
Extended Design-by-Contract Approach to Specification and Conformance Testing of
Distributed Software∗

Victor Kuliamin Nickolay Pakoulin Alexander Petrenko

Institute for System Programming (ISPRAS), Russian Academy of Sciences,

Moscow, Russia

ABSTRACT

Increasing effort in development of high quality distributed sys-
tems requires ground methodological base. Design by Contract
approach looks very promising as a candidate since it helps to
obtain component-wise specification and design, to separate con-
cerns between developers, and makes development of high qual-
ity complex systems a manageable process. Unfortunately, in
its classic form it can hardly be applied to distributed network
applications because of lack of adequate means to describe asyn-
chronous events. We extend Design by Contract with capabilities
to describe callbacks and asynchronous communication between
components and apply it to specify distributed software and to
develop conformance test suites in automated manner. Speci-
fications are developed in extensions of programming languages
that makes them clear for industrial developers and decreases test
construction effort. Practical results of numerous successful ap-
plications of the method are described.

Keywords: Design by Contract, asynchronous events speci-
fication, distributed software specification, model based testing,
automated test construction, specification extension of program-
ming language, automatic test oracle generation.

1. INTRODUCTION

Development technologies for high quality complex software
is one of the main concerns in software engineering commu-
nity nowadays. Current shift to software construction on the
base of distributed components providing various services makes
such technologies urgent. In its turn such a technology needs
in an adequate methodological base, which should not compro-
mise its scalability and practical orientation. Design by Contract
(DbC) [1] approach is one of the most suitable methods for devel-
opment of qualitative complex software system. The key points
of this approach can be stated as follows.

• Software is considered as a system of components separated
from each other and communicating with each other only
through the specified interfaces.

• An interface of the component is a set of its operations. Each
operation is described with itspreconditionandpostcondition.
Precondition states the obligations of environment – before a
call of the operation a caller should ensure that the precon-
dition holds. Postcondition states counter-obligations of the

∗ This work is partially supported by RFBR grant 04-07-90386, by
grant of Russian Science Support Foundation, and by Program 4 of Math-
ematics Branch of RAS.

component. If the precondition holds just before an operation
call, the component ensures that the postcondition holds just
after that call. Preconditions and postconditions are usually
formulated in terms of operation parameters and internal state
of the component. Common parts of pre- and postconditions
of all the component’s operations can be stated as separatein-
variantsrepresenting integrity constraints on the component’s
state.

DbC provides effective separation of concerns between different
components, separation of development activities between devel-
opers, and allows significant flexibility in components’ imple-
mentation. It also ensures broad reuse of the components devel-
oped. The approach applies rather uniformly on different levels,
since large subsystems can be considered as components with
their own contracts. Contracts of a subsystem and its constitut-
ing components can ensure correctness of its decomposition. So,
step by step, we can build rather complex systems on the same
methodological base and obtain high quality results.

Unfortunately, the classic DbC can hardly be applied to de-
velop complex distributed software. The following issues hinder
this.

• Components in distributed software communicate in different
ways. For example, they can provide asynchronous events and
messages or can use callbacks to react to something. Clas-
sic DbC simply ignores asynchronous communications. Call-
backs representing parameters of functional type also cannot
be described in the DbC framework.

• DbC has no effective means to reason on several asynchronous
communications performed in parallel.

• DbC leads developers to clear understanding of the system
functionality and can help in debugging. But it lacks sound and
full-scale quality control of the development results including
automated test construction, test adequacy measurement, and
regression testing.

This article proposes possible solution of these problems. We
provide an extension of DbC approach that adds just several new
entities to original method, but makes it applicable for specifica-
tion of complex distributed applications and frameworks. In ad-
dition we demonstrate how this extended approach can be used
to construct conformance tests based on DbC specifications in
automated manner.

The methodological base of the suggested approach is formulated
in the next section. Then we depict applications of the extended
DbC to specification and testing complex distributed software.
The fourth section briefly reviews approaches to model based test



construction for distributed systems. The conclusion provides
directions of possible future development.

2. EXTENDING DESIGN BY CONTRACT

The main point of the presented approach is the same as of the
original DbC – software is considered as a system of components
communicating with each other through the specified interfaces.
Interfaces consist of operations andevent kindsdescribed by their
pre- and postconditions.

Description of events
Observation of usual distributed system shows that component
communications in it can be rather complex. They include the
following.

• Simple calls of operations. Such a call is considered from DbC
positions as an atomic event having pre-state and post-state.
Relation between them is described in postcondition.

• Synchronization calls.They do not return the control until
some set of events occurs. Synchronization calls cannot be
considered as atomic since system state can be changed sev-
eral times between call and return of control. So, we consider
such a call itself and the corresponding return of control as dif-
ferent events with their own pre- and post-states and their own
pre- and postconditions. Examples of synchronization calls
are operations of synchronization primitives – locking a mu-
tex, waiting a barrier or a condition.

• Inverse calls.Inverse call occurs when a component processes
some external call and needs help from another component or
environment to do its work. For example, callback parameter
given to a component can be called to perform the operation.
Another example of inverse call is call performed by template
method [2] defined in a base class to one of methods, which
should be overridden in inherited classes. Inverse calls per-
formed during work of some operation also make impossible
to consider this operation call as an atomic event in terms of
its pre- and post-states.

• Asynchronous events.If the system includes several active
threads or processes, it may react on some call not only with
return of control to the caller, but also producing a set of asyn-
chronous events in different channels of communication. They
differ from previously mentioned event kinds by their occur-
rence in different threads of control. Example of such an event
is e-mail report on unavailable recipient address of a previ-
ously sent e-mail.

All those event kinds are described by pre- and postconditions.
Precondition imposes restrictions on system state, which an event
can occur in, and corresponding event data (parameters). Post-
condition describes relation between event pre-state, post-state,
and event data (parameters and returned results). If this relation
is broken, the system considered to behave incorrectly. Postcon-
dition may also impose restrictions on the events that can occur
after this one.

For example, template method (see [2] for description of this de-
sign pattern) call can require that a set of inverse call should occur
before the control will be returned. Moreover, the returned result
of the method may depend on the results of those inverse calls.

Concurrency semantics

Correctness of a collection of events occurring in concurrent
manner is defined by so calledinterleavingor sequential seman-
tics. It says that the set of concurrent events is performed in a cor-
rect manner if they can be performed in correct manner in some
sequence. More precisely, a set{ei, i ∈ [1..n]} of calls of op-
erations or occurrences of events performed on or provided by a
component is considered to satisfy their contracts in a states1 of
the component if there exists such a sequence{sj , j ∈ [1..n+1]}
of component’s states starting froms1 and the corresponding or-
dering{ij} of those calls and events that each call or eventeij

occurs in the statesj , moves the component to the statesj+1,
and the contract of the corresponding operation or event holds
for pre-statesj , post-statesj+1, provided values of operation pa-
rameters, and the data returned by the operation or by the event.

For example, if we have an operation printing “Hello, world!”
on a printer and an event printing “Bye!”, any result “Hello,
world!Bye!” or “Bye!Hello, world!” is considered as correct re-
sult of concurrent call of the operation and occurrence of the
event, but the result “Hello,Bye! world!” is invalid.

The proposed extension of DbC approach is not complex and has
the uniform base – consideration of events provided to or by the
system and the corresponding pre- and post-states of the system.
This approach can be used successfully to describe distributed
systems of practical significance, to obtain valuable results from
more formal consideration of system properties, and to test the
components of the system and a system as a whole. See the next
section for examples of such applications.

Use of programming language extension
One more peculiarity of our approach is use of extensions of pro-
gramming languages to specify software properties. This fact be-
comes important if one needs to apply a method or a tool based on
formal notation in industrial practice. Widely used programming
languages are commonly recognized means of communication
between developers. So, specifications written in their extensions
are comprehensible for average software engineers. Specialized
formal notations often require advanced mathematical education,
do not contain adequate counterparts for widely used program-
ming concepts (such as pointers), and therefore are rarely used in
practice.

We propose uniform extension of C, Java, and C# languages [3]
based on the main concepts of our approach – pre- and postcon-
ditions, invariants, and events of different kinds – and some ad-
ditional syntactic sugar useful in to describe events and to work
with both pre-states and post-states of the same objects. The main
elements of the extension are as follows.

• Some operations in class (or functions in C) can have
specification modifier saying that they contain contracts
of the corresponding operations of the system under consider-
ation. Such an operation can haveaccess constraintsdescrib-
ing the set of objects the operation has access to and the kind
of this access,preconditionrepresented as additional block re-
turning Boolean value,postconditionrepresented also as ad-
ditional block marked with Boolean result. Postcondition has
access to objects in the states preceding the call of the opera-
tion and the same objects in the states after the call (pre- and
post-states). To refer a pre-value of a variable in a postcondi-
tion we can usepre operator.



• Operations marked withreaction modifier represent asyn-
chronous events provided by the system. Such a reaction can
also have access constraints, pre- and postcondition.

• Operations marked withinverse modifier represents inverse
operations. They also can have access constraints, pre- and
postconditions.

• Return of control for synchronization call is also considered as
a separate event and represented as a special reaction with its
own pre- and postcondition. They may refer the parameters of
the corresponding call.

• Invariants are represented as special methods or functions
marked withinvariant keyword and returning Boolean re-
sult. The result says whether the invariant holds or not.

• Branches of functionality.Often a postcondition of a function
describes several possible modes of operation corresponding
to significantly different behaviors. For example, the func-
tion receiving a message from a mailbox can return different
codes depending on whether it finds a message, cannot find
any message during the specified timeout, or detects a broken
mailbox. To mark such situations as different we use special
branch operators. During testing we can measure the number
of different branches covered and use it as a test quality mea-
sure. More detailed test coverage measure can be obtained if
we consider DNFs of all branching conditions (except for cy-
cles) in postcondition and correlate different disjuncts in these
DNFs to different testing situations. Of course, all this work is
performed automatically.

3. PRACTICAL APPLICATIONS

This section presents some results of practical application of the
approach described above in two areas – clarification and formal-
ization of standards and automated construction of conformance
test suites for distributed software.

Formalizations of standards
This subsection concerns with two case studies in standard for-
malization related with distributed applications. The first exam-
ple is standard clarification and conformance test suite develop-
ment for ISO/IEC 13818-11, a standard on Intellectual Property
Management and Protection in MPEG-2 domain. The second one
is a part of specification-based test suite development for an im-
plementation of IPv6 protocol suite – the next generation of the
Internet protocol.

Formalization of IPMP. A standard for MPEG-2 In-
tellectual Property Management and Protection (IPMP-2) [4] is
an attempt to create a flexible and interoperable solution for Dig-
ital Rights Management in MPEG-2 distribution chain from con-
tent provider to user. For the sake of readability we will refer to
ISO/IEC 13818-11 [4] as “IPMP-2 specification” below in this
section.

The original architecture for protecting MPEG-2 movies (called
Conditional Access, CA) proved to be non-interoperable. Play-
ing content from a particular producers required purchasing CA
solution from certain vendor, and CA solutions from different
vendors were incompatible.

IPMP-2 specification regulates IPMP operations on the side of a
user. IPMP Device includesa Terminaland a number ofIPMP
Tools. IPMP Tools perform all operations needed to prepare

data for playback such as user authorization, content decipher-
ing, watermarks processing, etc. IPMP Tools are software or
hardware modules that are plugged to specificcontrol pointsin
the MPEG-2 processing pipe. Terminal intercepts multimedia
data and passes them to the corresponding instances of IPMP
Tools for processing. Results of processing (e.g. deciphering)
are returned to the Terminal for further processing. IPMP Tools
interact with each other and the Terminal by means of message
exchange. IPMP-2 specification provides a number of messages
for several purposes such as authentication or notification.

Content providers addcontrol informationandprotection signal-
ing to their content. This information includes indications on
which tools to use, how to initialize the tools, etc. The IPMP
Device parses content and tries to acquire IPMP tools from the
network if needed. Then the device instantiates tools with given
parameters and starts playback.

IPMP-2 specification uses Syntax Definition Language [5] for
defining syntax of messages and IPMP-related data in content.
Still the semantics of messages and data is defined in plain text
without any formal notation.

IPMP-2 operations semantics was presented in data integrity con-
straints and constraints on prerequisites and results of operations.

The work on IPMP-2 formalization was conducted for Audio
Video coding Standard Working Group of China (AVS). Length
of the studied specification is about 30 pages. The project re-
sulted in two submissions [6, 7] to AVS DRM group and a pro-
totype of conformance test suite for processing IPMP Control
Information in bit streams.

Other results of the project include the following.

• We identified significant inconsistencies in syntax specifica-
tion of IPMP data in bit streams. For example, it allowed in-
serting up to 65 536 bytes of data (16-bit length field) in a
descriptor which length is limited to 256 bytes.

• Under-specifications were found in the semantics of the Mu-
tual Authentication – a security protocol for establishing trust
between two tool instances. We demonstrated that current
specification of Mutual Authentication does not ensure inter-
operability between implementations from different vendors.

• Correctness criteria of data in IPMP-2 specification are poorly
defined. Discussion with IPMP developers showed that there
are many implicit rules of what is correct and what is not. For
example, IPMP-2 specification defines IPMP Tool List struc-
ture as a container for IPMP Control Info classes, but it is in-
tended to carry information about tools only. We put this im-
plicit constraint into explicit form: each element of IPMP Tool
List is of IPMP Tool Info type. The list of constraints educed
during the formalization for IPMP Control Information classes
is presented in [7]. The constraints are not written in formal
notation yet.

Taking into account numerous misspellings in code parts of
IPMP-2 specifications the exact number of fixes we proposed is
hard to count. The standard study showed that IPMP-2 specifica-
tion consists of several loosely related pieces sometimes contra-
dicting to each other. Certain requirements are under-specified or
contain errors.

Contract formalization of IPv6. IPv6 is a group



of protocols located at the Network Layer of the OSI Reference
Model [8]. IPv6 provides services to protocols of transport layer,
such as UDP and TCP.

IPv6 features a much greater address space compared to IPv4,
the current version of the Internet Protocol. Large address space
enables true point-to-point connectivity within global scope. Be-
sides extended address space IPv6 includes improved routing ar-
chitecture and integrated suite of protocols for autoconfiguration
and discovering the state of the communication.

Implementations of IPv6 provide three classes of interfaces: pro-
cedural (API), binary (ABI), and message-based.

Procedural interfaces include generic sockets API and several
IPv6-specific extensions. Binary interfaces are non-standard,
implementation-specific ways to access the kernel part of an im-
plementation. Examples of such interfaces are request code for
ioctl call on Unixens or control code forDeviceIOControl
routine in Windows accompanied with memory layouts for inputs
and outputs. Message-based interface is an abstraction for send-
ing and receiving IPv6 datagrams to or from Data Link Layer.

IPv6 messages and part of procedural interface are standardized
by Internet Engineering Task Force in IPv6-relatedRequests for
Comments(RFCs). Binary interface and some part of procedural
interface are not standardized and are implementation-specific.
Since the component functionality should be understood unam-
biguously to apply Design by Contract fruitfully, it is natural to
limit formalization to the scope of messages and standard API of
IPv6.

The scope of our projects on IPv6 conformance testing was for-
malization and testing of the following basic features of IPv6.

• Sending datagrams from the transport layer to the network and
processing of incoming IPv6 packets.

• Neighbor Discovery on hosts. Neighbor Discovery is a suite
of service protocols for identifying router and neighbor nodes
attached to a link and detecting their reachability status.

• Multicast Listener Discovery on hosts. Multicast Listener Dis-
covery is a protocol to obtain information about multicast lis-
teners attached to a link.

• UDP over IPv6.

The contract formalization is based upon requirements presented
in regulating RFCs. We studied the requirements of many RFCs,
most notably [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. More than
400 separate functional requirements were elicited. RFCs define
protocol semantics in plain text mostly. Syntax is defined in tab-
ular format with textual definition of bit-wise message layout.

We identified a number of inconsistencies and under-
specifications in IPv6 regulating documents. For example,
the specification of IPv6 protocol [9] enumerates a number of
cases that should be considered as errors in incoming fragmented
IPv6 packets, and a number of cases that are not errors. Unfortu-
nately this enumeration misses several important cases, such as
fragments overlap.

Despite the defects found we can state that IPv6 regulating re-
quirements are well-defined as a rule. They are detailed enough
to ensure interoperability between implementations and at the
same time leave much flexibility to implementers.

The formal model of the IPv6 subset described above is about
8500 lines of code in the specification extension of C lan-
guage [20]. The model was used to build a test suite that was
applied to several open and commercial implementations of IPv6
protocol stack (see the next subsection).

Automated Conformance Test Construction
Historically first application of the extended DbC approach was
automated test development. The specifications written in the
described manner can be used to construct conformance test suite
with the help of UniTesK technology. Here we provide a short
introduction into UniTesK. The interested reader can find more
details on it in [21, 22, 23, 3, 24].

The main principles of UniTesK test development may be sum-
marized as follows.

• UniTesK is intended to develop conformance test suites au-
tomatically on the base of the specifications to be tested. The
main approach to testing is black-box, testing adequacy is mea-
sured as the achieved during testingcoverage of specifications
according to some criterion.Test oracles– programs automat-
ically checking the correctness of the behavior of the system
under test – are generated automatically from contracts speci-
fied.

• User manually writestest scenariosproviding very brief de-
scriptions of the automaton model of the component under
test, including structure of its state and the list of operations
to be called in an arbitrary state. Each operation is supple-
mented with some procedure (manually written or taken from
a library) to generate values of its parameters. Its main goal is
to provide a large set of different arrays of operation parame-
ters values. The development of test scenario can be facilitated
with the help of the template, taking several choices of the user
as its input and generating all the other parts of the scenario.
The main goal of a scenario is to ensure high level of test cov-
erage in certain specification-based coverage metric.
Test scenarios can be used to process possible nondetermin-
ism of specifications effectively. To do this, one can define
scenario states on the base of classes of states described in
specifications.State factorizationallows creation of rather ef-
ficient and compact tests for complex subsystems. Details of
the technique can be found in [25].

• Similar template technique is used to create test adapters pro-
viding binding between specifications and implementation un-
der test.

• The UniTesK tool used translates specifications, adapters, and
scenarios into the base language of the tool (C, Java, or C#) and
executes the resulting test. During test execution the sequence
of test calls is generated on-the-fly using the data presented in
the scenario and the actual behavior of the system under test.
The generation algorithm tries to call each operation in each
state achieved, but do not perform calls that add nothing to al-
ready achieved test coverage in term of specifications (branch

statements are an example of construct that can be used to de-
fine coverage of specifications).

UniTesK technology was used to develop conformance tests in
the following projects.

• Development of regression test suite for switch operating sys-
tem kernel for Nortel Networks. Results of this project was



already presented in [21, 24], see also [3]. Total size of the
system under test is about 250 KLOC, the size of resulting
suite of specifications and scenarios is about 140 KLOC. To
our knowledge, this is the largest piece of formally specified
software and the largest system tested in such a formal way.
The total effort of the project is about 10 man-years, total du-
ration – about one year and a half. 372 test scenarios were
developed for about 500 procedures of the operating system
kernel, 304 of those scenarios tested single procedure, 68 – a
group of interoperating procedures. With different parameters
of execution the resulting test suite can perform from dozens
of thousands to several millions of test cases. Several hun-
dreds of defects were detected in critical telecommunication
software already working in the field for about 10 years. Sev-
eral of bugs found could cause cold restart of the system.

• Development of test suite and testing several IPv6 implementa-
tions. The detailed results those projects can be found in [20]
and [23]. The projects also demonstrated the approach’s ca-
pability to clarify ambiguous parts of informal telecommu-
nication standards. The first project was conducted to test
open IPv6 implementation of Microsoft Research. The re-
sults showed that the test suite provides good error detection
– it found more errors that the counterparts we could compare
with at that time (Microsoft Research organized an interna-
tional contest in testing of this IPv6 implementation). 4 serious
bugs were found in the system under test, one of them leads to
operating system crash and can be used to shut down any re-
mote node in IPv6 network. The second project is conducted
in the Russian telecommunication software development com-
pany Octet by its own developers trained in our technology. It
also resulted in several serious bugs found in another propri-
etary implementation of IPv6.

• Test development for a part of bank CRM system based on
J2EE technology. This project demonstrated that UniTesK
technology and tools can be applied to test distributed soft-
ware constructed with the help of modern component-based
technologies for multi-tier applications development. The du-
ration of the project was about 2 months, and its results include
about a dozen of bugs detected. The details of this and several
other projects can be found on [3].

4. STATE OF THE ART

This section gives brief review of similar approaches taking into
consideration only those ones that provide formal descriptions of
distributed systems and support test development automation for
conformance testing, so a lot of interesting solutions stay out of
scope of this section. More detailed and systematic review of
various model-based testing techniques can be found in [27].

The most widely used practical approach to conformance test
suite construction for distributed applications is based on infor-
mally determinedtest purposesand test cases manually devel-
oped on their base. In comparison with methods based on some
formal description of application functions, it lacks strict and
measurable definition of testing adequacy based on functional re-
quirements and forces test developers to provide correct results
only on the base of their understanding of the functions under
test. Both disadvantages can be overcome by diligence and cross-
checking, but not for large-scale systems.

The usual approach to formal specification and further testing of
distributed software are based on some kind of transition systems
– it may be labeled transition systems, input-output automata,
and systems of communicating (extended) finite automata. The-
oretical background for most part of those works was laid by
J. Tretmans [28]. He proposed a formal definition of confor-
mance relation between specifications and system under test and
a method for test case generation based not only on possible in-
puts and outputs of the system under test, but also using special
quiescentstates where the system can not produce any output
without some input from the environment. A series of tools based
on those ideas were developed in the academic community, the
most prominent from them are TGV [29] and TorX [30]. These
tools can take formal descriptions in SDL, LOTOS, or Estelle as
input. In 2001-2003 years developers of most of the tools men-
tioned took part in the AGEDIS project [31] introduced uniform
testing tool architecture and UML-based statecharts as standard
input for such tools.

Transition systems used for automatic test generation proved to
be very useful instrument, but they have the following disadvan-
tages.

• State explosion problem. When one tries to model a real sys-
tem on a detailed level, he obtains an unmanageable model
with huge numbers of states and transitions. This is a demon-
stration of more serious drawback – transition systems can
hardly be decomposed to separate different concerns and func-
tions, they usually require considering the system as a whole
to get valuable results. Design by Contract looks much more
promising in this view since it provides a method to consider
components of a complex system separately. In UniTesK state
explosion problem can be overcome with the help of state fac-
torization technique.

• Inefficient processing of nondeterminism. It is rather hard to
introduce nondeterminism natural to distributed applications in
transition systems and keep them useful. Most of them become
inoperative after such a procedure. So, some special actions
are always needed to introduce necessary nondeterminism in
such a model.
Nondeterminism of a distributed system includes two aspects.
First, the exact reaction of the system cannot be predicted on
high levels of abstraction. One can impose only some restric-
tion on the results. To reflect this in a transition system the
corresponding collection of transitions should be defined, thus
making state explosion more probable. Contract based ap-
proach incorporates this kind of nondeterminism naturally by
stating the corresponding predicate in postcondition.
Second source of nondeterminism is concurrency of dis-
tributed systems, which produces a lot of possible combina-
tions of observable events. So, it became very hard to check
whether the system behaves correctly in complex cases. The
influence of this aspect is so much that now one can find very
few tests targeted at checking system behavior in response to
two or more concurrent actions. Extended DbC approach pro-
poses sequential semantics, which makes possible automatic
checking of system correctness. Combination with factoriza-
tion technique used in UniTesK, although not reducing this
kind of nondeterminism to negligible level, makes it much
more manageable.



5. CONCLUSION

The paper proposes an extension of Design by Contract approach
for distributed software. The key points of the new approach are
the following.

• Components’ interaction in a distributed system is considered
as a series of events occurring in different states of the system.
Each event is identified by its event type and data (parameters
of operation call or data returned by an event).

• Event’s semantics is described in the contract of the corre-
sponding event kind. Each event contract consists of precon-
dition and postcondition. The first puts restrictions on the pre-
state and data of event occurrence (if precondition does not
hold, occurrence of such an event is incorrect). The second
provides a relation between pre-state and post-state of event
occurrence and event data.

• Correctness of concurrent events is defined according to se-
quential semantics – a set of such events is considered to be
correct if and only if it can be ordered into a sequence con-
forming to all the contracts involved.

• Contracts are represented in extensions of widely use program-
ming languages. That makes them comprehensible and useful
for average software engineer.

The extended DbC approach has been used in formalization and
clean-up of several telecom standards. Also it used in practice-
oriented UniTesK test development technology to construct con-
formance test suites in automated manner. Since UniTesK tools
were successfully used in several industrial projects, the authors
consider the proposed extended DbC approach quite mature to be
used in practical development of distributed applications.

Although the approach and the test development technology
based on it seems to be quite general, there are a lot of technical
issues concerning their use in testing applications through GUI
or Web interfaces, or through interfaces including timing events.
Those issues should be resolved in future development.

REFERENCES

[1] Bertrand Meyer. Applying ‘Design by Contract’. IEEE
Computer, vol. 25, No. 10, October 1992, pp. 40–51.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[3] http://www.unitesk.com
[4] ISO/IEC 13818-11:2004. Information technology – Generic

coding of moving pictures and associated audio information
– Part 11: IPMP on MPEG-2 systems. 2003.

[5] ISO/IEC 14496-1:2001, Information technology – Coding
of audio-visual objects – Part 1: Systems.

[6] MPEG-2 IPMP Conformance Test Suite Development.
AVS M1263: 2004/6.

[7] Enhancing IPMP-2 for Conformance Testing.
AVS M1487: 2004/12.

[8] ISO/IEC 10731:1994. Information technology – Open Sys-
tems Interconnection – Basic Reference Model – Conven-
tions for the definition of OSI services. 1994.

[9] RFC 2460. S. Deering, R. Hinden. Internet Protocol, Ver-
sion 6 (IPv6) Specification. December 1998.

[10] RFC 2461. T. Narten, E. Nordmark, W. Simpson. Neighbor
Discovery for IP Version 6 (IPv6). December 1998.

[11] RFC 2462. S. Thomson, T. Narten. IPv6 Stateless Address
Autoconfiguration. December 1998.

[12] RFC 2463. A. Conta, S. Deering. Internet Control Mes-
sage Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification. December 1998.

[13] RFC 2464. M. Crawford. Transmission of IPv6 Packets over
Ethernet Networks. December 1998.

[14] RFC 3513. R. Hinden, S. Deering. Internet Protocol Ver-
sion 6 (IPv6) Addressing Architecture. April 2003.

[15] RFC 2373. R. Hinden, S. Deering. IP Version 6 Addressing
Architecture. July 1998.

[16] RFC 2292. W. Stevens, M. Thomas. Advanced Sockets API
for IPv6. February 1998.

[17] RFC 2553. R. Gilligan, S. Thomson, J. Bound, W. Stevens.
Basic Socket Interface Extensions for IPv6. March 1999.

[18] RFC 2675. D. Borman, S. Deering, R. Hinden. IPv6 Jumbo-
grams. August 1999.

[19] RFC 2710. S. Deering, W. Fenner, B. Haberman. Multicast
Listener Discovery (MLD) for IPv6. October 1999.

[20] http://www.unitesk.com/products/ctesk/
[21] V. Kuliamin, A. Petrenko, I. Bourdonov, and A. Kossatchev.

UniTesK Test Suite Architecture. Proc. of FME 2002,
LNCS 2391, pp. 77–88, Springer-Verlag, 2002.

[22] V. Kuliamin, A. Petrenko, A. Kossatchev, and I. Bourdonov.
UniTesK: Model Based Testing in Industrial Practice. Proc.
of 1-st Europpean Conference on Model-Driven Software
Engineering, December 2003.

[23] V. Kuliamin, A. Petrenko, N. Pakoulin, I. Bourdonov, and
A. Kossatchev. Integration of Functional and Timed Testing
of Real-time and Concurrent Systems. Proc. of PSI 2003,
LNCS 2890, pp. 450–461, Springer-Verlag, 2003.

[24] I. Bourdonov, A. Kossatchev, A. Petrenko, and D. Galter.
KVEST: Automated Generation of Test Suites from For-
mal Specifications. FM’99: Formal Methods. LNCS 1708,
Springer-Verlag, 1999, pp. 608–621.

[25] I. B. Burdonov, A. S. Kossatchev, and V. V. Kulyamin. Ap-
plication of finite automatons for program testing. Program-
ming and Computer Software, 26(2):61–73, 2000.

[26] http://www.ispras.ru/groups/rv/rv.html
[27] V. Kuliamin. Multi-paradigm Models as Source for Au-

tomated Test Construction. Proc. of Workshop on Model
Based Testing, Barcelona, Spain, March 2004. Also avail-
able in Electronic Notes in Theoretical Computer Science
111:137–160, 2005, Elseveir.

[28] J. Tretmans. A Formal Approach to Conformance Testing.
Proc. of the IFIP TC6/WG6.1 Sixth International Workshop
on Protocol Test systems, Pau, France, September 1993,
pp. 257–276.

[29] J. -C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on the
fly verification techniques for the generation of test suites.
Proc. of CAV’96, Rutgers University, New Brunswick, New
Jersey, USA, July-August 1996.

[30] J. Tretmans, A. Belinfante. Automatic testing with formal
methods. Proc. of EuroSTAR’99, Barcelona, Spain, Novem-
ber 8-12, 1999.

[31] http://www.agedis.de/


