
DataGuide-based Distribution for XML Documents

c© Alexander Kalinin

Institute for System Programming of the Russian Academy of Sciences
allex.kalinin@gmail.com

Abstract

Distribution is a well-known solution to in-
crease performance and provide load balanc-
ing in case you need optimal resource uti-
lization. Together with replication it also
allows improved reliability, accessibility and
fault-tolerance. However since the amount
of data is large there is a problem of main-
taining meta-information about distribution and
finding needed data fragments during execu-
tion of queries. These problems are well un-
derstood but they have not received much at-
tention in the context of XML data manage-
ment. This paper presents research-in-progress,
which examines the possibility of management
of meta-information about XML data distribu-
tion extending auxillary index structure called
DataGuide.

1 Introduction
Distribution and replication are often used in data man-
agement to provide load-balancing and improve reliabil-
ity and accessibility. Distribution means partitioning data
into some fragments and allocating the corresponding
fragments on some number of sites. Replication deals
with problem of allocating the same fragments on differ-
ent sites. Since these terms are often used in the same
context, in this paper we will be using terms “replica-
tion” and “distribution” interchangeably. This is justified
since we assume distribution of data into fragments and
replication some of the fragments on multiple sites.

When using replication numerous problems arise.
Among them we first consider:

1. Determining fragments to distribute and replicate
and their placement.

2. Management of meta-information about distribu-
tion.

3. Management of corresponding fragments and repli-
cas, e.g. consistency of replicas during updates.

These problems have been well researched in the re-
lational world but to the best of our knowledge they
have not received much attention in the context of XML
data management. However there are exist native XML

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2009

Q1:/lib/*[name() eq 'book' or name() eq 'article']

NODE1

/lib/*[name() eq 'book']

NODE2

/lib/*[name() eq 'article']

NODE3

MERGE

Figure 1: Example of load balancing

databases ([1] or [2] for example), which deal with large
amount of XML data. For them data replication could
give the same benefits as for relational databases. Let us
consider a small example:

Example 1. Let us look at Figure 1. This figure illus-
trates simple load balancing example. There is a query
Q1, which retrieves book and article elements. If book
elements were distributed to Node1 and article ele-
ments to Node2 then this task could be done in parallel
on these nodes. Then result would be merged on some
Node3, which could be an original node query had ar-
rived to. Without such distributionNode3 would process
such query by itself and probably sequentially by retriev-
ing book nodes and then article nodes.

Now let us review three aforementioned problems in
the context of XML data management.

First of all, there is a problem of determining distribu-
tion fragments and their placement. This implies choos-
ing fragment’s size. For XML documents two choices
seem reasonable: the whole document (document-level
replication) or individual nodes (node-level replication).
Document-level distribution is a well-known solution in
case of small documents or mostly read-only environ-
ment. The main benefit here is as DBMS executes some
query on document D it can choose any of the sites the
document D resides on to execute the query. This, at the
same time, provides good load balancing and resource
utilization during read-only queries. However there is a

problem of managing such replicated documents when
updates arrive. Since document D is replicated fully
among some sites update of any of its part propagates
to all of these sites. In case such updates are common
they can destroy all benefits we receive from such repli-
cation scheme. Another problem here is the size of the
fragment. In case of large documents such replication
becomes quite space-inefficient. With regard to this we
believe that replication based on nodes is a more efficient
solution in general, when database may contain docu-
ments large in size or when updates are not uncommon.
So in this paper we imply node-level replication.

If we use node-level replication we must deal with
large amount of meta-information about distribution, e.g.
on what sites particular nodes reside. This task in not
trivial since the number of nodes in a large XML doc-
ument may be quite high. The efficient management of
such data is the main theme of the presented research.
The most common way to deal with such information
is to use some kind of auxillary index structures. In
this paper we propose using DataGuide[10] as such in-
dex. We will describe DataGuide in details and give
some examples in the next section. Here it is sufficient
to say that DataGuide resembles path-index in such way
as every possible path in a document is represented in a
corresponding DataGuide structure. Since nodes are lo-
cated by paths in every XML document we believe this
structure to be the most appropriate solution in case of
node-level replication. Moreover DataGuide is used in
some native XML implementations (e.g. Sedna[2]) for
optimization of XPath[3], which is a navigational lan-
guage for XML documents and also deals with nodes.
In such systems using DataGuide to store replication
schema means integration with query executor straight-
forward. Such sound integration allows to receive most
benefits from replication since one of its main goals is to
make query evaluation more efficient.

At first we propose straightforward and most obvious
way to extend DataGuide, which requires minimal modi-
fications. Such DataGuide is then replicated itself among
participating sites. Then, the more elaborate approach
follows, which includes extending DataGuide, distribut-
ing it in some fragments and replicating them only for
nodes that really need it. Such approach creates multi-
level environment, hence the nameMLDG (Multi-Level
Data Guide).

Last problem remaining – maintenance of corre-
sponding replicas. The most infamous problem here is
to keep replicas in consistent state. Much work has been
done in this field outside of XML data management. But
since most algorithms deal with abstract “data elements”
and do not impose restrictions on underlying data model
they can be used for dealing with replication of XML
data as well. So we believe it to be a separate problem
and do not include any suggestions on the problem in this
paper.

The rest of the paper is organized as follows. In the
next section we describe DataGuide structure and give
some examples of its usability during evaluation of some
path-expressions. Then, in Section 3 we discuss the pos-
sibility of using DataGuide to store information about
replication as well. First we give there the most straight-
forward approach and then we move further to the more

<doc>
<person age='55'>
 <name>Peter</name>
 <addr>Old Street,25</addr>
 <child>
 <person>

<name>John</name>
<addr>UStreet,16</addr>
<hobby>swimming</hobby>
<hobby>cycling</hobby>

 </person>
 </child>
 <child>
 <person>

<name>Robert</name>
<addr>Old Street,25</addr>

 </person>
 </child>
</person>
<person age='20'>
 <name>Mary</name>
 <addr>Quensway,34</addr>
 <hobby>painting</hobby>
</person>
</doc>

doc

person

@age name addr child hobby

person

name addr hobby

Figure 2: Example of DataGuide

elaborate one, which is our main research proposal. Sec-
tion 4 gives a brief explanation of work to be done for
this research. In Section 5 we describe related work. And
Section 6 concludes this paper.

2 DataGuide
DataGuide is a structure that describes different paths of
XML document. More precisely:

Definition 1. DataGuide for XML document D is an
XML document DG with following properties:

1. For every path in D there is a unique equivalent
path in DG

2. For every path in DG there is a equivalent path in
D

Figure 2 presents an example of DataGuide. Top half
contains document D and the bottom half contains the
corresponding DataGuide. One of the most important
features of DataGuide is that it effectively serves as a
path-level index. Since XPath is the main navigational
language for XML documents DataGuide is used in its
optimizations. For example, in Sedna XML database
nodes of DataGuide point to the corresponding nodes
of a document, which allows quick evaluation of XPath
queries. Let us look at some example.

Example 2. Consider query Q1: /doc/individual.
Query executor would see that such path does not exist
and return empty sequence. It does not even have to look
into any nodes.

Now consider Q2: /doc/person/child. In this
case query executor could find corresponding document
nodes by looking at DataGuide and using it as an index.

doc

person

name addr child {B,C} hobby

person

name addr hobby {D}

RDG

Sites A,B,C,D

doc

person

name addr child {B,C} hobby

MLDG(LEVEL 1)

Site A

@age
@age

doc

person {A}

child

person

name addr hobby {D}

MLDG(LEVEL 2)

Sites B,C

doc

person

child

person {B,C}

hobby

MLDG(LEVEL 3)

Site D

Figure 3: Multi-level DataGuide

In fact, in this case it would not look at any unnecessary
nodes at all.

At last, consider Q3: /doc/person[./child].
There is a path /doc/person/child inDG but accord-
ing to the definition it does not have to be unique. This
means that not every “/doc/person” node has “child”
node as a child. However in this case DataGuide al-
lows efficient iteration over “/doc/person/child” nodes
and obtaining their parents, which would be resulting
“/doc/person” nodes.

This example shows that DataGuide can be used as
effective XML data map. We believe it is straightfor-
ward to extend it to be able to support information about
distribution, i.e. serve as a distribution map. Since we
consider node-level replication here and nodes are ac-
cessed by path expressions DataGuide is a natural choice.
Moreover it would allow easy integration with query ex-
ecutors, which are aware of path expressions anyway. In
the next section we will present extensions to DataGuide
to support replication.

3 Extending DataGuide with replication
In this section we discuss the possibility of tuning
DataGuide to support replication. We use the term “site”
to distinguish nodes on which data reside from XML
nodes.

First and the most straightforward way is to extend
DataGuide with information about sites the particular
nodes reside on. Consider DataGuide DG from Figure
2. Let us assume that /doc/person/child nodes are
replicated among sites B and C, and site A contains all
other nodes except /doc/person/child. Then we can
store such information in the nodes of the DataGuide.
For example, node /doc/person/child would con-
tain pair (B,C) allowing to find sites corresponding
document nodes reside on. It is a matter of choice
whether to propagate such information to the children
of /doc/person/child. We could assume that without
any explicit directions node resides on the same site as
its nearest ancestor. In this case we would write pointer

to site A only for node /doc. We will call such extended
DataGuide RDG (Replication-aware DataGuide).

The proposed scheme allows executor to easily redi-
rect part of a query to the specified sites. For example,
for query Q3: /doc/person/child[@age=’15’] we
would go to one of the nodes B or C and continue
query evaluation there. For DataGuide-aware executor
traversing DataGuide would be part of the job anyway.
Other executors could evaluate Q3 on RDG since it is
structured as XML document. The main caveat here
is that in order to work efficiently such RDG should
be fully replicated between all sites we use to answer
queries. The main benefit here is that every site knows
about data allocation and can redirect parts of a query
right to the corresponding nodes. Moreover it can an-
swer some queries locally without even accessing the
other machines. As an example consider query Q4 :
fn : count(/doc/person/child/brother) received by
the site A. Since the corresponding path is absent from
RDG then A can give the answer, 0, right away even
though it does not contain /doc/person/child nodes
itself.

Despite of some benefits the RDG approach also has
some drawbacks. Since we must replicateRDG to every
site it becomes somewhat hard to maintain it in case of
updates. In fact updates can be of two types. First ones
are updates of corresponding XML document. For exam-
ple, consider adding node with the name “child” to some
of the /doc/person/child/person nodes. Since the
corresponding path is absent from the DataGuide we
would need to update it for every site. So such simple in-
sert of a node becomes an update of the entire cluster of
sites. It would be beneficial to update just sites B and C
where /doc/person/child/person reside. The sec-
ond type of updates are updates of meta-information. For
example, if we want to replicate /doc/person/child
to some site D. Again since RDG is fully replicated we
should propagate such update to every site. However the
last problem could be easily alleviated. For example, for
site A we could store information only about site B and
siteB knows that its data replicated also at site C. In this

case this last update would touch only sites B and C.
Considering aforementioned shortcomings we pro-

pose another approach. The main idea is to dis-
tribute RDG itself creating multi-level environment.
We call such extended DataGuide MLDG (Multi-
Level DataGuide). Let us look at Figure 3. The
left part presents RDG discussed earlier. Nodes
/doc/person/child are replicated on sites B and
C and nodes /doc/person/child/person/hobby are
placed on D. Since site A does not store all these
nodes we can prune RDG tree leaving information
about nodes that actually reside here and information
on where to find /doc/person/child. Such pruned
RDG would be replicated on every site that stores repli-
cas of A. Such sites form level one in our distributed
environment. Sites B and C receive another variation
of RDG. They are aware of the internal structure of
/doc/person/child, so they contain more information
about corresponding subtrees. For example, they know
about /doc/person/child/person nodes of which
A is not aware of. B and C form the second level.
Lastly, /doc/person/child/person/hobby nodes are
distributed on site D. Again, B and C know where to
find these nodes, but they are not aware of their internal
structure. D receives another modification of the initial
RDG as specified on Figure 3.

The main rule here is that every site is aware of the
internal structure of its replica. This means that it stores
the whole DataGuide only for subtrees belonging to the
nodes that are replicated to it. Such DataGuides exclude
any subtrees for nodes that belong elsewhere as, for ex-
ample, the case with /doc/person/child on siteA. As
can be seen on Figure 3 every site on level greater than
one also stores ancestor context for its replicas, which is
a path from document root to the replicated node. These
paths become parts of site’s DataGuide too. This al-
lows two important things. First of all, this part of the
DataGuide allows pointing back to the previous level.
For example, /doc/person stores information about A
and /doc/person/child/person stores information
about B and C. Without such “pointers” it would be im-
possible for such sites to receive queries since they would
not know where to redirect them in case they have not got
the needed nodes. Another reason is that ancestor context
allows higher levels to issue proper, without mangling,
path-queries to retrieve needed nodes from lower levels.
In this case the structure of a query executor for every site
would remain the same because of uniformity of distri-
bution information’s structure. Moreover it yields more
natural description for disjoint node replicas. For exam-
ple, if some site would hold /doc/person/name and
/doc/person/hobby replicas it would be more natural
to hold it together with from-the-root paths and at the
same time this allows to evaluate “usual” queries such as
fn:count(/doc/person/name).

Let us see how queries could be evaluated in such
multi-level environment.

Example 3. Consider query Q1 :
/doc/person/child/person/name arriving at site
A. A cannot answer this query but it knows that
/doc/person/child nodes are allocated at sites B
and C. So it redirects this query to either B or C. B
and C indeed contain all the data needed for this query.

In fact they can execute this query as it first arrived
straight to one of them. This means we do not even need
to rewrite the query.

Consider query Q1 arriving at site D. Similar to A
it knows nothing about nodes in question. But it knows
that /doc/person/child/person nodes are allocated
at sites B and C. So if somebody could give an answer
it is one of them. Again it redirects the query to either B
or C.

Now consider query Q2 : /doc/person/name. If it
arrives at site A the answer could be given right away
since A knows it. If the query arrives at site B it must
be redirected to site A. B could do that since it knows
that /doc/person allocated at A from its DataGuide.
However if the query arrives at site D it could not be
redirected right away since D knows only about B and
C nodes. In this case it redirects the query at site B(C)
and B(C) would redirect it to A.

Multivelel redirection, such as D → B → C from
the above example shows another problem: if query ar-
rives at some level but must be answered by a level
much higher or lower than the current there would
be a large number of redirections. Such indirection
could be alleviated by allowing levels to see more in-
formation about other levels. For example, we could
add path /doc/person/child/person/hobby to the
DataGuide at site A allowing A to redirect the corre-
sponding questions without B or C. In this case the en-
vironment becomes more centralized and resembles the
RDG approach. However the amount of replicated in-
formation is still small compared to RDG and at the
same time it would allow processing queries without un-
necessary redirections. We could say that there would be
a some kind of trade-off between more centralized en-
vironment with some performance gains and more dis-
tributed environments, which is more robust to the up-
dates of DataGuide.

As for the updates let us look at the following exam-
ple.

Example 4. First of all, if we need to add some node that
is already reflected in the DataGuide the same rule as for
queries applies. Such update would be executed in place
or redirected to the corresponding site. It is obvious that
no update of DataGuide is needed.

Updates become more interesting when they involve
nodes that are new to a DataGuide hence requiring it to
be changed. For example, let us assume that we want
to add a child with the name “SSN” to the one of the
/doc/person/child/person nodes. This requires up-
dating DataGuide but only at sites B and C. Compare it
with the RDG approach where such update would touch
all sites to update fully replicated RDG. That is one of
the examples where maintaing MLDG pays off.

Another benefit of MLDG would be fur-
ther distribution of XML data. For example,
let us assume that we want to reallocate nodes
/doc/person/child/person/addr from B and C to
some site F . In this case we would update only sites B
and C since it would be enough to locate these nodes.
With RDG we would update all sites since every site
must know where to find relocated nodes. This example
also illustrates that trade-off we were talking about

earlier. If, for example, we want A to be able to locate
aforementioned nodes we would update it as well. Again
this alleviates indirection but makes changing data
allocation map less straightforward.

This example concludes our proposal. To summa-
rize, the main idea is to use multi-leveled DataGuide
(MLDG) as a representation of a data allocation map.
Multi-levelness allows more efficient updates and evolu-
tion of the data allocation schema, i.e. reallocating nodes
to another sites.

There is much to be done in this research and in the
next section we will give a brief summary of future work.

4 Future Work
In this section we give a brief summary of further di-
rections of our research. First of all, when replicating
XML data we must be aware of so-called document or-
der. Imagine, for example, that we want to retrieve some
of the /doc/person/child/person nodes. Such query
would be easily delivered to one of the nodes B and C.
But then we must face the fact that some parts of the
nodes in question (“hobby” nodes in our example) are
located on another site. We must assemble all these parts
from sites B (C) and D in the document order. Docu-
ment order problem does not end with serialization how-
ever. Most update extensions to XQuery allow user to
specify the exact placement of the inserted node. Again
original DataGuide is not suited for the purpose of stor-
ing such positional information. Maintaining informa-
tion about document order is straightforward in the ab-
sence of distribution on the internal representation level,
but in the distributed environment it could become not-
so-trivial task. We believe that using some of the node
identifier (NID) schemes can be a life-savior here, but
we must elaborate on some effective way to store such
information in MLDG.

Another direction for the research could be to look
more closely on some of the XPath evaluation methods
and thinking about easy integration ofMLDGwith such
methods. Such integraton would allow more effective
path-query evaluation in the distributed environment and
gaining the most benefits from the replication.

And last but not least, we plan to do some experi-
ments to show benefits of the presented approach. There
could be a performance decrease because of redirecting
queries to another sites, but it should be tolerable in one
cases and completely surpassed by benefits of replication
in another. As for the updates it should be beneficial to
RDG approach for the reasons presented in the previous
section.

5 Related Work
There is a large amount of work concerning replication in
relational databases(for example [8, 9, 5, 4, 11]). Some
of such papers deal with replication of strictly relational
data. However since relational and XML data are differ-
ent in structure these works are not suitable for our pur-
pose. Since XML data could be represented as a tree with
arbitrary depth level this implies somewhat more com-
plex map than in the case of “almost flat” (table-oriented)

relational data. But other works in this field discuss cor-
rectness problems for replicated data and propose algo-
rithms that guarantee one or another level of correctness.
XML replication can certainly benefit from these works,
but this is not a part of our research. It is more of the third
problem we described in “Introduction” since such algo-
rithms usually work without assuming something about
underlying data structure.

Now we discuss some works here that deal with dis-
tribution of XML data. First one [6] discusses similar
problem of representing distribution map. Authors pro-
pose ReplicationGuide(RG), which resembles RDG
we discussed earlier. However in this paper authors
are more concerned with performing structural joins and
maintaining information about different physical paths
that correspond to one RG path in the form of µPIDs.
This is somewhat similar to maintaing positional infor-
mation we discussed in the previous section. However,
authors do not divulge into details whether µPIDs could
be used to solve serialization or update problems we
mentioned earlier. Moreover this approach lacks in two
ways. Firstly, RG is replicated on every site. As we have
seen it can be cumbersome in some cases. Secondly, this
approach and µPIDs particulary are too dependent on
DTD or XMLSchema, which can be bad in cases data
does not follow such rigorous structure.

Second paper [7] discusses partial evaluation problem
in a distributed environment. The proposed algorithms
deal with so-called “Boolean XPath queries“, which is
a subset of XPath queries that answer “true” or “false”
depending on existence of nodes corresponding to path-
expression. Authors propose efficient distribution algo-
rithm, which guarantees some nice properties. However
this work is related to the problem of distributed query
evaluation and does not discuss any problems of main-
taining distribution map.

The final paper [12] deals with interesting prob-
lem of caching results of XPath queries in a peer-to-
peer environment. Authors propose two approaches:
IndexCache and DataCache. The former involves
storing results on peers that requested them and main-
taining prefix-based index to allow other peers to access
it. Such prefix-based index is distributed among peers
for efficient querying. DataCache involves storing results
on particular sites since every site maintains its own por-
tion of query space. This allows to eliminate redundancy.
Notice that prefix-based index resembles DataGuide ap-
proach as its primary goal is to path-index cached results.
So this has little to do with querying distributed database
but this technique can be beneficial as a performance in-
creasing add-on.

6 Conclusion
This paper is a research-in-progress discussing some as-
pects of managing replication for XML data. Replication
is an important task for any DBMS natively managing
XML data. Managing meta-information about replica-
tion, i.e. some kind of replication map is not an easy and
trivial task. In this paper we have discussed approaches
to manage such information. We have described RDG,
extended version of well-known DataGuide, and more
elaborate MLDG, which is a multi-leveled version of

RDG itself. We have provided numerous examples to
show benefits of our approach during evaluation of query
and update statements. Also we have discussed direc-
tions for future work to continue the presented research.

References
[1] eXist Native XML Database.

http://exist.sourceforge.net/.

[2] Sedna Native XML Database.
http://modis.ispras.ru/sedna.

[3] XML Path Language (XPath).
http://www.w3.org/TR/xpath.

[4] Fuat Akal, Can Türker, Hans-Jörg Schek, Yuri Bre-
itbart, Torsten Grabs, and Lourens Veen. Fine-
grained replication and scheduling with freshness
and correctness guarantees. In VLDB, pages 565–
576, 2005.

[5] Yuri Breitbart, Raghavan Komondoor, Rajeev Ras-
togi, S. Seshadri, and Abraham Silberschatz. Up-
date propagation protocols for replicated databases.
In SIGMOD Conference, pages 97–108, 1999.

[6] Jan-Marco Bremer and Michael Gertz. On dis-
tributing xml repositories. In WebDB, pages 73–78,
2003.

[7] Peter Buneman, Gao Cong, Wenfei Fan, and Anas-
tasios Kementsietsidis. Using partial evaluation in
distributed query evaluation. In VLDB, pages 211–
222, 2006.

[8] Khuzaima Daudjee and Kenneth Salem. Lazy
database replication with ordering guarantees. In
ICDE, pages 424–435, 2004.

[9] Khuzaima Daudjee and Kenneth Salem. Lazy
database replication with snapshot isolation. In
VLDB, pages 715–726, 2006.

[10] Roy Goldman and Jennifer Widom. Dataguides:
Enabling query formulation and optimization in
semistructured databases. In VLDB, pages 436–
445, 1997.

[11] Jim Gray, Pat Helland, Patrick E. O’Neil, and Den-
nis Shasha. The dangers of replication and a so-
lution. In SIGMOD Conference, pages 173–182,
1996.

[12] Kostas Lillis and Evaggelia Pitoura. Cooperative
xpath caching. In SIGMOD Conference, pages
327–338, 2008.

