
Efficient Virtual Data Integration

Based on XML

Konstantin Antipin1, Andrey Fomichev2, Maxim Grinev2, Sergey Kuznetsov1,
Leonid Novak1, Peter Pleshachkov2, Maria Rekouts2, and Denis Shiryaev1

1 Institute for System Programming of Russia Academy of Sciences,
B. Kommunisticheskaya, 25, Moscow 109004, Russia
{stakv, kuzloc, novak, shiryaev}@ispras.ru

2 Moscow State University, Vorob’evy Gory, Moscow 119992, Russia
{fomichev, grinev, pleshachkov, rekouts}@ispras.ru

Abstract. In the scope of increased interest to the problem of integrat-
ing disparate heterogeneous data sources, virtual approach seems to be
quite perspective and promising. In the general formulation this prob-
lem is extremely difficult to solve and has paid little attention so far.
However the rapid evolution of XML – the multipurpose format for data
representation – and elaboration of XML data query languages such as
XQuery gives a new outlook on the old problem.
This paper contains a description of the overall architecture and founda-
tions of BizQuery3 – the virtual integration system based on XML data
model. The system maps local sources as views on the global scheme and
allows users to query data in terms of XML and UML via declarative
languages XQuery and UQL in a uniform way. The problems of scheme
mapping, query optimization, decomposition and processing in the case
of virtual integration are touched upon.

1 Introduction

The task of heterogeneous data integration is among the basic and oldest prob-
lems related to data management research area. The concise formulation of the
problem is as follows. Assume there are a number of heterogeneous data sources
logically interrelated in some way. It is required to provide some software means
for unified access to that data in such a manner as if they had a single logical
and physical representation. We make no attempt to prove the significance of
this problem, because we believe it is obvious.

In general there exist two basic approaches to this problem. The first ap-
proach consists in construction of warehouse snapshots of data. With this tech-
nique data subject to integration is being transformed in accordance with target
integration model and placed into single warehouse database. A great deal of
descriptive material concerning this integration technique is widely available, a
state of art review could be found at [1].

3 This work was partially supported by the grant 02-07-90300-v of RFBR.

2 Konstantin Antipin et al.

The second approach is based on the virtual integration paradigm, when data
from disparate sources is not materialized inside integration system, rather the
on-the-fly query processing technique is used whereas user queries to integrated
data are transformed into subqueries to separate data sources and eventually the
data integration system forms the request results. Brief review on the evolution
of this kind of systems, including multi-databases [2] and federated databases
[3] can be found in [4]. The specific of exactly these systems is that they are tar-
geted to integration of structured data. Later the mediator-based [5] integration
systems appeared, which became mainly oriented on semistructured data model
[6]. The emergence of XML [7] and attendant technologies (XSLT [8], XQuery
[9]) induced a new wave of research activities around virtual data integration
[10], [11], etc.

This paper discusses virtual integration system BizQuery, which is based on
XML [7] and UML [12] technologies, and presents some results of research activ-
ities carried out by our R&D team during nearly a three years research project
on heterogeneous data integration. Some basic characteristics of BizQuery are
as follows:

– integrated access to several separate data sources, which can be relational
or XML;

– the use of XML both for internal data representation and representation of
query results;

– representation of the global scheme of the integrated data both in terms of
UML and XML;

– the use of declarative query languages UQL (which is developed by ourselves
[4]) and XQuery for querying integrated data in terms of UML and XML
respectively;

– the full-featured query processing, including query optimization, query de-
composition into the partial queries to individual data sources, and compo-
sition of the final result with potential joining and transforming of data.

The primary goal of the BizQuery project was to research problematic virtual
integration approach and to develop implementation of a virtual integration
system for practical use on the basis of XML family technologies (that is using
XML as a native internal representation format). The authors tried to justify
that virtual data integration approach could be quite realistic and practical in
a number of recent problems of modern business. In the paper we consider the
BizQuery system general architecture, as well as cornerstone concepts lying in
the basis of BizQuery. We also strive to motivate our decisions on selecting
corresponding techniques for solving data integration problem.

The remainder of the paper organized as follows. Section 2 describes the
general architecture of BizQuery. Sections 3 and 4 penetrate into details of the
two main system components – BizQuery Mapper and BizQuery Integration
Server. Section 5 gives some performance results. Section 6 concludes the paper.

Efficient Virtual Data Integration Based on XML 3

2 Architecture and System Structure

In this section we consider the general architecture of BizQuery and give the
ideas lying behind main functional components. We would like to proceed from
introducing the two phases of system operation:

– deployment phase, preliminary to system usage and responsible for con-
structing data integration meta-definitions (Fig. 1a);

– system run-time phase, when the system handles user queries to integrated
data (Fig. 1b).

���������	�
��
��

������

���������	�
��
��

���

�����
����
��������

!����������	�
��
��

!����������	�
��
��

!������"#�����
��

$�
��
��

!�
����
�
��
���

�
�����

��	�
����

��
��

����
����

��
��

	
#���

����

��
��

�����
�������
�

�����
����"�
#�����"�

�%
�

���
��

����
�

��	

����
�

��	���

���
��

���"������

��
����"&��'�"#

	�#�����(����������"

��
����
����������"

�	

)����
�

���
��

)����
�

���
���*+
�����"

*"#�"

��	

�����

���

�����

	
#���

�����

��
���"�
�&��

��"�#
�
"��

�%
�

,�����#� -����
�������

���

,��
"�

.��������"�

��
��

/��0

��	
��	

���
��

������

Fig. 1. System structure: (a) – deployment phase; (b) – run-time architecture

Before passing queries to integration system it is required to execute a num-
ber of preparatory activities aimed to define the system run-time configuration.
Namely to define the global integrated scheme of data, either in the terms of
XML or in the terms of UML; to gather and refine information on the schemes
of data sources being integrated; to set the mapping of data sources schemes
onto the global scheme. All of the enumerated tasks must be carried out during

4 Konstantin Antipin et al.

the BizQuery system deployment phase. The information collected during the
deployment phase comes into BizQuery Repository, which serves as the configu-
ration basis for BizQuery functioning at run-time phase. It is worth mentioning
that during system deployment phase only meta-information is used (i.e. the
schemes of data sources and global scheme), so no data is involved.

2.1 Deployment phase

BizQuery provides two possible levels of global scheme definition and access to
integrated data:

– in terms of Global UML Scheme;
– in terms of Global XML Scheme.

In the full scenario the deployment process starts from the construction of
the Global UML Scheme, which presents the given application domain. UML
class diagram is used as a notation. When constructing this scheme, the two
following aspects should be kept in mind. Firstly, the scheme must comply with
the requirements of the users; secondly, the information adequacy of available or
to-be available data sources to be integrated. The person who performs deploy-
ment of the system is responsible for thorough hitting both factors. At the next
step, the specified Global UML Scheme is being automatically transformed into
XML representation in accordance with the OMG XMI [13] specification. As a
result we get Global XML Scheme. We would like to emphasis that the Global
XML Scheme is the primary meta-informational resource for BizQuery run-time
functioning, no matter how this scheme was constructed. In other words, if one
intends to build data integration system right at the XML level, it is not re-
quired to create UML model first, if the final Global XML Scheme can be stated
directly.

As mentioned above, at the deployment phase only data scheme informa-
tion is used. Since we were interested basically in structural information about
integrated data sources, the native XML DTD standard was accepted for repre-
senting data scheme information. Currently we work on implementing support
for RelaxNG [14] data scheme encoding. Thus we need scheme information for
each data source involved into integration process. Scheme information about
XML data sources should be provided from that data sources directly, while for
the sources of relational kind the scheme is built automatically from the internal
catalog of corresponding RDBMS with predefined rules.

The final and most complicated step of deployment phase consists in building
the mapping definition between the schemes of original data sources and Global
XML Scheme. BizQuery provides a special mapping tool named BizQuery Map-
per used to specify the denoted mapping statements, which will be discussed
later in a separate section of this paper.

2.2 Run-Time Architecture

BizQuery run-time system consists of the two main components:

Efficient Virtual Data Integration Based on XML 5

– BizQuery Integration Server (BQIS);
– User Interface Management Server (UIMS).

BQIS is responsible for processing queries formulated in UQL or XQuery. At
that, every UQL query is being translated to XQuery by the UQL to XQuery
Translator subsystem, and query processing is accomplished in the terms of
XML. The availability of the metadata makes it possible since this metadata, on
the one hand, describes the original model and, on the other hand, is represented
in the XML itself.

The XQuery query is subject for query unfolding. Unfolding consists in sub-
stituting views stored in the BizQuery Repository (obtained at the deployment
phase) into the query. Note that in the result of substitution the query is refor-
mulated in terms of data source schemes, and its structure usually becomes more
complicated. After that, the query is optimized by the Logical Optimizer apply-
ing rewriting rules, which can make significant simplification and ”improvement”
of the reformulated query. This step is one of the most important for the overall
system performance and will be discussed thoroughly later.

Then optimized query is decomposed into partial subqueries (still in XQuery),
each formulated in terms of the scheme corresponding data source (one or more),
involved in the global query. Every partial subquery is then translated into the
language comprehensible by corresponding data source. This task is being done
with one of BizQuery wrappers. Currently BizQuery supports SQL and XQuery
wrappers. At that, query translation for XQuery data source is trivial, while
translation of arbitrary XQuery expression over relational data source into the
SQL query is not a simple task. We will discuss this issue in more details later.

After decomposition phase the query is made up of a number of subqueries to
the data sources and the so-called cross-source part (i.e. the part of the query,
which take data from data sources as operands). The cross-source query part
should be executed by the integration system, i.e. with XQuery Execution En-
gine.

BQIS module provides an open API for developing client applications, which
can be used to issue XQuery and UQL queries to BizQuery integration system.
However, this could not be considered as a convenient end-user interface for
access to the integrated data because it requires essential programmatic effort.
What we strived to provide with BizQuery was some user interface management
component to fill the gap between BQIS and the end-user. That is what UIMS is.
UIMS module provides automatic construction of three kinds of GUI interfaces
for integrated data access in terms of UML.

Catalogs GUI provides navigational data access facilities. With the catalogs,
the user browses integrated data as the instances of UML classes in correspon-
dence with the UML model in focus. While navigating catalogs, the user may
follow the typified links between the instances of UML classes, in accordance
with the model definitions.

Another two branches of the GUI – Forms and Graphic Map – implement
declarative query formulation technique. Basically, both of these GUIs provide
facilities to travel around the UML model in focus, following the links between

6 Konstantin Antipin et al.

classes and setting constraints on the values of attributes at each step. In both
cases the result of the user activity in all kinds of GUI is a UQL query composed
by UIMS. This query will be send later to BQIS for execution. After the query
is executed, UIMS passes the query result back to the client, providing adequate
composing and formatting of the result. In all three scenarios the user operates
in the terms of UML model and corresponding UQL queries are constructing
automatically.

UIMS was implemented as a web server application and possesses rich cus-
tomization capabilities due to the use of the XSLT processor, responsible for
composing each component of user interface. GUI instances are being built au-
tomatically and dynamically on the basis of the UML model kept in BizQuery
Repository.

2.3 Declarative Query Languages of BizQuery System

According to the concept of two integration layers – XML and UML – BizQuery
provides two languages for querying integrated data namely XQuery and UQL.
XQuery, being elaborated at the W3C consortium and being the most perspec-
tive declarative language for querying XML data, was accepted in BizQuery as
a general internal language.

In BizQuery the user may define XQuery queries upon two principal kinds
of entities:

– virtual documents that correspond to the global XML scheme. A keyword
“virtual” inside function “document” is used for referencing (e.g.
document("virtual:foo.xml"));

– real documents that are actually existing XML documents or tables of rela-
tional database (e.g. document("real:sql/foo")).

In the first case the user works in terms of the virtual document or view, which
has the underlying query. The purpose of this query is to express construction
of the virtual document in terms of real documents existing in the system. In
the second case the user appeals directly to the entities of data sources (because
all the internal processing of data is being done in terms of XML, contents of
relational tables are trivially encoded in XML using a set of predefined rules).

While developing data manipulation techniques for BizQuery, we realized the
necessity in a language for querying data in terms of UML model. Thus we have
developed UML Query Language (UQL for short) that is a language used to
formulate queries in terms of class instances of corresponding UML model that
is the Global UML Scheme of BizQuery.

The UQL language is based on OCL [12] with a slight difference in syntax and
semantics. The main purpose of OCL is to define constraints upon the classes
and their attributes in correspondence with the UML model in focus.

Generally speaking, UQL is meant for querying instances of UML classes
via imposing predicates on the attributes of classes, moving through the links
between classes and the use of generality and existential quantifiers.

Efficient Virtual Data Integration Based on XML 7

Here is an example of UQL query. The semantics of the query is as follows.
Select all closed auctions, that are instances of the class open auction, which
have price more than 40 and the buyer is a person with income at least 50000 a
year.

context model-id("1803"):

extent(closed_auction)=>

select(c|c.price>"40" and

c!buyer@person=>exist(p|p.income>="50000"))

3 BizQuery Mapper

As we have stated it earlier, the basic task of the BizQuery deployment phase
consists in constructing the mapping of integrated data on the data correspond-
ing to the Global XML scheme. Generally speaking, the Global XML scheme
may be of arbitrary complexity. Consequently, the mapping of data source onto
the Global scheme may be quite non-trivial (i.e. the schemes may be subject to
a sequence of complex transformations).

Before covering the basics of BizQuery Mapper component, responsible for
solving the mapping task, let’s make some classification of scheme mapping ap-
proaches. In common sense this task can be formulated as follows. Consider we
have some data that conforms to the scheme A. How to transform this data to
make it conformed to the scheme B? There are several methods that solve this
problem:

1. Transformation with a program. We could develop a program in some
general-purpose language (e.g. C++ or Java), which will make specifically
this kind of data transformation from scheme A to scheme B.

2. Manual transformation. We could construct a request on some query
language (say XQuery) that is to be applied to the original data to get the
result conforming to the scheme B. This method, as well as all the subsequent
ones, has a remarkable property: transformation defined in a declarative
language can be a subject to optimization.

3. Transformation in high-level terms. We could shift from the terms of
XML nodes to the terms of trees corresponding to the original and target
scheme instances A and B correspondingly. When constructing transforma-
tion in this manner we operate with some tree algebra expressions, which can
be automatically translated to query language expressions later and applied
to the data in focus.

4. Scheme matching. With this method, we assume the presence of some ini-
tial algorithmic activity on searching for semantically corresponding nodes
followed by more exact manual mapping corrections. As the previous method,
this one should produce a query to be applied to the data in focus.

5. Automatic high-level terms transformation. With this method, we
exploit the technique of method 3 yet trying to construct mapping definition
automatically on the basis of semantic and statistic information on the data
in focus.

8 Konstantin Antipin et al.

6. Automatic scheme matching. With this method, we use the technique
of the method 4 trying to construct the mapping definition automatically on
the basis of semantic and statistic information on the data in focus.

In accordance with the classification given, BizQuery Mapper is predomi-
nantly based on the method 3 and partially uses the method 4 as well. Our ob-
jective was to provide a full set of functions to perform a scheme transformation
and obtain an environment, which would be comprehensive to the end-user, be-
cause the set consists of high-level algebraic operations that are generic to data
management (i.e. selection, projection, join, etc.). In some cases the optional
scheme matching method algorithms may do the work of scheme transformation
more easy and convenient.

Thus, we move from the scheme A to the scheme B iteratively via step by
step application of transformation functions of BizQuery Mapper. The set of
transformation operations is closed regarding the variety of schemes and conse-
quently it is an algebra. The only constraint is the requirement for the resulting
scheme to be inferable from the original one. In practice this means that there
must be no dependencies on data in definitions of transformations. For example,
it is illegal if the content of some element becomes the name of a new element.

Designing the set of transformation functions we were guided by the goal to
provide convince of usage rather than to minimize the set. The transformation
functions operate with scheme subtrees rather than nodes or node sequences of
the XML document, so many queries could be specified much simpler than with
XQuery. Nevertheless the mapping built in high-level terms is translated into
XQuery micro operations, which are good for optimization and evaluation.

BizQuery Mapper, which provides this functionality, is implemented as a
separate component with a convenient user-friendly graphical interface including
drag-and-drop facilities.

4 BizQuery Integration Server

In this section we will consider the BizQuery BQIS component responsible for
XQuery and UQL queries execution. It consists of the following functional parts:
UQL and XQuery parsers, UQL to XQuery translator, query optimizer, query
decomposition subsystem, query execution subsystem and finally wrapper sub-
system providing connection with the data sources.

It is a well-known fact that a virtual integration approach has principal per-
formance constraints, which may lead to unsatisfactory response times. These
principle constraints result from the lack of actual data statistics and data struc-
tures (i.e. indexes) providing an optimized access to the data. Additionally, some
problems originate from the delays on data transfers over the network as well as
transformations of data into some internal representation for further processing.
These difficulties follow from the fact that virtual integration system does not
materialize the data being integrated.

The authors realize in full measure that virtual integration systems would
hardly ever become capable to show performance comparable to warehouse-like

Efficient Virtual Data Integration Based on XML 9

systems, however they seem to be practicable for those business tasks requiring
high actuality of data.

During our work on developing BizQuery Integration Server module we have
marked out three general components of the server enumerated below in decreas-
ing significance order:

1. Logical optimization based on query rewriting (unfolding and simplification);
2. Query decomposition (extraction of maximum subquery for a source);
3. Stream processing at the server side and at the level of sources if possible.

Let’s consider each of these components in more details.

4.1 Logical optimization

It is hard to overestimate the importance of query optimizer for DBMS: the
difference in execution times for optimized and non-optimized queries may con-
stitute magnitudes of order. Many present industrial DBMSs actively use cost-
based optimization techniques, making the choice of the optimal query plan on
the basis of the operation cost. The optimal plan is recognized as a plan with a
minimal summarized cost of operations. Another optimization method is based
on a special rule set for heuristic-based equivalent query transformations lead-
ing to the construction of a new query being more effective than the original
one. This optimization method is known as rule-based optimization or query
rewriting. This is exactly the method used for optimization in BizQuery. This
approach was accepted due to the following reasons:

– The lack of data statistics in the virtual integration system, which could be
used to estimate costs of operations;

– Usually after the query unfolding the user query issued to the virtual docu-
ment contains a plenty of redundant information, which can be significantly
reduced using rewriting rules.

The later is of extreme significance since the size of the query may vary
in orders of magnitude depending on the virtual document complexity. The
following is the list of advantages achieved thanks to query rewriting in BizQuery
system:

– elimination of ”redundant” query constituents, arising during query unfold-
ing;

– predicates push-down and elimination of ”needless” constructor elements;
– rewriting the query to a more ”declarative” representation (subquery to join

translation);
– partial rewriting of recursive functions calls into non-recursive constructs

(using scheme information), which are subject for further optimization;
– query reformulation into ”well-aimed” form on the basis of schema informa-

tion, which can eliminate superfluous data scans (for example, replacement
of wildcard in a path query by certain XML element name).

10 Konstantin Antipin et al.

An arbitrary query, which can be a view, may be rather complex. Partic-
ularly, this is due to the potential presence of recursive functions, which are
typically used for implementing many transformational operations performing
tree traversals. And this is exactly the case where optimizer plays the major
role for effective functioning of the overall process. In practice a huge query of
thousands of lines may be transformed into a several hundred lines query.

It is important to note that XQuery does not have explicit join operation, thus
we had to introduce such logical and physical operation correspondingly. This led
to emergence of the extended XQuery data model. Typically join is expressed via
the FLWR construct and this obliges us to apply one strict execution algorithm
– nested loop join. That is why subquery to join translation makes the query
more declarative and allows using alternative, usually more effective, algorithms.
However the presence of order in XQuery still makes queries less declarative,
because it prohibits making arbitrary joins rearrangement.

Logical optimization is of great importance even more for the following rea-
son. As a result of query rewriting we get a new query with quite an accurate
structure. By convention, a query plan tree could be divided into three parts:
in the leaves of the tree there are data selection operations with filtering predi-
cates; the middle of the tree constitute join operations; the top part of the tree
mainly contain data transformation operations (Fig. 2a). Such normalization of
the query plays the key part for query decomposition on later stages, which we
are going to discuss a bit later.

��� ���

����������	
���

���	
������
����������

�������
�����
���
���

��	����
��

������������������
������

������������
�����
���
���

��	�������	
��

����	��
��
�����
�����
	������
��	���
�
!
����" �
!
����# �
!
����$

���	����	���
���

	��!������
	���!�

	����%
���

&���
	
���&�'
��

Fig. 2. XQuery query outline: (a) – after normalization; (b) – after query decomposition

The ideas lying behind the BizQuery optimizer are discussed in more details
in [15].

4.2 Query decomposition

The query decomposition task consists in accomplishing query breakdown into
a number of parts, aspiring to obtain such fragment of the whole query, which
could be executed by data sources, while the rest binding part of the query to

Efficient Virtual Data Integration Based on XML 11

be executed by the integration system. Depending on the type of data sources
subject to integration there exist two different cases. The first case regards data
sources having extremely limited facilities for query formulation upon that data
source, e.g. HTML-form interface [16]. Another case regards data sources with
rather developed and powerful declarative means for declarative querying. As
already mentioned above, in BizQuery we aimed to provide support for two
kinds of sources - relational DBMS with SQL interface and data storage systems
with XQuery interface. Thus the query decomposition task means choosing the
”maximal” subqueries to data sources that can be passed to the data sources.
For example, if in the original query contains such kinds of resource-consuming
operations as joins or sorting regarding a single data source, this operations
should be delegated to data source supposing that corresponding data source is
capable to execute those operations itself. Here are the benefits of this approach:

– Execution of substantial parts of original query in parallel (due to parallel
processing of subqueries by external servers);

– Qualitative data sources can execute queries faster than integration system
due to the presence of extra meta-information about target data in their
arsenal (e.g. index structures);

– For typical subqueries, amount of data, which must be transferred over the
network, are usually much less compared to the size of the whole document
kept at that data source (particularly, because of the presence of predicates
in subqueries).

In that way, the task can be reduced to finding the maximal subtrees in the
query execution plan tree, belonging to distinct data sources with subsequent
translation of the extracted subtrees into a query language supported by corre-
sponding data source. The rest of the global query keeps the cross-source oper-
ations, involving as operands data from several distinct data sources. And thus
this part of the query is to be executed within the integration system (Fig. 2b).

It is necessary to note that it is extremely important for the query to be
expressed in the normal form discussed above in order to accomplish subquery
decomposition. As the leaves of the query tree are XPath expressions one can
guarantee execution of subqueries by the data sources supporting corresponding
query language. Higher in the tree, there are join and semijoin operations, which
could be also passed to the data sources for execution if it is possible. In this
way, we have to execute within the integration system only those join and semi-
join operations, which are cross-source. In case of the query, which contains at
least one cross-source operation before transformation operation, transformation
processing is to be done within the integration system.

Let’s give an example of query decomposition. Suppose we have a query ref-
erencing two different documents of the same relational data source constructing
the sequence of departments with slightly modified structure and filtering em-
ployers whose age is below 20 years. Document schemes are presented in the
table below as DTD.

for $d in document("real:sql1/deps")/table/tuple

12 Konstantin Antipin et al.

where some $e in document("real:sql1/emps")/table/tuple[age<20]

satisfies $d/id = $e/dep_id

return element dep {$d/name, element additional {$d/address}}

Table 1. DTDs for documents

document("real:sql1/deps") document("real:sql1/emps")

<!ELEMENT table (tuple)*> <!ELEMENT table (tuple)*>

<!ELEMENT tuple (id, name, address)> <!ELEMENT tuple (name, age, dep_id)>

<!ELEMENT id (#PCDATA)> <!ELEMENT name (#PCDATA)>

<!ELEMENT name (#PCDATA)> <!ELEMENT age (#PCDATA)>

<!ELEMENT address (#PCDATA)> <!ELEMENT dep_id (#PCDATA)\>

The query contains semijoin, defined in clauses ”for” and ”where”, between
two documents belonging to the same data source. This semijoin can be executed
by the data source, while the operation on transformation figuring in the query
is not supported by the data source. Shown below is the subquery to the data
source sql1:

select * from deps

where (exists (select * from emps

where deps.id = emps.dep_id and emps.age<20))

Someone can criticize the normal form of XQuery expression. Obviously there
exist a number of simple transformations, which can be accomplished before join
operations, for example vertical data projection at the side of relational source.
However transformations of this kind are not resource consuming as denoted
ones and could be executed within the integration system without degrade to
system performance. Much more critical for achieving good performance is to
bring to light ”heavy” operations, i.e.joins and sorting.

4.3 XQuery Execution Engine

After the query decomposition phase the original query tree becomes trans-
formed into the physical query execution plan with the subqueries in terms of
data sources in the leave positions. At that the obtained query execution plan
can be rather complex. This generally has the following reasons:

– the original query may include cross-source operations (e.g joins);

– the original query includes transformation operations, which are not sup-
ported by the corresponding data source (particularly this is the case when
dealing with relational data sources).

Efficient Virtual Data Integration Based on XML 13

Due to this reasons we need to have a full-functional XQuery processor within
the integration system. Some operations upon extended XQuery data model,
such as joins introduced above, are implemented as physical operations improv-
ing performance of the system.

We have adopted the iterative query execution model [17] widely used in
relational DBMSs. This allows us to escape materializing intermediate processing
results arising after execution of each operation. In fact, applying this approach
for organizing query processing leads to a number of positive consequences.

We have discovered that the result of many user queries contains a sequence
of XML elements (of the same type) rather than a single XML document. Par-
ticularly this holds for UQL queries producing as a result the sequence of class
instances. Apparently, the scenario of consecutive user access to query results
must be rather typical especially with the graphical web interface. Correspond-
ingly it may be sufficient for the user to obtain some first portion of the whole
result set with the possibility to obtain next portions gradually. This approach
corresponds to the DBMS cursor idea allowing for essential reduce of query re-
sponse time.

Strictly speaking with XQuery Execution Engine we made attempt to im-
plement the so-called stream or pipeline processing techniques. Keeping in mind
the fact that XQuery is functional language, it leads us to implementation of
lazy semantics for XQuery. In fact implementing XQuery in lazy semantics con-
tradicts to the XQuery specification, which defines XQuery as the language with
static semantics. But at the same time the use of lazy semantics does not nar-
row the class of computable queries in any way. Indeed a query computable in
the system employing static semantics model is also computable in the system
with lazy semantics. Reverse is not true, that is some queries non-computable
according to the XQuery specification can be computable with BizQuery.

5 Performance Study

Presented in this chapter are the results of BizQuery system performance mea-
surement. It is important to note that to our best knowledge presently there
exist neither recommendations nor facilities for testing and benchmarking sys-
tems like BizQuery. Thus we had to adopt such recommendations from XML
DBMS society, namely XMark [18] benchmarking specification.

The document conforming to the XMark auctions DTD model was spited
up into three distinct parts – one representing XML data source and other two
representing relational data sources. As the server engine on the side of XML
data source we have chosen QuiP [19] that is a XQuery processor developed by
Software AG. The data for the QuiP processor resided on file system as XML
files. Oracle 8i DBMS was used as server component at the side of each relational
data source. Since QuiP is not a powerful DBMS it has limitations on amount
of data processed. That is why the size of XML data rather small. In order to
store relational part of benchmark in DBMS we had to make some adaptation

14 Konstantin Antipin et al.

of the corresponding part of the original XMark structure. Particularly we had
to throw away structural nesting.

In the adopted benchmark scheme the first relational source consists of 5 ta-
bles with the total number of tuples more than 1.8 million. The second relational
data source contains 3 tables with more than 4.2 million tuples in the whole.
The XML data source consists of 4 files with the overall size of 5,8Mb. The total
size of data files used to populate all the three data sources constitutes 700Mb.

The following hardware configuration was used to perform benchmark mea-
suring. BizQuery Integration Server was run on computer with Pentium-IV
1500Mhz and 512Mb RAM. XML data source server (under QuiP) was started
on the same computer with BQIS. Both Oracle servers were run on distinct com-
puters with identical configuration - Pentium-III 733Mhz and 256Mb RAM. All
programs were run under Windows 2000.

Table 2. Benchmark queries

Q1 for $x in document("real:sql1/item")/table/tuple

where $x/QUANTITY="5" and $x/location="Germany"

return $x

Q2 for $y in document("real:sql2/interest")/table/tuple

for $z in document("real:sql2/people")/table/tuple[business="yes"

and city="Moscow"]

for $x in document("real:sql1/categories")/table/tuple[name="all"]

where $y/ref_category=$x/id_category and $y/ref_person=$z/id_person

return ($x, $z)

Q3 document("virtual:closed_auction.xml")

Q4 for $v in document("virtual:item.xml")/item[location="United States"]

for $z in document("real:sql1/mailbox")/table/tuple

where $v/id=$z/ref_item and $z/mail_date="12/11/99"

return element {name($v)} {$v/*[not empty(./text())]}

The Table 2 shows queries, for which we publish measuring results. The
query Q1 addressed the real document ”item” mapped on the table of the first
relational data source and just imposes the predicate. The query Q2 contains
two joins. One join is defined between the documents of a single data source
while another join is cross-source – defined between first and second relational
data sources. The query Q3 demonstrates how to obtain a virtual document
as a whole. Finally, the query Q4 expresses join between the virtual document
”item.xml” and the real document ”mailbox” from the second relational data
source. Query execution characteristics are given in the Table 3.

As the reader can see, for all the four queries BizQuery processing time, spent
on query optimization, processing of cross-source query parts and data transfor-
mations, is relatively small. This was achieved due to query rewriting (especially
in Q4, joining virtual and real documents) and smart query decomposition shift-
ing the burden of data processing to the data sources as much as possible. It is

Efficient Virtual Data Integration Based on XML 15

Table 3. Results for benchmark queries

Query
Number

Result size
(in Kb)

Sources summary
working time

BizQuery
working time

Total query
execution time

Q1 23 5,984 0,078 6,062

Q2 12 82,485 1,796 84,281

Q3 3673 67,907 3,093 71,000

Q4 27 52,766 0,938 53,704

worth mentioning that the total query execution time can be reduced via con-
structing indexes on the side of data sources, though this is out of the scope of
this paper. Because of the paper size limits we cannot consider examples of logi-
cal query optimization allowing essential query normalization and simplification,
which is vital for the queries with complex internal data transformations.

6 Summary and Conclusion

In this paper we presented the architecture of the BizQuery virtual data inte-
gration system based on the XML/XQuery data model, developed to provide
integrated access to heterogeneous data in terms of XML and UML. We have
considered the role of XQuery and UQL query languages. We have discussed
methodology and tools for accomplishing mapping of integrated data sources
schemes to the global scheme. The idea and technique of automatic interface
generation on the basis of corresponding UML global model was introduced.
Finally, we discussed the general performance problem of systems based on the
virtual data integration approach and outlined the three main aspects of this
problem, which the success of such systems depends on. We have also provided
experimental results proving the efficiently of the presented techniques.

The problem of virtual data integration was and still remains the extremely
difficult part of data management field. The emergence of the XML technology
made it simple to represent all kinds of integrated data in a uniform way, but
at the same time introduced the set of new problems including more complex
query optimization and processing. During our work on BizQuery we made an
attempt to bring to light these problems and to propose solutions for them. As
a result, it has allowed us to build the efficient virtual data integration system
and to prove that the virtual approach is quite practical.

References

1. A Selection of Papers on Datawarehousing, Computer, Vol. 14, No. 12 (2001)

2. Batini, C., Lenzerini, M., and Navathe, S.: A Comparative Analysis of Method-
ologies for Database Schema Integration, ACM Computer Surveys 18(4) (1986)
323-364

16 Konstantin Antipin et al.

3. Sheth, A., Larson, J.: Federated Database Systems for Managing Distributed, Het-
erogeneous, and Autonomous Databases, ACM Computing Surveys 22(3) (1990)
183-236

4. Grinev, M., Kuznetsov, S.: UQL: A Query Language on Integrated Data in Terms
of UML, Programming and Computer Software, Vol. 28, No. 4 (2002) 189-196

5. Wiederhold, G.: Mediators in the Architecture of Future Information Systems,
IEEE Computer 25(3) (1992) 38-49

6. Chawathe, S., Garcia-Molina, H., Hammer J., Ireland, K., Papakonstantinou, Y.,
Ullman, J., Widom, J.: The TSIMMIS Project: Integration of Heterogeneous In-
formation Sources, IPSJ (1994) 7-18

7. Extensible Markup Language (XML) 1.0, W3C Recommendation, 2nd edition
(2000) http://www.w3.org/TR/2000/REC-xml-20001006

8. XSL Transformations (XSLT) 2.0, W3C Working Draft 15 November 2002,
http://www.w3.org/TR/2002/WD-xslt20-20021115/

9. XQuery 1.0: An XML Query Language, W3C Working Draft 15 November 2002,
http://www.w3.org/TR/2002/WD-xquery-20021115/

10. The Tukwila Data Integration System, University of Washington,
http://data.cs.washington.edu/integration/tukwila/

11. Xperanto Project, IBM Almaden Research Center,
http://www.almaden.ibm.com/software/dm/Xperanto/index.shtml

12. Unified Modeling Language (UML), Specification Version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm

13. XML Metadata Interchange (XMI), Version 1.2
http://www.omg.org/technology/documents/formal/xmi.htm

14. RELAX NG Specification, Committee Specification 3 December 2001,
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

15. Grinev, M., Kuznetsov S.: Towards an Exhaustive Set of Rewriting Rules for
XQuery Optimization: BizQuery Experience, 6th East-European Conference on
Advances in Databases and Information Systems (ADBIS), LNCS 2435 (2002)
340-345

16. Levy, A., Rajaraman, A., Ullman J. D.: Answering Queries Using Limited External
Query Processors, PODS (1996) 227-237

17. Graefe, G.: Query Evaluation Techniques for Large Databases, ACM Computing
Surveys 25(2) (1993) 73-170

18. XMark - An XML Benchmark Project, http://www.xml-benchmark.org
19. QuiP. Software AG’s prototype of XQuery,

http://developer.softwareag.com/tamino/quip/

