis of
existing approaches to QoS management. Section III introduces
the structural and operational schemes of the proposed QoS
control toolset.

II. RELATED WORK

A. Conventional QoS management

There are multiple well-known approaches to the quality of
service management. Introduced by the model of Integrated
Services (IntServ) [4], signaling protocol RSVP (and later
NSLP [5]) provides applications with guarantees over
throughput and delay of the granted connection by resource
reservation at each router along the flow path calculated by a
routing protocol. The reservation restricts schedule of packet
handling at each affected router because the allocated resources
are assigned to the flow exclusively and cannot be used even if
the flow does not fully utilize them at that time. An application
has to announce its QoS requirements before the connection
setup and cannot modify them until the connection close. Thus,
the application is forced to over pledge and reserve resources
with a margin for the maximum traffic burst.

IntServ relies on static resource reservation and brakes
work-conserving operation of switching devices. This results
into an unnecessary resource fragmentation, similar to the one
in a computer with paged allocation of RAM. As a result, in
some cases network fails to supply the connection with the
requested QoS even if accumulative amount of the network
resources is enough to make it. The similar problem may be
also caused by the independence of the signaling and routing
protocols. There might be a bypass route to avoid the
overloaded network component, however reservation is
separated from routing and cannot take this advantage.

The model of Differentiated Services (DiffServ) [6]
proposes to replace an awkward resource scheduling for end-
to-end connections with predefined qualities by a local flows
grading at the network devices. Each device defines a set of
service classes and attributes each class with a certain QoS.
Although each flow has a right to request a class with an
appropriate service, the model does not provide any guarantees
over the provided packet processing quality. Instead, each
switch undertakes to share its resources among the flows of
different classes in accordance with their relative shares. If
there are no flows for a certain class of service then the
resources of this class are allocated among the other classes.
Thereby, switches are work-conserving and never idle when
there are some packets to process. Although the application
may specify required class of service for its packets explicitly,
it is optional. In practice switching devices often calculate the
class of service for a packet automatically by a certain set of its
attributes and a mapping preinstalled by the administrator.

Differentiated Services introduce a way to deal with switch-
level resource fragmentation and increase the overall network
performance. However, it manages only the network resources
along the primary route of an application. Thus, some idling

42

and suitable resources away from this route are unavailable.
Moreover, the class of service of the flow is set statically for
the whole path. Although it is possible to improve granularity
by dynamic changing of class of service at some points in the
network this interference into the switching logic is beyond the
capabilities of the networks of ordinary switching devices
without a centralized control.

QoS-routing [7] was intended to improve allocation of
network resources by constructing individual data transmission
paths for each connection. Such a fine-grained routing is used
to balance data flows among several paths, bypass congestion
involve idling resources aside from heavy loaded channels, and
take into account the QoS requirements of the application. For
example, the delay sensitive traffic is usually routed along the
shortest path, whereas the other flows may be forced to use the
longer paths. However, a practical implementation of this
method requires a low-level and centralized control over the
switching devices unavailable back in time of its emergence.
Moreover, QoS-routing algorithms tried to treat the problem of
resource allocation as a global optimization problem with
multiple constraints and their implementations were too slow to
run on the fly.

B. QoS management with SDN

SDN supplies a complete control over the packet handling
rules of each switch in the network, and an SDN controller may
easily implement each of the mentioned approaches to QoS
management without a regard to a complex distributed
exchange algorithms for service data. Controller can mimic
resource reservation by dynamic adjustment of traffic shaping
parameters at its border switches of the network. It is also
capable to collect a comprehensive set of the QoS metrics and
implement a relevant QoS-aware routing on a per-flow basis,
or improve capabilities of DiffServ with dynamic reassigning
the class of service mark for any flow at any point of the
network. Unfortunately, neither flexibility, nor convenience of
SDN removes the inherent disadvantages of these methods.

SDN provides a technical capability to gather the relevant
information about the network, but it is a hard task to construct
a comprehensive algorithm to dispose the collected data
properly. This algorithm is expected to analyze a set of
heterogeneous parameters and synthesize such a set of
appropriate forwarding instructions for the switches to achieve
a better network performance. It is hardly believable there are
real opportunities to construct routing algorithm able to work
on the fly [8].

SDN does not give us any advantage to cope the problem of
how to transmit QoS requirements from the user application to
the Control Plane. However, this problem has been realized.
FLARE [9] proposes to enable such an interaction by
appending of arbitrary data to the tail of a packet and
introducing corresponding handlers for the piggy-backed data
at both end-host and switches. PANE [10] considers direct
communication of the end-host application and the controller.
On the other hand, loosening of the separation between the
Data Plane and the Control Plane leads to potential security
breach, and there is a lot of skepticism about its overall
advantage.

Another reason for controller to avoid interference in
applications communication is Internet Architecture Principles
[11, 12]. As an evolutionary development of the network
architecture SDN should not violate these principles. End to
End principle states “The network’s job is to transmit
datagrams as efficiently and flexibly as possible. Everything
else should be done at the fringes...” [11]. Clark explained this
principle with the following words “The function in question
can completely and correctly be implemented only with the
knowledge and help of the application standing at the end
points of the communication system. Therefore, providing that
questioned function as a feature of the communication system
itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful
as a performance enhancement.)” [13].

C. Multi-Path Routing

An SDN controller has a number of options to provide an
application with a connection of an appropriate QoS: controller
can route the flow through the underused links, reallocate the
resources along the existing routes and/or impose stronger
restrictions to the other flows. However, it requires too
complicated algorithm to manage all the listed possibilities
simultaneously. MPRSDN proposes to decompose this global
resource management problem into a set of smaller problems
with help of Multi Path Routing.

MPRSDN associate each connection with a simple module
to detect violations of its QoS requirements and request the
controller to supply additional resources on their occurrences.
The controller module handles the requests by constructing of
additional data transmission paths through the network. The set
of paths granted to a connection is used to balance its packets
and gain a larger amount of the resources. If controller provides
connection with a path, it has not used before, there is a good
chance, this path improves accumulated QoS of the connection.

There are multiple well-known approaches to implement
the described splitting and balancing of a packet flow among a
set of alternative paths. Routers often use Equal Cost Multi
Path (ECMP) [14] to route the traffic addressed to the same
destination along the different paths with equal cost. ECMP is
simple to implement by distributing of the incoming packets
with round-robin. However, such a naive approach to balancing
results into packet reordering, the most of TCP congestion-
avoidance algorithms treat as a packet loss. As a result, the size
of congestion window decreases, and the original non-split
connection may even outperform the balanced one. Thereby,
practical balancer implementations send all the packets of a
single connection along the same route. So, they are often
unable to split the “elephant” flows and overcome the problem
of fragmentation at the data channels.

In contrast to ECMP, Multi Path (MP) TCP [15] follows
the End to End principle and proposes to split a single TCP
session into smaller virtual sessions at the end hosts. MP TCP
operates transparently for an application. Upon the setting up
of the connection, it creates a static set of internal sockets. Each
of these sockets is used to establish an individual connection
trough the network. MP TCP balances the packets among this
set of connections and uses an original congestion-avoidance

43

algorithm to cope inter-connection packet reordering without a
significant performance drop.

Although MP TCP implements an automatic adjustment for
the packet ordering, it does not provide any means to ensure
the allocated internal connection use different paths. Existing
implementations of MP TCP send the information about the
original connection the packet within an optional L4 field the
most of network devices unable to distinguish. Thereby, flows
of the same application are most likely to take the same path.
This fact cancels all the advantages of a multipath routing, until
the sender or/and receiver has multiple interfaces connected to
different networks.

Fortunately, flexibility of SDN networks can surmount the
disadvantages of MP TCP. Controller may easily detect a new
connection is setting up by intercepting its first packet; get any
of its attributes including the data stored inside of the payload;
find out the original application connection it belongs to, and
minimize intersection of its route with the other flows of the
same connection.

III. QUALITY OF SERVICE IN MULTI PATH SDN

The paper refers a middleware designed to split a single
Application Flow (AF) into a set of Sub Flows (SF) and
multiplex these SFs into a single AF as a Multi Flow Agent
(MPA). For a given AF, we will call the AF degree a number
of SFs, carrying its data.

Each SF establishes a connection between a pair of unique
L4 addresses: one at the source and one at the destination host.
Network switches are supposed to distinguish different SFs by
their headers and treat each of them as an ordinary and
independent flow. In particular, each SF may attribute its
packets with a higher TOS/DSCP mark and get a better service
as compared to the other SFs of the same AF.

Although MP TCP agent may be considered as an example
of MPA, we imply the latter to be a more general term.
Different MPA implementation may go over TCP and provide
the similar multi path transmission to other protocols, modify
the number and intensity of SFs dynamically without the need
to reestablish the parent AF, rate-limit or shape individual SFs
with some arbitrary algorithms, and interact with an SDN
controller explicitly or implicitly.

To design an efficient implementation of the MPRSDN
one should answer on the following questions:

e How to retrieve the QoS
application?

requirements for an

e How to monitor and properly estimate the quality of
the granted connections?

e How to keep connection properties compliant with the
QoS requirements of applications by MPA?

e How should MPA and SDN controller interact?

A. Deriving QoS requirements

MPRSDN does not use the greedy approach. It requests
extra resources dynamically and only when it founds that there

is a risk to violate the QoS requirements. Thus, it allows
application to release the sparse part of the previously acquired
resources and request the missing resources without
reestablishing of the connection. For example, a network
video-streaming application may loosen its requirements to the
connection, while playing static scenes, and increase them at
the moments of active motions.

Thereby, there is an issue, how to retrieve the initial QoS
requirements of the application and how to modify them during
the MPA operation? There are two options to resolve this
problem: (1) make application to specify its QoS requirements
through a socket-level API, or (2) derive these requirements
from some application profile.

Using of the socket-level API results into a considerable
complication of network programming for the application
developer. Although this kind of effort may result into a
reasonable benefit for applications with severe dependency on
the connection QoS, in many cases this functionality will be
considered as unnecessary and obscuring.

Transparent deriving of the application requirements does
not imply any extra effort by the developers, and has more
perspectives to be generally accepted. However, the only
connection characteristic that can be estimated transparently is
its intensity. This kind of data may be sufficient to derive the
required bandwidth, but it does not allow estimate the other
QoS characteristics such as a transmission delay.

B. Monitoring of a connection QoS

SDN controller has comprehensive possibilities to monitor
QoS of an e2e connection. There are some researches devoted
to constructing and maintenance of a traffic matrix formed by
an enumeration of bandwidths consumed by each of the end-
host applications [16] and measurement of one-way delay for
an arbitrary flow while it moves through the network
infrastructure [17]. However, a comprehensive fine-grained
measurement imposes a frequent polling of the devices and
results into excessive loading of both network devices and the
controller. There are some attempts to reduce intensity of the
controller requests to the devices by using the dead reckoning
estimation [18]. The idea is to use a simple network model to
approximate parameters of interest between the measurements
and reduce their total number. However, the simulation of a
network with an appropriate accuracy often results into even
higher requirements to computation power of the controller.

As a result, controller has to delegate part of its monitoring
functions to MPAs. However, monitoring at hosts becomes
rather challenging, especially in case of a UDP-like half-duplex
connections. UDP sender does not know the amount of packets
dropped and both the connected hosts are unaware of an actual
network delay value. In practice, this problem is usually
moderated by wrapping the raw application data into RTP
protocol [19]. It establishes an additional RTCP connection to
send periodic statistics backwards from destination to source,
and reduces the case of half-duplex connections to the simpler
full-duplex one. TCP-like connection allows the hosts to detect
bandwidth shortage by the amount of the lost packets and infer
a one way delay of the connection from the RTT provided by
the underlying congestion avoidance algorithm.

44

C. QoS management with MPRSDN

MPRSDN provides two ways to meet QoS requirements:
adjustment of the number of SFs in the AF and individual
regulation of their service classes. Upon QoS violation MPA
scales AF partitioning and/or steps up the service for some of
its SFs. Upon detecting excessive overprovisioning MPA
rollbacks the parameters to avoid unnecessary overhead and
simplify the AF maintenance.

The listed QoS management means are independent of each
other, and may be applied in any order. However, one sequence
may be superior in the first set of cases, while the other is more
efficient in another set. Thus, it makes sense to develop a set of
strategies to regulate the properties of some SFs and adjust
their number for different types of requirement violations in a
most efficient way. A set of appropriate MPA heuristics may
include the following examples:

e When accumulated bandwidth of the SFs subsides,
some network channel is likely to become congested. In
this case rise in classes of service for the SFs with the
lower throughput is usually less efficient than increase
in the number of the SFs.

o If the estimated AF delay exceeds the allowed upper
limit, MPA should accelerate the slowest of its SFs.
One way to accomplish this task is to give up using this
SF and reallocate its data among the others.

e If the violation is due to a change in the requirements of
an application, there are no reasons to increase the
degree of AF partitioning. Thereby, MPA should cover
the lack of resources by rising of QoS requirements for
some of the existing SFs in the first place, and consider
increasing of SF number to be an auxiliary leverage.

D. Communication between an MPA and and SDN controller

SDN provides two different ways to install forwarding rules
into the network devices: the proactive and the reactive one.
The former one implies an SDN controller foresees the need in
some paths through the network and sets up appropriate rules
in advance. Any packets that match these rules are transmitted
by the devices autonomously without further involvement of
the controller. Thus, it is unable to track the establishment of
new connections directly. The reactive approach implies the
border network devices request packet processing instructions
from the SDN controller upon receiving a packet without a
match among the existing rules.

In order to support multipath routing an SDN controller
should identify individual SFs of a single AF and provide them
with different paths. This requires the controller to react MPA
in dynamic. Thus, the controller either has to provide MPAs
with ability to connect it directly through a dedicated channel,
or operate in the reactive mode. Since the former one implies
mixing of Data and Control planes and requires a fundamental
change of the interaction between the host and the network, we
give preference to a more practical second option.

While requesting controller for instructions to process a
packet of an unknown flow, switching device either provide

