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INTRODUCTION

In the widest sense, by the correctness of a system
under study is understood its correspondence to given
requirements. To verify this correspondence by formal
methods, one represents the objects and relations of
the real world as model, mathematical objects and
relations. A model of a system under study is called an
implementation, a model of requirements is called a
specification, and the correspondence to the require�
ments is represented as a model conformance. The lat�
ter is understood as an ordinary mathematical corre�
spondence, i.e., a subset of a Cartesian product of the
sets of implementations and specifications.

A specification and a conformance are assumed to
be defined. As for the implementation as a model of
the system under study, a test hypothesis assumes that
such a model exists for every system under study [8].

If an implementation, as a model of the system
under study, is known, then a static (analytic) verifica�
tion is possible, which reduces to the verification of the
fact that a pair of formal models <implementation,
specification> belongs to an admissible set of such
pairs that is defined by a conformance relation.

What should one do if the implementation is
unknown (or if it is too difficult to construct it by the
system under study)? In this case, one needs testing,
which is understood as dynamical verification of con�
formance, i.e., the verification of conformance during
experiments. Of course, for the testing to be possible,
the conformance itself should be expressed in terms of
the interaction of the implementation with the envi�

ronment. A test interacts with the system, playing the
role of the environment.

In this paper, we consider a testing based on three
assumptions, rather than an arbitrary testing.

The first assumption. We consider only a discrete
test interaction, which reduces to a sequence of dis�
crete events of two kinds: test actions on the imple�
mentation and observations of the behavior of the
implementation. This sequence is called a trace. Note
that, in the general case, not any behavior of imple�
mentation can be observed in a test experiment; i.e.,
the implementation may contain events that are unob�
servable and, hence, indistinguishable between each
other and are not included in a trace. Such unobserv�
able behavior of implementation is conventionally
denoted by a symbol τ and is called τ�activity.

A discrete interaction is modeled by a so�called
testing machine, which includes an implementation.
A test action corresponds to pressing some button on
the keyboard of the machine, and an observation cor�
responds to the appearance of the symbol of the test
action on the display screen. Thus, a trace represents a
sequence of buttons and observations. A test is under�
stood as an instruction for the operator in which it is
indicated what should the operator do after one or
other trace: press buttons (and which buttons) and/or
wait for observations.

All that we can learn about an implementation by
means of testing is the set of its traces. The observation
of a certain trace in an experiment suggests that all its
prefixes are observed in the same experiment at earlier
instants of time. Therefore, the set of traces of an
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implementation is prefix�closed. A test experiment
may be empty: no button is pressed, and observations
are not expected. In this case, it is natural to assume
that an empty trace is observed. Thus, every imple�
mentation contains an empty trace; i.e., the set of
traces of an implementation is not empty. Since a test
action (pressing a button) does not depend on the
implementation (the operator can press any button at
any instant of time), an extension of the implementa�
tion trace with a button also gives a trace of the imple�
mentation. This means that the set of traces of an
implementation contains, together with every trace σ,
all traces of the form σρ, where ρ is a sequence of but�
tons.

Now, a specification can be understood as the
description of which sets of implementation traces are
correct (conformal) and which are not. In the general
case, if an implementation has a set of traces I, then
the entire set I of traces, rather than each individual
trace σ ∈ I, is either conformal or nonconformal.

A test (as an instruction for the operator) is also
defined by a nonempty prefix�closed set of traces. A test
experiment runs a test that ends when one obtains either
the maximum trace in the test or a “branching off”; i.e.,
after a certain trace of the test, one obtains an observa�
tion that does not extend this trace in the experiment.
The test run results in a trace of implementations σ ∈ I.
Various runs of the same test may give different results
if the implementation and /or test are nondeterminis�
tic.

A test is nondeterministic if, after a certain trace of
the test, the behavior of the operator of the testing
machine is nondeterministic: he may either wait for an
observation or press buttons, or he may only press but�
tons; but there are a few such buttons. In other words,
a test is nondeterministic if some of its nonmaximal
traces is extended in the test either with both observa�
tions and buttons or with several buttons. A nondeter�
ministic test is equivalent to a collection of determin�
istic tests in the sense that they make it possible to
observe the same set of implementation traces. There�
fore, as a rule, one considers only deterministic tests.

As regards the implementation, it is assumed that
its indeterminism results from the abstraction from
some unaccountable external factors—weather con�
ditions—which determine the choice of some or other
behavior deterministically. The global testing hypothe�
sis suggests that any weather conditions can be repro�
duced in a test experiment. To this end, even a deter�
ministic test should be run a few times in order to
observe all implementation traces that are possible for
this test.

While testing, one runs some tests from a certain
collection of tests under some weather conditions. The
result of testing is a set X of traces that are observed in
all these test experiments. The verdicts pass or fail are
given. A collection of tests is significant if each confor�
mal implementation passes this test, exhaustive if each
nonconformal implementation fails it (an error is

detected), and complete if it is significant and exhaus�
tive. Notice that X is not necessarily the set of all
implementation traces. If a specification states that
any implementation with a large set of traces I ⊇ X is
nonconformal, then a significant collection of tests
can (although ought not to), while a complete set of
tests must, give the verdict fail when observing the set
of traces X (or any of its supersets). If a specification
states that any implementation with a large set of
traces I ⊇ X is, conversely, conformal, then an exhaus�
tive (and a complete) collection of tests can (although
ought not to), while the compete set of tests must, give
the verdict pass when observing the set of traces X (or
any of its supersets).

The second assumption. In this paper, we restrict
ourselves to those conformances that satisfy the princi�
ple of independence of traces: any trace of an imple�
mentation is either conformal or nonconformal irre�
spective of other traces of this implementation. Con�
formances of this type are called reductions. For
example, a conformance that allows an implementa�
tion to have either a trace σ1 or a trace σ2, but not both
traces simultaneously, is not a reduction. The inde�
pendence principle rules out simulation�type con�
formances that are based on the correspondence
between the states of implementation and specifica�
tion, as well as conformances that require that the
implementation should contain one or other observa�
tions after one or other traces.

For a reduction, one can assume that a specifica�
tion S (directly or indirectly) defines a set of solvable
traces tr(S). If an implementation has a set of traces I,
then the conformance implies the inclusion I ⊆ tr(S)
and represents a partial (nonstrict) order (reflexive,
symmetric, and transitive relation). A trace σ ∉ tr(S) is
called an error.

When testing a reduction, the detection of any
error σ ∈ I\tr(S) implies that the implementation is
nonconformal. Therefore, a significant collection of
tests (a significant test) can (although ought not to)
give the verdict fail as soon as such a trace σ is
observed. A collection of tests is exhaustive if, for every
nonconformal implementation, at least one error σ ∈
I\tr(S) contained in this implementation can be
detected by some test from the collection; i.e., it is a
trace of this test. This means that the nonconformance
of an implementation is always detected in finite time,
whereas a conclusion on the nonconformance of the
implementation can be generally made only after all
runs under all possible weather conditions of all tests of
the complete collection (the number of such runs may
be infinite).

The third assumption. In practice, naturally, one
applies only finite tests, more precisely, tests that are
completed in finite time. Under a discrete interaction,
this means that, for given specification and test gener�
ation, only finite traces are used. Note that, for a spec�
ification based on finite traces, infinite test experi�
ments add nothing. However, this is not so in the gen�
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eral case. For example, consider two implementations
in which only two observations x and y are possible.
Buttons are not used. One implementation contains
an infinite chain x. The other implementation does
not contain such an infinite chain, but has an infinite
“fan” of finite chains x. Both implementations do not
contain a transition by y. In finite test experiments,
these two implementations are indistinguishable. For a
specification in which the observation y is considered
as an error after any number of x, both implementa�
tions are conformal. At the same time, an infinite test
experiment allows one to distinguish between these
implementations; the first implementation contains
an infinite trace x, while the second does not. If infi�
nite traces are admitted, then a specification can inter�
pret the infinite chain x as an error. Naturally, such an
error cannot be detected in finite time.

By definition, any implementation that contains an
error is nonconformal. At the same time, in addition
to errors detected by a specification, i.e., traces that do
not belong to the set of solvable traces tr(S), there may
exist other traces (that belong to tr(S)) that, neverthe�
less, are not encountered in conformal implementa�
tions. Such traces are said to be nonconformal. Then,
by an error we will mean any nonconformal trace,
while errors detected by a specification (traces that do
not belong to tr(S)) will be called errors of the first
kind. An error of the second kind is a nonconformal
trace that is not an error of the first kind, i.e., that
belongs to tr(S).

In this paper, we consider the problem of depen�
dence between errors and the closely related problem
of optimization of a complete collection of tests.
We will say that an error set A implies an error set B and
denote this by A  B if any implementation that
contains an error from A contains an error from B.
If A  B, then, instead of the tests that detect errors
from A, one can use tests that detect errors from B.
If A is the set of all errors, then B ⊂ A, and obviously
B  A. If, in addition, A  B, then the sets A and B
are equivalent (which is denoted by A ~ B). One of
such subsets of errors that are equivalent to the set of
all errors is naturally given by the set of errors of the
first kind. However, there may also exist other error
sets that are equivalent to the set of errors of the first
kind, including its strict subsets. It also happens that
the set of errors of the first kind is infinite, but there
exists an equivalent finite error set. This allows one to
significantly optimize the tests.

A type of such dependence between errors is inher�
ent in any reduction�type conformance for any discrete
interaction. First, any implementation that contains a
trace σ also contains a trace σρ, where ρ is a sequence
of buttons. Therefore, if σρ is an error, then σ is also an
error. Therefore, if σρ ∈ A, then A  A ∪ {σ}. Second,
the set of implementation traces is prefix�closed.
Therefore, if an error μ is a prefix of a trace σ (we
denote this by μ ≤ σ), then σ is also an error. There�
fore, if μ ∈ A, then A  A\{σ}. This allows for the fol�

lowing optimization of tests: for the completeness of
testing, it suffices to detect only such errors that are
prefix�minimal in the set of all errors (rather than in a
set of only errors of the first kind); such errors do not
end with buttons. The set of such errors is equivalent to
the set of errors of the first kind and, hence, is equiva�
lent to the set of all errors.

At the same time, there exist a variety of conform�
ances for which there are other dependences between
errors. Finding such dependences and the related
optimization of tests sometimes presents a difficult
problem (see, for example, [6, 7]).

The goal of the present study is to determine the
general nature of dependences between errors. To this
end, we formally define a general model of discrete
interaction and a general reduction�type conform�
ance. We will show the following. First, for such a gen�
eral reduction, there is no other dependence between
errors except that pointed out above. Second, other
reduction�type conformances are a particular case of
the general reduction; i.e., they are reduced to it. In this
case, the class of specifications and implementations
under test narrows down. Third, the restriction of the
class of specifications does not affect the dependence
between errors, whereas the restriction of the class of
implementations under test gives rise to additional
dependences between errors (see, for example, [6, 7]).
It is important that each such partial reduction defines
a certain natural class of implementations under test.
However, in practice, one often uses additional restric�
tions on the implementations under test, which, in
turn, also gives rise to additional dependences between
errors (see, for example, [16, 17]). In other words, we
reduce the problem of the dependence between errors
in the class of implementations under test, which is nat�
ural for some partial reduction, to the general problem
of dependence between errors that arises as a result of
restricting the class of implementations under test.

2. GENERAL MODEL

In this section, we formally define a general model
of discrete interaction and a general reduction�type
conformance.

2.1. Interaction Semantics

For many partial kinds of interaction semantics,
there exits some preset relationship between buttons
and observations. Some of such semantics are consid�
ered below. In the general case, we do not assume any
preset relationship between buttons and observations.
However, such a relationship may exist in some spe�
cific implementation.

Suppose given two disjoint universes of symbols: B,
a universe of test actions (buttons) and O, a universe of
observations. We will call such a semantics the B/O
semantics. A trace is a sequence in the alphabet B ∪ O.
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A semantics is said to be finite if the total numbers of
buttons and observations are finite.

2.2. Testing Machine

The B/O semantics is modeled by a testing
machine, which represents a “black box” containing
an implementation. The machine is equipped with a
keyboard for control and a display screen for observa�
tion.

The keyboard represents a set of buttons B. A test
action is made by pressing a button on the keyboard.
When a button is pressed, the testing machine trans�
mits a single signal on an appropriate test action to the
implementation and waits for an answer signal indi�
cating that the implementation “takes into consider�
ation” this test action; after that the machine can
transmit a signal on the next test action to the imple�
mentation. A button is not fixed (it is automatically
released); this allows the operator to press the next
(another or the same) button. One can press only one
button at a time, which corresponds to a single test
action.

The screen of the machine successively displays the
symbols of buttons and observations, i.e., the symbols
from B ∪ O. In order that the operator could distin�
guish between consecutive identical symbols, the
screen is turned off for a short period of time between
these symbols. It is the sequence of symbols appearing
on the screen that represents a trace observed during a
test experiment. The symbol of a button appears on
the screen at the moment when the operator presses
the corresponding button. An observation appears on
the screen when the corresponding observable event
occurs in the implementation. Unobservable τ�activ�
ity of the implementation is displayed in no way on the
screen.

In order that one could carry out several test exper�
iments, the machine is equipped with a restart button.
This button resets the implementation to the initial
state and turns off the screen. Each new restart of the
machine may cause a change of weather conditions,
which determine the behavior of the implementation.
The global testing hypothesis suggests that a sequence
of restarts reproduces all possible weather conditions.

At the same time, a restart allows one to carry out an
at most countable number of experiments, for an at most
countable number of weather conditions. To evade this
constraint, a testing machine can be equipped with a rep�
lication button instead of the restart button. A single press
of such a button creates a set of copies of the testing
machine of arbitrary cardinality. A testing occurs inde�
pendently with each copy of the machine; i.e., an
independent test experiment is carried out with each
copy. For each copy, its own variant of weather condi�
tions is fixed. The global testing hypothesis implies
that at least one copy of the machine is produced
under replication for each variant of weather condi�
tions.

It is important to note that, for reduction�type con�
formances, it suffices to make a replication once,
before starting the testing, rather than repeatedly, after
obtaining one or other traces. A multiple replication
(after every step of testing, i.e., after every observation
and after pressing every button) is needed for simula�
tion�type conformances.

2.3. Implementation

For a reduction�type conformance, an implemen�
tation actually reduces to the set of traces of this con�
formance. Such a trace model of implementation is for�
mally defined as a set I ⊆ (B ∪ O)* that is (1) non�
empty, (2) prefix�closed, and (3) together with each
trace σ, contains all traces of the form σρ, where ρ is a
sequence of buttons.

To compactly define a set of traces, in particular, to
define an infinite set of traces in a finite way, one
applies a label transition system (LTS). It represents a
directed graph whose vertices are called states, one
state is distinguished as the initial state, and the arcs
are labeled by symbols from B ∪ O and are called tran�
sitions. Unobservable τ activity is understood as a
chain of elementary τ events each of which is repre�
sented by a transition labeled by symbol τ. An LTS
implementation is said to be finite if the number of its
states that can be reached from the initial state is finite.

Since a test action (pressing a button of the testing
machine) on the implementation is executed outside
the implementation and is independent of it, a transi�
tion by a button only implies that the implementation
“has learned” about the test action executed. As a
result of such a transition, the implementation
changes its state, which subsequently may lead to a
change in its behavior, i.e., may give rise to other
observations. If, in some state, the implementation
ignores a test action, then this is equivalent to the fact
that there is a loop transition by the given button in this
state. Therefore, the absence of a transition by a but�
ton in a state of the implementation is interpreted as
the presence of a loop transition by this button in this
state.

A path is a sequence of adjacent transitions when
the beginning of any transition, except for the first,
coincides with the end of the preceding transition.
An implementation trace is a sequence of labels of
transitions of a path starting in the initial state, in
which the symbol τ is omitted.

Assume that transitions are executed instanta�
neously.1 In every state, the implementation waits for
some finite time, after which it should execute one of
outgoing transitions. This assumption is usually called
a progress assumption [11]. We also assume that the

1 It suffices to assume that a transition is executed in finite time;
however, if this is a transition by observation, then the symbol of
observation is displayed on the screen of the testing machine at
the beginning (not in the middle or at the end) of this transition.
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implementation may pass only a finite path in finite
time. This means that the implementation is consid�
ered as a discrete system [11]. To this end, it suffices to
assume, for example, that the waiting time in every
state is bounded from below by some constant greater
than zero.

The set of traces of an LTS implementation is a
trace model of implementation, and, conversely, for
any trace model of implementation, there exists an
LTS with the same set of traces.

It is obvious that, for every trace σ, there exists a
minimal implementation with respect to this set that
contains the trace σ; this is the set of traces {μρ | μ ≤ σ
& ρ ∈ B*}. The corresponding LTS implementation is
shown in the figure.

2.4. Interaction with Implementation

During testing in any observable trace, a subse�
quence of buttons contains exactly those buttons that
have been pressed by the operator of the machine and
precisely in that order in which the operator pressed
them. From the external point of view, a test action
affects only those observations that appear in the trace.
In other words, pressing a button just regulates the
flow of observations of the behavior of the implemen�
tation. This is achieved by transitions by buttons,
which change the state of the implementation when
pressing a button and thus change the further flow of
observations.

As regards the unobservable behavior of the imple�
mentation, we proceed from the main assumption of τ�
activity: between any two observations (and before the
first observation in the observation trace), there may
be any finite τ�activity in the implementation [11]. In
terms of an LTS, this means that, between two transi�
tions by observation (and before the first such transi�
tion), the implementation may execute any finite
number of τ�transitions. We extend this assumption
over test actions: the implementation may execute any
finite number of τ�transitions between any two transi�
tions by observations or buttons (and before the first
such transition).

A specific feature of our model of interaction is the
priority of a test action over the behavior of implementa�

tion, both observable and unobservable. If, after
obtaining a trace σ in a test experiment, the operator
waits for observations instead of pressing a button,
then any observation can be obtained that is contained
in the implementation after the trace σ, i.e., any trace
σu available in the implementation can be obtained,
where u is an observation. Moreover, if there is infinite
τ�activity (divergence as an infinite chain of τ�transi�
tions) after the trace σ in the implementation, then it
may occur that there are no observations. If, immedi�
ately after the observation of the trace σ, the operator
presses a button p, then the implementation must exe�
cute a transition by button p, and one obtains a trace
σp. However, by the main assumption of τ�activity,
between a transition by the last symbol (observation or
button) of the trace σ and a transition by the next
observation u in the trace σu or the next button p in the
trace σp, the implementation can execute any finite
number of τ�transitions. Thus, the implementation
must take into consideration a test action in finite time
after pressing an appropriate button. At the same time,
we do not specify what does “taking into consider�
ation” mean; one may even simply ignore a test action,
which is modeled in the LTS by a loop transition by
this button (the absence of a transition by button is
interpreted as the presence of such a loop).

As a result, we obtain the following interaction pro�
tocol. If there is no test action, i.e., no button is
pressed, then, depending on weather conditions, the
implementation can execute any chain of transitions
by observations and τ�transitions that starts in the cur�
rent state of the implementation. If a test action is exe�
cuted, i.e., if the operator pressed a button p, then,
depending on weather conditions, the implementa�
tion can execute any finite chain of τ�transitions, after
which it must execute any transition by the button p.
While executing a p�transition, the implementation,
as if “informs” the testing machine that it has received
a test action. After that, the implementation is ready to
receive the next test action (pressing one or other but�
ton).

Note that, under such an interaction protocol, the
appearance of the symbol of a button on the screen
during pressing a button is actually equivalent to the
appearance of this symbol when the implementation

Trace σ = x1, x2, ... , xn

1 2 3 n−1 n
xnxn�1x3x2x1

p1 p2 p3 pn−1 pn

0
p0

For i = 1..n, the symbol pi runs through all buttons from B, except for xi (if xi ∈ B). The symbol p0 runs through all buttons from B.
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executes a transition by this button. That is why the
trace displayed on the screen coincides with the trace
of the path that the implementation passes during this
time.

When there are several transitions in a state that can
be executed by the implementation, one chooses one
of these transitions in the indeterministic way. Under a
pressed button, the number of τ�transitions that are
executed before a transition by button is also chosen
indeterministically. Both these choices are understood
as choices depending on weather conditions. The glo�
bal testing hypothesis guarantees that all possible
weather conditions can be enumerated.

In any interaction session with implementation
through a testing machine, the screen displays an
implementation trace, as well as all of its prefixes (at
earlier instants of time).

2.5. Operator of Testing Machine

The operator of a testing machine simulates the
operation of the test system. We assume that the oper�
ator executes a test understood as an instruction for
the operator. This instruction points out what can the
operator do after obtaining a trace: should he wait for
observations and/or press buttons, and which buttons.
Naturally, if the test determines the behavior of the
operator after a trace μ, then, in order that one could
obtain this trace μ, the test must determine the behav�
ior of the operator even after any prefix of the trace μ.

If the test allows the operator to press a button p
after the trace μ, then it is assumed that the operator
can press this button any time after obtaining the trace
μ. Thus, the operator is not prohibited to sustain any
pause after obtaining some traces, including pauses
before pressing the next button: any time he can make
a “tea break.” This means that, when the operator
presses the button p some time after the trace μ and,
after pressing the button waits for some time, then one
actually obtains the trace μπ1pπ2, where π1 and π2 are
observation sequences, rather than the trace μp.

At the same time, for the completeness of testing, it
is necessary that any implementation trace of interest
should be observable during its interaction with the
implementation through the testing machine. For this
purpose, the operator must be able to press buttons
sufficiently quickly after obtaining traces. This means
that the delay between obtaining a trace and pressing
the next button may turn out to be less than the waiting
time of the implementation in the state after the trace
at least in one testing session. Then, pressing the but�
ton p immediately after the trace μ, the operator will
observe precisely the trace μp. Of course, if the opera�
tor does not turn off the machine and does not press
buttons for some period of time after this trace, then
one can obtain the extension of this trace with a
sequence of observations, i.e., the trace μpπ2.

2.6. Specification and General Reduction

As pointed out in the Introduction, a specification
defines, either explicitly or implicitly, a set of allowed
traces and, simultaneously, its complement—a set of
errors of the first kind. In this study, by a specification
we mean an arbitrary set of finite traces that is under�
stood simply as a set of errors of the first kind.
An implementation is conformal if it does not contain
errors of the first kind, i.e., specification traces. Below,
we will call such a conformance a general reduction.

A specification as a set of errors of the first kind can
be defined by a generating graph, i.e., by an LTS with
distinguished terminal vertices. An LTS specification
is said to be finite if the number of its states that can be
reached from the initial sate is finite. For some infinite
sets of errors of the first kind, an LTS specification can be
finite. As is known, for any generating graph, there exists
a determinization procedure that constructs a determin�
istic graph generating the same set of sequences. There�
fore, for any specification, there exists a deterministic
LTS specification that defines the same set of traces.
Here the determinacy implies that every reachable
state does not contain τ�transitions and, for any sym�
bol x ∈ B ∪ O, at most one transition by x from this
state is defined. If an LTS specification is finite, then it
remains finite after determinization.

A specification S defines a class of conformal
implementations, which we denote by CS. If a specifi�
cation contains an empty trace, i.e., if an empty trace
is assumed to be an error of the first kind, then all
implementations are nonconformal, because any
implementation contains an empty trace. If a specifi�
cation is an empty set, then all implementations are
conformal.

2.7. Test

A test is a set T of finite traces. Obtaining any of
these traces during testing leads to the verdict fail,
while obtaining any other trace, to the verdict pass.
A test is understood as an instruction for the operator
of the testing machine. The aim of a test is to verify
whether there is at least one of the traces of the test in
the implementation: if this is so, then the testing ends
and the general verdict fail is given.

Denote the prefix�closure of the set T of sequences
by pre(T) = {μ | ∃σ ∈ Tμ ≤ σ}.

Pressing a button. During testing, the operator may
press a button p after obtaining a trace μ if the trace μp
is a prefix of some trace of the test, μp ∈ pre(T). It is
assumed that, in this case, after obtaining the trace μ,
the operator presses the button p at least in one testing
session, and does this sufficiently quickly after obtain�
ing the trace μ. It is also assumed that if the trace μu,
where u is an observation, is a prefix of some trace of
the test, μu ∈ pre(T), then the operator waits for obser�
vations after obtaining the trace μ at least in one testing
session. If these assumptions are satisfied, the global



PROGRAMMING AND COMPUTER SOFTWARE  Vol. 39  No. 4  2013

FORMALIZATION OF A TEST EXPERIMENT�II 169

testing hypothesis guarantees that if a certain trace σ ∈
T is encountered in the implementation, then it will be
obtained in at least one testing session.

Turning off the machine. During testing, the follow�
ing three cases are possible after obtaining the trace μ:

1. μ ∈ pre(T)\T; i.e., μ is a strict prefix of some
trace from T;

2. μ ∈ T;

3. μ ∉ pre(T); i.e., μ is not a prefix of any trace from T.

In case 1, the operator should continue the testing
session; i.e., he should not turn off the testing
machine. In cases 2 and 3, the operator should com�
plete the testing session; i.e., he should turn off the
testing machine. Then, the following verdicts are
given: fail in case 2 and pass in case 3.

A trace that can be obtained in some testing session
with a given test (not only at the end of the session) has
either the form μπ, where μ is a prefix of some trace
σ ∈ T and π is a sequence of observations, or the form
μπ1pπ2, where μp is a prefix of some trace σ ∈ T, p is a
button, and π1 and π2 are observation sequences.
We will call the set of such traces an expansion of a test
and denote exp(T) = {μπ | μ ∈ pre(T)&π ∈ O*} ∪
{μπ1pπ2 | μp ∈ pre(T)&π ∈ B&π1 ∈ O*&π1 ∈ O*}. The
set of traces that can be obtained at the end of the test�
ing session is given by (exp(T)\pre(T)) ∪ T =
exp(T)\(pre(T)\T).

An implementation passes a test if the verdict pass
is given for any testing session (under any weather con�
ditions). An implementation passes a collection of
tests if it passes each test from this collection. For a
given class of implementations (in particular, for the
class of all implementations), a collection of tests (a
test) is significant if every conformal implementation
from this class passes this collection of tests (this test),
exhaustive if every nonconformal implementation
from this class fails it, and complete if this collection of
tests (test) is both significant and exhaustive.

A test is deterministic if it uniquely defines the
behavior of the operator. This means that any trace
from the prefix�closure of the test is either continued
by a button and is not continued by observations or is
not continued by buttons in this prefix�closure: ∀μ ∈
pre(T) (|{p ∈ B |μp ∈ pre(T)}| = 1 & {u ∈ O |μu ∈
pre(T)} = ∅) ∨ {p ∈ B |μp ∈ pre(T)} = ∅.

A test is primitive if it contains a single trace. It is
obvious that a primitive test is deterministic. Any test
T is equivalent to the union of the set of primitive tests
in the sense that they give the verdict fail for the same
implementations: T = ∪{{σ}|σ ∈ T}. It is also obvious
that a specification (as a set of errors of the first kind)
is a complete test on the class of all implementations.
Hence, a collection of primitive tests constructed over
all errors of the first kind, i.e., over all specification
traces, is complete on the class of all implementations.

2.8. Normalization of a Specification
and Optimization of Tests

As already pointed out in the Introduction, in addi�
tion to errors of the first kind, i.e., specification traces,
there may also exist other errors—nonconformal
traces, i.e., traces that are not encountered in confor�
mal implementations. The errors that are not errors of
the first kind are called errors of the second kind. For
the completeness of testing, it suffices to detect only
those errors that are prefix�minimal in the set of all
errors (not only errors of the first kind). Such errors are
called primary errors; a secondary error is an error that
has a strict prefix, which is an error. Primary errors do
not end with buttons. The set of primary errors is
equivalent to the set of errors of the first kind and,
hence, to the set of all errors. Obviously, this set is the
least by inclusion subset of errors that is equivalent to
the set of all errors. It can be considered as a specifica�
tion, which we will call a normalized specification.

For every specification S, the set of all errors is con�
structed by the systematic application of the following
operations:

• If p is a button and σp ∈ S, then we add a trace σ
to S.

• If μ ∈ S and μ < σ, then we add a trace σ to S.
If S* is the set of all errors for specification S, then

the normalization procedure reduces to the elimina�
tion of prefix�nonminimal errors: if μ ∈ S, σ ∈ S, and
μ < σ, then we remove the trace σ from S.

The normalization can also be carried out directly
by the original specification S as a systematic applica�
tion of the following operations:

• If p is a button and σp ∈ S, then we add a trace σ
to S.

• If μ ∈ S, σ ∈ S, and μ < σ, then we remove the
trace σ from S.

Normalized specifications are in one�to�one cor�
respondence with their classes of conformal imple�
mentations: A = B ⇔ CA = CB.

Suppose that a specification S is normalized.
As pointed out above, for every trace σ, there exists an
implementation minimal with respect to the set of
traces that contains the trace σ; this is the set of traces
{μρ | μ ≤ σ & ρ ∈ B*}. Hence, a collection T of tests is
significant if and only if each trace of every test from
the collection has an error from S as a prefix; i.e., if S
is coinitial with ∪T. A collection T of tests is exhaus�
tive if and only if every trace from S has a prefix that is
a trace of some test from the collection; i.e., if ∪T is
coinitial with S.

A collection T of tests is complete if and only if S
and ∪T are mutually coinitial. Since S is normalized,
the condition that ∪T is coinitial with S can be
replaced by the inclusion condition S ⊆ ∪T. Indeed,
otherwise there exists a trace μ ∈ S\∪T, and then,
since ∪T is coinitial with S, there exists a trace μ1 < μ
such that μ1 ∈ ∪T; then, since S is coinitial with ∪T,
there exists a trace μ2 ≤ μ1 such that μ2 ∈ S; hence, S
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contains two errors μ2 < μ, which contradicts the nor�
mality of S.

In other words, a collection T of tests is complete if
and only if all traces of all of its tests are given by all pri�
mary errors (traces form the normalized specification
S) and some of their extensions. An obvious optimiza�
tion is the elimination of such extensions; this results in
a collection T ' of tests whose set of all traces of all tests
is a normalized specification: S = ∪{{σ} | σ ∈ S} = ∪T '.
Thus, an optimized complete collection T ' of tests is
the covering of S, while the collection of primitive tests
{{σ}|σ ∈ S} is one of possible partitions of S.

3. CLASS OF IMPLEMENTATIONS

For various reasons, as implementations under test,
one considers implementations belonging to some class
I, rather than arbitrary implementations. This leads to
additional dependences between errors (including
dependences between primary errors) and, accordingly,
allows for additional optimization of the tests.

The first definition of equivalence of specifications.
Two specifications A and B are said to be equivalent on
the class of implementations I if they define the same
conformance of implementations on this class: I ∩ CA =
I ∩ CB. If I is the class of all implementations, then
CA ⊆ I, and CB ⊆ I, (CA = CB) coincides with the equal�
ity (A = B). On other subclasses of implementations,
this is not generally the case.

A trace encountered in the implementations of the
class I is said to be actual on the class I. If I is a set of
trace implementations, then the set of actual classes is
equal to ∪I. On the class of all implementations, all
traces are actual. Other classes of implementations
may contain both actual and nonactual traces. A trace
that is encountered in conformal implementations
from the class I is said to be conformal on the class I.
This is a conformal class that is actual on the class I.
Errors (including errors of the first and second kind)
are classified into actual and nonactual ones. When
testing implementations from the class I, it obviously
suffices to detect only errors that are actual on this
class. The set of traces that are conformal on the class
I is equal to ∪(I ∩ CS) for the specification S. Accord�
ingly, the set of errors that are actual on the class I is
equal to ∪I\ ∪ (I ∩ CS).

This gives the second definition of equivalence of
specifications: Two specifications A and B are said to be
equivalent on the class of implementations I if they
define the same set of actual errors: ∪I\∪(I ∩ CA) =
∪I\∪(I ∩ CB).

In fact, the two definitions of equivalence of speci�
fications are equivalent: I ∩ CA = I ∩ CB ⇔ ∪I\∪(I ∩
CA) = ∪I\∪(I ∩ CB). Let us prove this. First, we show
that ∪(I ∩ CA) = ∪(I ∩ CB) ⇔ ∪I\∪(I ∩ CA) =
∪I\∪(I ∩ CB). Indeed, if ∪(I ∩ CA) = ∪(I ∩ CB), then,
obviously, ∪I\∪(I ∩ CA) = ∪I\∪(I ∩ CB). Let us show
that if ∪I\∪(I ∩ CA) = ∪I\∪(I ∩ CB), then ∪(I ∩ CA) =
∪(I ∩ CB). Suppose that this is not the case: for exam�

ple, a trace σ ∈ ∪(I ∩ CA)\∪(I ∩ CB). Then this trace
belongs to some implementation from I that is confor�
mal for A. But then this implementation does not
belong to CB; i.e., it contains an error from B. This
error belongs to ∪(I ∩ CA); hence, it does not belong
to ∪I\∪(I ∩ CA). This error also belongs to ∪I but
does not belong to ∪(I ∩ CB); hence, it belongs to
∪I\∪(I ∩ CB), which contradicts the equality ∪I\∪(I ∩
CA) = ∪I\∪(I ∩ CB). Now, let us show that I ∩ CA = I ∩
CB ⇔ ∪(I ∩ CA) = ∪(I ∩ CB). If I ∩ CA = I ∩ CB, then,
obviously, ∪(I ∩ CA) = ∪(I ∩ CB). Let us show that if
∪(I ∩ CA) = ∪(I ∩ CB), then I ∩ CA = I ∩ CB. Suppose
that this is not the case. Then there exists an imple�
mentation that belongs, say, to I ∩ CA\I ∩ CB. Then
this implementation belongs to I but does not belong
CB; hence, it contains some error from B. Thus, this
error belongs to ∪(I ∩ CA). But this error cannot
belong to ∪(I ∩ CB), which contradicts the equality
∪(I ∩ CA) = ∪(I ∩ CB).

Now, suppose that I is a mapping that defines, for
every specification S, a class IS of implementations
under test. We say that, for the mapping I, a specifica�
tion B can be used instead of specification A if (1) IA ⊆ IB
and (2) IA ∩ CA = IA ∩ CB. The first condition says that
any implementation that could be tested to verify the
conformance of the specification A can be tested to
verify the conformance of the specification B. The sec�
ond condition (equivalence of specifications on the
class IA) says that the specifications A and B define iden�
tical conformance of implementations on the class of
implementations under test for the specification A.

An error is detected by a collection of tests if it is a
trace of one of the tests of the collection. Any collec�
tion of tests that is complete on the class I of imple�
mentations under test obviously defines a set of detect�
able errors (the set of all traces of all of its tests) that is
equivalent to the set of all errors on the class I.

4. SAFETY HYPOTHESIS

In [1, 2, 5, 6], we introduced the concept of safe
testing. This is a testing under which implementation
traces that are assumed to be unsafe are not passed.
The safety hypothesis defines a class of implementa�
tions that can be safely tested to verify the conform�
ance of a given specification.

4.1. General Form of the Safety Hypothesis

We say that a safety hypothesis is defined if, for any
implementation I, a prefix�closed subset Safe�
Traces(I) ⊆ I of traces is defined that are called safe
traces. A testing of a given implementation is said to be
safe if one can obtain only safe traces of this imple�
mentation during this testing. Implementation I is safe
for a test T if testing by this test is safe for this imple�
mentation: exp(T) ∩ I ⊆ SafeTraces(I). Every test T
defines a class of safe implementations SafeImpl(T) =
{I |exp(T) ∩ I ⊆ SafeTraces(I)}. A collection of tests T
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defines a class of implementations that are safe for
each test from this collection: SafeImpl(T) = ∩{Safe�
Impl(T)|Τ ∈ T}. A specification S defines a class of safe
implementations as a class of implementations that are
safe for the complete test for S, or, which is the same, for
a collection of primitive tests constructed by specifica�
tion errors: SafeImpl(S) = SafeImpl({{σ}|σ ∈ S}). In the
general case, if a safe testing of implementations from
a given class I is assumed, then safe implementations
from the class I, i.e., implementations from the class
I ∩ SafeImpl(S) are tested.

4.2. Hypothesis on a Finite Waiting Time
for Observation

In order that every testing session be finite in time,
it is necessary that the waiting times of buttons and
observations on the screen be finite: (1) a button
should appear on the screen in a finite time after its
pressing, and (2) if the operator waits for observations,
then an observation should appear on the screen in a
finite time.

The first condition is satisfied for sure in this model
of interaction with implementation. The second con�
dition may even not hold. Let us formulate a require�
ment on the implementation for this second condition
to hold for a given test.

Hypothesis on observations—λ�hypothesis:2 if an
implementation trace is a prefix of a trace of a test and
is extended to the prefix�closure of the test with obser�
vation, then, in the implementation, it should also be
extended with some (not necessarily the same) obser�
vation for any behavior of the implementation. This
means that (1) in each stable state (a state in which no
τ�transitions start) in the implementation, there is a
transition by some observation after this trace, and (2)
there is no divergence after this trace. The λ�hypothe�
sis is a particular case of the safety hypothesis.

Define, formally, a set SafeTraces(I) of safe traces of
the implementation I for the λ�hypothesis. A λ�trace of
an implementation is an implementation trace that ends
either in a stable state, where there are no transitions by
observations, or in a divergent state. An implementation
trace is said to be safe if any of its strict prefixes that is
followed by an observation in the trace is not a λ�trace.

The λ�hypothesis does not change the actuality of
traces: all traces are actual. The λ�hypothesis changes
the conformance of traces: on the class of safe imple�
mentations defined by this hypothesis, a trace μ is
nonconformal if, for every observation u, the trace μu
is an error. The following procedure of λ�normalization
of a specification is applied to determine the primary
errors of a specification in the case of the λ�hypothe�
sis: we systematically apply three actions:

(1) If, for any observation u, the trace σu belongs to
S, then we add the trace σ to S. (2) If p is a button and

2 The symbol λ is used to denote a situation when a deadlock or
divergence arise [10].

σp ∈ S, then we add the trace σ to S. (3) If μ ∈ S, σ ∈
S, and μ < σ, then we remove the trace σ from S. The
set of traces obtained is the set of primary errors in the
case of the λ�hypothesis.

4.3. Destruction Hypothesis

Another variant of the safety hypothesis is the so�
called destruction hypothesis. By destruction is meant
any behavior of an implementation that is undesirable
during testing [1, 2, 5]. The reasons of undesirability of
some behavior may be quite diverse; here we do not
impose any constraints. To represent a destruction in
the LTS model of implementation, we replace some of
its transitions by observation or τ�transitions (unob�
servable behavior) by γ�transitions, i.e., by transitions
labeled by a special symbol of destruction γ.

Now, by an implementation model is meant an LTS
in the alphabet with an added symbol γ. Since we are
not interested in the behavior of implementation after
destruction, by a trace we mean a sequence of buttons
and observations that may end with a destruction.

Destruction hypothesis—γ�hypothesis: for a specifi�
cation S, any trace from exp(S) is not extended in the
implementation with destruction. The γ�hypothesis is
a particular case of the safety hypothesis.

Define, formally, a set SafeTraces(I) of safe traces
of implementation I for the γ�hypothesis: an imple�
mentation trace is said to be safe if any of its prefixes is
not extended in the implementation with destruction.

The γ�hypothesis changes the actuality of traces: a
trace is actual if it is not represented as μγ, where μ ∈
exp(S). The γ�hypothesis does not change the con�
formance of actual traces: on the class of safe imple�
mentations defined by this hypothesis, only that actual
trace is nonconformal whose prefix is an error. Since
the γ�hypothesis does not change the conformance of
actual traces, it does not require the normalization
procedure: all specification errors are primary.

Combined, λ and γ�hypotheses define a class of safe
implementations SafeImplλγ(S) = SafeImplλ(S) ∩ Safe�
Implγ(S).

5. SIMULATION OF OTHER SEMANTICS

In this section, we show how some known reduc�
tion�type conformances are reduced to a general
reduction in the above�described B/O�semantics.
In 1993, van Glabbeek published a generalizing and
systematizing article [11] in which he defined 30 types
of observations. Some or other combination of these
types of observation corresponds to some or other
interaction semantics. Not all the combinations are
admissible; van Glabbeek distinguished 155 possible
semantics and corresponding conformances. We con�
sider only those observations that correspond to a
reduction�type conformance (i.e., not to simulation�
type conformances) and show how these observations
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and the corresponding semantics are represented in
our B/O�model and in the LTS implementation.

It is assumed that an implementation can execute
external, observable actions from some alphabet A.
As regards the unobservable behavior of an implemen�
tation, van Glabbeek proceeds from the main assump�
tion of τ�activity: τ�activity may occur between any
two actions (and before the first observable action) in
the implementation. In the LTS model of implemen�
tation, transitions are labeled by symbols from the set
A ∪ {τ}.

The keyboard of van Glabbeek’s testing machine
consists of switches—one switch for each external
action. The switch has two positions: free and blocked.
An implementation can execute an external action a
only when the switch “a” is in the position free; τ�
actions are always allowed, irrespective of the position
of the switches. It is assumed that, at any instant of
time, the operator of the machine can set any switch in
any position and is sufficiently fast to do this rapidly,
i.e., immediately after some observation. The external
actions executed by the implementation are displayed
on the screen. Van Glabbeek’s machine is generative: an
implementation executes external actions and τ�actions
allowed by the switches as long as it contains such
actions. If, at a given instant of time (in a given state),
the implementation can execute several actions, then
the action to be executed is chosen indeterministically,
depending on weather conditions.

A test action in van Glabbeek’s machine consists in
changing the positions of switches, which corresponds
to the set of switches in the position free, i.e., a subset
ρ ⊆ A. In the B/O�machine, such a test action corre�
sponds to a separate button “p”,3 and every action a ∈ A
is an observation from O. In other words, we will
assume that {“p” |p ⊆ A} ⊆ B and A ⊆ O.

If there are no other observations except for exter�
nal actions, then such a semantics is called a trace
semantics [12]. To simulate this semantics in the B/O�
semantics, one should perform the following transfor�
mation of the original LTS implementation S. For
every state s and every button “p,” where p ⊆ A, we
introduce a new state sp. In this state, we execute a

transition sp  tp, where a ∈ A ∪ {τ}, if and only if

a ∈ p ∪ {τ} and the transition s  t has been exe�

cuted. We also execute a transition sq  sq for every
button “q”, where q ⊆ A and q ≠ p (one may not show
loop transitions by buttons in the B/O�semantics); this
transition corresponds to a change in the position of
switches. A new initial state is the state s0∅, where s0 is
the initial state in the original LTS S (it is assumed
that, immediately after turning on the machine, the
switches are in the position blocked). Note that if there

3 We denote a button with the use of quotation marks, “p” for p ⊆ A,
to distinguish between a button “p” and a refusal p, which is
introduced below.

a

a

q

have been no transitions by actions from p ∪ {τ} in the
state s, then there are no transitions by actions from
A ∪ {τ} in the position sp (only transitions by buttons are
defined). The transformation results in a new LTS ST.

Note that a change in the position of switches for a
trace semantics is redundant: it suffices to set all the
switches to the position free from the very beginning
and not to change them. This is equivalent to the
absence of switches under the assumption that all
actions are thereby allowed (that is how the testing
machine is described for the trace semantics in [10]).
Such an operation mode is characterized by the same
testing capacity; i.e., one obtains the same set of traces
as for all possible changes of the position of switches.
To simulate in the B/O�semantics, it suffices to leave
only states of the form sA in the LTS ST; the new initial
state is the state s0A, rather than the state s0∅. As a result
of transformation, we obtain an LTS ST*. It is obvious
that the LTS ST* is isomorphic to the LTS S.

In this testing mode, when buttons are not used, a
transformation of the LTS implementation is not
needed.

In addition, the van Glabbeek machine may have a
green lamp, which is turned on when the implementa�
tion has some activity (a transition is executed either
by external action or by τ�action). If the green lamp is
turned off, this means that no activity goes on the
implementation: it has no τ�activity, while all external
actions that it could execute are blocked by the posi�
tions of appropriate switches. This gives new observa�
tions—a refusal set. A refusal p ⊆ A is defined in a state
s when there are no transitions by actions from p ∪ {τ}
in this state. Traces that contain refusals in addition to
actions are called failure traces, and the corresponding
interaction semantics is called a failure trace seman�
tics, which is denoted as FT. To simulate the FT
semantics in the B/O�semantics, it suffices to add, in
the LTS implementation ST, a loop transition by
refusal p to each state sp in which transitions by actions
from A ∪ {τ} are not defined. As a result of transforma�
tion, we obtain an LTS SFT.

The van Glabbeek machine may also contain so�
called menu lamps, one for each action a ∈ A. A lamp
'a' for an action a is turned on if a transition by the
action a is defined in the implementation at a current
instant of time (irrespective of whether or not this
action is allowed by the switches). It is clear that if the
implementation executes some actions (either exter�
nal or internal), then the menu lamps are constantly
blinking. Therefore, they give reliable information
only when no activity goes on the implementation,
which is indicated by the green lamp. In this case, we
obtain a new observation—a ready set. A ready set r ⊆ A
is defined in state s when this state is stable (there are
no τ�transitions) and the set of external actions by
which transitions are defined in the state is equal to r.
The traces that contain actions and ready sets are
called ready traces, and the corresponding interaction
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semantics is called a ready trace semantics, which is
denoted as RT. It is obvious that, by a ready set r, one
can calculate all refusals in this state: these are all the
subsets A\r. Therefore, in the RT�semantics, refusals
are not considered as separate observations, and one
does not consider mixed traces that contain both ready
sets and refusals. To simulate the RT�semantics in the
B/O�semantics, it suffices to add a loop transition by the
ready set for the state s in the original LTS S to every
state sp in which transitions by actions from A ∪ {τ} are
not defined in the LTS implementation ST. Notice that
the ready set for the state s in the original LTS S is
equal to the union of the ready sets for all states in the
LTS ST of the form sq, where q runs over all buttons. In
other words, this is the set of all external actions that
the LTS implementation ST in the state sp can execute
after some change in the position of the switches of the
van Glabbeek machine (after pressing some button of
the B/O�machine). As a result of transformation, we
obtain an LTS SRT.

Van Glabbeek also considers the operation mode of
the machine when the switches cannot be switched
from the position blocked to the position free, except
for the initial setting of the switches when turning on
the machine. In this mode, there cannot be any con�
tinuation of the operation of the machine after stop�
ping the implementation; therefore, a refusal or a
ready set can be observed only at the end of a trace.
Usually it is assumed that either a failure pair (a trace
of actions and a refusal) or a ready pair (a ready set) is
observed at the end of a testing session. The corre�
sponding semantics are called failure semantics (F) and
readiness semantics (R). To simulate the F and R
semantics in our model, one replaces loop transitions
by refusals or ready sets in the LTS implementations
SFT or SRT by transitions to the terminal state. As a
result of transformation, we obtain LTSs SF or SR.

If only a finite number of switches can be set to the
position free, then the corresponding semantics with
refusals are denoted as FT– and F–. To simulate such
semantics in the B/O�semantics, one removes transi�
tions by infinite buttons from the LTS implementa�
tions SFT or SF. As a result of transformation, we obtain
and LTSs  or .

In the presence of menu lamps, one considers
semantics when, in addition to the fact that only a
finite number of switches can be set in the position
free, only a finite number of menu lamps can be acti�
vated. In this case, the menu lamps are interpreted as
buttons–lamps; to activate such a button–lamp, it
should be released; a nonactivated lamp indicates
nothing. Now, if no activity goes on the implementa�
tion, the question of whether there is an action a ∈ A
in the current state of this implementation can have
three answers: (1) yes; then the switch “a” is in the
position blocked, and a button–lamp 'a' is released and
turned on; (2) no; then either the switch “a” is in the
position blocked and a button–lamp 'a' is released but

S
FT

– S
F

–

is turned on, or the switch “a” is in the position free (a
released button–lamp 'a' cannot be turned on); and
(3) unknown; then the switch “a” is in the position
blocked, and the button–lamp 'a' is not released.
Therefore, full information on the actions in a current
state is described by a pair of sets, by the set r+ of
actions with the answer “yes” and by the set r– of
actions with the answer “no,” rather than by a single
ready set r. In contrast to the case when all menu
lamps are always activated, these two sets r+ and r–,
when combined, may not make up the set A of all
actions. Now, a test action consists not only in setting
some switches in the position free, but also in the acti�
vation of some menu lamps. The corresponding
semantics with ready sets are denoted by RT– and R–.
To simulate such semantics in the B/O�semantics,
instead of the state sp in the LTS implementation SRT

or SR, one creates, instead of the state sp, a set of states of
the form spx, where x is a finite set of activated menu

lamps. Instead of a transition by an action sp  tp, one

executes transitions of the form spx  tpx. Instead of a

transition by a button sp  sq, one executes transitions

of the form spx  sqy, where y is a finite set of activated
menu lamps, only for a finite button q. Instead of a loop

transition by a ready set sp  sp, one executes loop

transitions by pairs of finite sets spx  spx; it is obvious
that x\r– = r+ and p ⊆ r–. As a result of transformation,
we obtain LTSs  or .

Van Glabbeek also considers two special observa�
tions 0 and S. The observation 0 arises when the green
lamp is turned off, which means that no activity goes
on the implementation. The observation S arises when
the implementation passes to a stable state. In the FT¦
or F�semantics, the observation 0 arises every time when
some refusal arises, while the observation S arises every
time when the refusal ∅ arises. Therefore, both these
observations are redundant in these semantics.

The observation 0 is useful when there are no
switches, which is interpreted as setting all switches to
the position free (just as for the trace semantics). In this
case, the observation 0 implies a transition of the
implementation to the terminal state, which corre�
sponds to the refusal A in the FT� or F�semantics. It is
clear that there cannot be any observations after the
observation 0; therefore, the observation 0 can only
complete a trace. Such traces are called completed
traces. To simulate in the B/O�semantics, it suffices
(just as for the trace semantics in the absence of
switches) to add a loop transition by the observation 0
to the LTS implementation ST* in each terminal state.
As a result of transformation, we obtain an LTS ST0.

The observation S is useful when, instead of
switches for every external action, there is a single
switch that either allows or blocks all external actions
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at once. If all the actions are prohibited, while the
green lamp is turned off, this means that the imple�
mentation is in a stable state, which is represented by
the observation S. This observation is equivalent to the
observation of refusal ∅ in the FT� or F�semantics.
If all actions are allowed, while the green lamp is
turned off, this means that the implementation is not
only in a stable but also in the terminal state; i.e., we
have observation 0 that “absorbs” the observation S.
In addition to actions, traces may include the observa�
tion S; such traces may end with the observation 0. To
simulate in the B/O�semantics, it suffices to leave only
states of the form sA and s∅ in the LTS implementation
ST and then add loop transitions by the observation 0
to all states of the form sA where there are no transi�
tions by actions from A ∪ {τ}, and loop transitions by
the observation S to all stable states of the form s∅. As a
result of transformation, one obtains an LTS ST0S.

Except for the restriction by the finiteness in the
FT–, F–, RT–, and R– semantics and the two special
cases above with the observations 0 and S, van
Glabbeek does not consider conformances that are
obtained under various restrictions on what switches
can be set in the position free, i.e., restrictions on the
set of allowed external actions. It is also assumed that
if there is a green lamp, then there are no constraints
on its operation: it can operate always, irrespective of
the position of the switches. In other words, one either
observes all possible refusals or does not observe any
refusals. At the same time, many conformances are
based precisely on these kinds of constraints.

One of such conformances, which is not included
in van Glabbeek’s classification, is the now popular
ioco (input–output conformance) relation, which was
proposed by Tretmans in 1996 [14, 15]. It is assumed
that the alphabet A of external actions is divided into
two disjoint subsets of stimuli (input) X and reactions
(output) Y. Either one stimulus or all reactions can be
allowed. It is said that the operator can either send one
stimulus to the implementation or wait for any reac�
tion from the implementation. In this case, the green
lamp is turned on only when waiting for reactions;
thus, there is only one refusal, which means the
absence of reactions and is called quiescence; it is
denoted by the symbol δ = Y. In addition, the ioco
semantics requires a reactive, rather that generative,
machine. Instead of switches, there are buttons, which
are automatically released after the implementation
executes an allowed external action. To obtain the next
external action, one should press once again other or
the same buttons. In fact, the difference between gen�
erative and reactive machines is insignificant, as van
Glabbeek showed in the same paper [11].

A generalization of such an approach is the R/Q
semantics proposed by the present authors [1, 5, 6]. It is
defined by two disjoint families of sets of actions R ⊆ 2A

and Q ⊆ 2A that cover the whole alphabet: (∪R) ∪
(∪Q) = A. The R/Q testing machine is reactive. Each

set p ∈ R ∪ Q corresponds to a button “p” that allows
all actions from p. The green lamp is turned on only if
p ∈ R; in other words, only refusals from R are
observed. Note that the R/Q�semantics also admits
transitions by destruction γ in the implementation.

The ioco relation is a particular case of the R/Q�
semantics when R = {{x}|x ∈ X} is the family of all sets
each of which consists of a single stimulus and Q = {Y}
is a family consisting of a single set of all reactions. In
addition, it is assumed for ioco that the implementa�
tion has no destruction.

To simulate the R/Q�semantics in the B/O�semantics,
one should transform the original LTS implementation S
as follows. For every button “p”, where p ∈ R ∪ Q, and
every state s, we add a new state sp and a new transition

s  sp. In each new state sp, we execute a transition

sp  t if a ∈ p and there is a transition s  t.

We also execute a transition sp  tp if a ∈ {τ, γ} and

there is a transition s  t. If p ∈ R and there are no
transitions by actions from A ∪ {τ} in the state sp, then

we execute a transition sp  s. This transition is
obviously executed if and only if there is an R�refusal p
in the state s. After that, we remove all transitions by
external actions from the old states, while retaining τ
and γ�transitions.

We obtain an LTS SR/Q whose states are classified
into “old” and “new” ones; this is necessary to simu�
late the “reactance” of the R/Q�machine on the gen�
erative B/O�machine. A transition by a button “p”
leads from an old state to a new state: from sp to t.
A transition by an external action leads from the new
state to the old: from sp to t, and only by an action a
that is allowed by the button “p”, i.e., a ∈ p. A transi�
tion by refusal p ∈ R leads from the state sp to the state
s, while the τ and γ�transitions lead both from old to
old states (from s to t) and from the corresponding new
to the corresponding new states (from sp to tp).

A more detailed account of the simulation of the
R/Q�semantics in the B/O�semantics is given in [8].

Thus, we can see that all the above�considered
semantics are simulated in the B/O�semantics by an
appropriate transformation of the original LTS imple�
mentation. Hence, the original conformance in the
B/O�semantics is considered on a subclass of trans�
formed LTS implementations, rather than on the class of
all LTS implementations admitted by the B/O�seman�
tics. Therefore, an implication of error sets and equiv�
alent sets of errors arise that do not coincide with the
specification; i.e., various equivalent specifications
arise. Each such specification is obtained from some
complete collection of tests if one takes all fail traces of
tests of the collection as errors. In other words, there
exist complete collections of tests such that the differ�
ence between the tests cannot be removed by a trivial
optimization similar to the normalization of specifica�

“p”

a a

a

a

a
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tions. That is what the problem of optimization of tests
for various semantics consists in, which turns out to be
a particular case of the problem of optimization of
tests on some or other class of implementations.

6. PRIORITIES

As pointed out by van Glabbeek himself [11], his
testing machine assumes the absence of priorities
between actions: an implementation may execute an
action a if the switch “a” is in the position free, irre�
spective of the position of other switches, i.e., irre�
spective of what other actions are allowed. The rule of
nondeterministic choice suggests that the implemen�
tation should choose any action for execution that is
defined in this implementation and is allowed by the
position of switches. In this case, the τ�activity can
always be performed irrespective of the position of the
switches.4 At the same time, for real software and
hardware systems, this rule does not always adequately
reflects the required behavior of a system. Below we
consider a few examples of such systems.

In order to introduce priorities into the van
Glabbeek machine, one should label every transition
in the LTS implementation not only by an action a but
also by a set of allowed actions p, that is, by the pair (a,
p). In this case, it is assumed that a ∈ p ∪ {τ}. What
does occur under the change of the position of
switches when the set of allowed actions is changed
from p to q? We suppose that the effect of this change
on the behavior of the implementation occurs in two
steps. At the first step, transitions by actions are
blocked, but τ�transitions labeled by the “old” set p,
i.e., transitions labeled by the pair (τ, p), still remain
allowed. At the same time, it is assumed that the
implementation can execute only a finite number of
such transitions at this step. After that, at the second
step, only transitions labeled by the “new” set q, i.e.,
transitions labeled by the pair (a, q), where a ∈ q ∪ {τ},
are allowed.

Let us explain the meaning of the first step. In the
absence of priorities, by the main assumption on τ�
activity, τ�transitions are always allowed irrespective of
the position of the switches. Therefore, under the
change of the position of switches, there is no differ�
ence between the τ�transitions executed immediately
before this change and immediately after it. However,
in the presence of priorities, such a difference arises.
If the first step were missing, then the change of the set
of allowed actions from p to q would immediately pro�
hibit (τ, p) transitions. When the implementation
passes through a certain path M with a trace σ, it may
occur in the state s in which a chain of (τ, p) transitions
is defined. For the completeness of testing, it is neces�
sary that this chain of transitions be passed in at least
one testing session. However, for the implementation
to be able to pass this chain, the operator should

4 In the R/Q semantics this also applies to γ�transitions.

change the position of switches only after executing
this chain. To this end, the operator should wait for
some time interval depending on the length of the
chain and the waiting times in the states of this chain.
Since the implementation is unknown to the operator
(it is hidden in the black box), the value of this interval
is unknown to the operator. Therefore, we should have
required that, in various testing sessions, the operator
made all possible time delays before the next change of
the position of switches. However, we make the only
requirement to the operator: at least in one testing ses�
sion, this delay should be small enough, i.e., less than
the waiting time of the implementation in the state s.
The presence of the first step guarantees that all chains
of (τ, p) transitions after the path M with trace σ can
be passed without additional requirements to the
operator. In other words, it is guaranteed that every
path with trace σ is passed before the set of allowed
actions is changed from p to q and only (τ, q) transi�
tions start to be executed.

In the presence of priorities, the concepts of refusal
and divergence are changed. A refusal p arises for the
allowed set of actions p when there are now transitions
labeled by a pair of the form (a, p), where a ∈ p ∪ {τ},
in a current state. Divergence for the allowed set of
actions p arises when an infinite τ path with an infinite
postfix of (τ, p) transitions starts in a current state.
Accordingly, we can speak of p divergence and on
p�divergent and p�convergent states.

As pointed out above, in the B/O�semantics, there
is a priority of a testing action over the behavior of
implementation, both observable and unobservable.
This allows one to represent any semantics of the van
Glabbeek machine with priorities as a particular case
of the B/O�semantics for reduction�type conform�
ances. For such a simulation, one should execute a
modified transformation of the original LTS imple�
mentation S with priorities into an appropriate LTS Si,
where i denotes a semantics; i.e., i is T, T*, FT, RT, F,
R, FT–, RT–, F–, R–, T0, or T0S. The modification

consists in the following: a transition sp  tp, where
a ∈ A ∪ {τ}, is defined if and only if a ∈ p ∪ {τ} and

there was a transition s  t in S, rather than the

transition s  t, as before. Then, the transitions by
buttons, refusals, ready sets (or pairs of sets), and the
observations 0 and S are executed as usual.

For the R/Q�semantics with priorities, an LTS
implementation is defined analogously: each transi�
tion is labeled by a pair (a, p), where a ∈ p ∪ {τ, γ} and
p ⊆ A. Naturally, for given R and Q, only those (a, p)
transitions can be executed during testing by the
R/Q�machine in which p ∈ R ∪ Q. To simulate the
R/Q�semantics with priorities in the B/O�semantics,
one should perform a modified transformation of the
original LTS implementation S with priorities into the
LTS SR/Q. The modification consists in the following:

a

(a, p)

a
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the transitions sp  t, where a ∈ p, and sp  tp,
where a ∈ {τ, γ}, are defined if there is a transition s

 t rather than the transition s  t, as before, in
S. The transitions by refusals and buttons are executed

as usual. Notice that the transition by a refusal sp 
s, where p ∈ R, is executed when there is the R refusal
p in s, i.e., when there are no transitions labeled by
pairs (a, p) in the state s, where a ∈ p ∪ {τ, γ}. Finally,
not all τ� and γ�transitions are left in the old states, but
only those that are labeled by an empty set, i.e., by the
pair (τ, ∅) or (γ, ∅).

Note a specific feature of such simulation of the
R/Q�semantics with priorities by means of the
B/O�semantics. In the R/Q�semantics, which con�
tains an empty button (∅ ∈ R ∪ Q), τ� and γ�transi�
tions under pressed empty button and in the absence
of the pressed button are indistinguishable: in either
case the set of allowed external actions is the same—
an empty set. Therefore, one cannot require that such
a transition be activated only when no button is
pressed, or, conversely, it be activated when the empty
button is pressed but could not be executed if no but�
ton was pressed. When simulating in the B/O�seman�

tics, the τ�transitions s∅  t∅ and s  t arise
always simultaneously (provided that there is a transi�

tion s  t). However, after such a simulation in the
B/O�semantics, we can resolve this problem by leaving
only one of these τ�transitions.

A more detailed description of the R/Q�semantics
with priorities is given in [3, 4], and its simulation in
the B/O�semantics is given in [8].

Since all the semantics with priorities considered
above are simulated in the B/O�semantics by an appro�
priate transformation of the original LTS implementa�
tion, the original conformance in the B/O�semantics is
considered on a subclass of transformed LTS implemen�
tations, rather than on the class of all LTS implementa�
tions admitted by the B/O�semantics. Therefore, just
as in the case of semantics without priorities, there
arise an implication of error sets and equivalent sets of
errors that do not coincide with the specification; i.e.,
there arise various equivalent specifications.

It may turn out that there are many multiple tran�
sitions in the LTS with priorities, that are labeled by
pairs (a, pi) with the same action a and different sets of
allowed actions p1, p2, …. To represent such transitions
more compactly, we introduce Boolean variables: one
variable for each action a ∈ A; the variable 'a' takes the
value true if either the switch “a” in the van Glabbeek
machine is in the position free or the button “p” is
pressed in the R/Q�machine and a ∈ p. The set of
allowed actions p can be defined by an elementary
conjunction 'p' of these variables in which each vari�
able a appears only once, either without negation, if
a ∈ p, or with negation otherwise. The conjunction 'p'
takes the value true if and only if the switches in the van
Glabbeek machine allow the set of actions p or the

a a

(a, p) a

p

τ τ

(τ, ∅)

button “p” in the R/Q�machine is pressed. After that,
one can represent the set of multiple transitions by a
single transition labeled by the pair (a, π), where π is a
predicate equivalent to the perfect disjunctive normal
form 'p1' ∨ 'p2' ∨ ….

Consider a few characteristic examples of using
priorities.

Exit from divergence. A request incoming from
outside can be ignored by the system for an infinitely
long time if it has the same priority as infinite internal
activity, i.e., divergence. Note that internal activity
can be initiated by a previous request. If one deals with
a composite system assembled from several compo�
nents, then divergence can naturally result from the
interaction of components with each other. In this
case, to process a request incoming to the system (to
one of its components) from outside, this request
should have higher priority than the internal interac�
tion.

In the B/O�semantics, such a request can be under�
stood as a (test) action, i.e., as pressing a button.5 A tran�
sition by a button is executed for sure in finite time, i.e.,
only after finite τ�activity. Thus, an exit from divergence
can be implemented, provided, of course, that a tran�
sition by button does not lead it to a convergent state.

In both the van Glabbeek machine and the
R/Q�machine, requests correspond to some external
actions from an alphabet A. Then a τ�transition from
state s is labeled only by a set p of allowed actions that
does not contain requests transitions by which are
defined in s. If the implementation is in the state s and
the set of actions whose switches are in the position
free is equal to p, then divergence can arise only when
the state s is p�divergent.

Exit from oscillation (priority of reception over out�
put). By oscillation is meant an infinite chain of mes�
sage output by a system. In order that such a chain may
be interrupted, by making the system to process a
request incoming from outside, the latter should have
higher priority than the output of messages. Usually, it
is also assumed that the internal activity has lower pri�
ority than the reception of a request.

In the B/O�semantics, it is natural to assume that
the output of a message is an observation, while a
request is a (test) action (pressing a button). Since
pressing a button blocks observations before a transi�
tion by the button, an exit from oscillation is per�
formed if such a transition by button leads to a state
where there is no infinite chain of message outputs and
no divergence.

In the van Glabbeek machine and in the R/Q�
machine, requests and an output of messages corre�
spond to two disjoint subsets of the alphabet A. Then
transitions on the output of messages and τ�transitions
from the state s are labeled only by those sets p of

5 If we can observe the reception of a request by the implementa�
tion, then, in addition to the button, a separate observation cor�
responds to such a request (see Subsection 8.1).
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allowed actions that do not contain requests transi�
tions by which are defined in s.

For brevity, we consider other examples only for the
van Glabbeek machine.

Priority of output over reception in unbounded
queues. This inverse example is characteristic of an
unbounded queue that is used as a buffer between
interacting systems, in particular, when testing in a
context [13]. Here it is necessary that a sample from
the queue should have higher priority than queuing.
Otherwise the queue is only allowed to receive mes�
sages and never to deliver them. When testing in a con�
text, for the input queue this means that all input mes�
sages sent by the test do not reach implementation,
being infinitely accumulated in the queue. Accord�
ingly, for the output queue this means that the test may
receive no response messages from the implementa�
tion, although the queue outputs them, because these
messages accumulate in the queue.

Suppose that the elements of the queue belong to
an alphabet Z. The queuing of an element x ∈ Z corre�
sponds to an action !x ∈ A and a switch “!x.” For the
queuing of elements to be deterministic, at most one
switch is allowed to be set in the position free. The
sampling of an element y ∈ Z from the queue corre�
sponds to an action ?y ∈ A and a switch “?y.” The pri�
ority of the sampling from the queue over the queuing
implies that a transition by queuing, i.e., by the action
!x, can be executed only when the switch “!x” is in the
position free and either there is nothing to take from
the queue, i.e., the queue is empty, or it is prohibited
to take an element from the queue, i.e., the switch
“?y,” where y is the first element of the queue, is in the
position blocked. The state s of implementation is a

state of the queue, i.e., s  Z*. A transition s ⋅ !x is
defined if and only if p ⊆ A, !x ∈ p, and either the queue
s is empty or the first element of this queue, y = s(1),
cannot be selected from the queue because the switch
“?y” is in the position blocked, i.e., ?y ∉ p. A transition

?y ⋅ s  s is defined, as usual, for every p ⊆ A pro�
vided that ?y ∈ p.

Interruption of a chain of actions. The command
cancel should interrupt the chain of actions initiated
by the previous request and call the chain of comple�
tion actions. In the absence of priorities, such a com�
mand, even if it is given immediately after the output
of the request, can only be executed after the whole
processing is completed; i.e., in fact, this command
does not change anything.

We will consider the command cancel as one of
external actions. If a transition by cancel is defined in
a state s, then all the other transitions from the state s
are labeled by the same sets p of allowed actions that do
not contain cancel. A transition by cancel, as well as all
the other transitions in other states, are labeled by all
admissible sets of allowed actions. If a transition by
cancel is defined in the state s and the switch “cancel”

(!x, p)

(!y, p)

is in the position free, then only a transition by cancel
will be executed.

Priority processing of requests. If several requests
are simultaneously incoming to the system, it is often
required to process them according to some priorities
between them. This is implemented in the form of a
queue of requests with priorities, or in the form of sev�
eral queues of requests with priorities between the
queues. The processing of hardware interruptions in
an operating system also belongs to this type of priori�
ties.

A set of requests is partitioned into disjoint subsets
X1, X2, … of the alphabet A so that requests from a sub�
set with greater index have higher priority. A transition
from the state s by a request x ∈ Xi is labeled by a set
p ⊆ A that does not contain any request y ∈ Xj such that
j > i and there is a transition by y in the state s.

7. OPTIMIZATION OF TESTS FOR VARIOUS 
CLASSES OF IMPLEMENTATIONS

In the previous sections, we have shown that, for
the B/O�semantics and the general reduction on the
class of all possible implementations, there are only
trivial dependences between errors, which can easily
be removed by the normalization of specification.
We have also considered two safety hypotheses: λ� and
γ�hypotheses, which narrow down the class of imple�
mentations under test. Moreover, the λ�hypotheses
gives rise to an additional dependence between errors,
which, however, is easily removed by additional λ�nor�
malization, while the γ�hypotheses does not lead to an
additional dependence between errors, and there is no
need in additional normalization. Next, we have con�
sidered examples of semantics and conformances that
are reduced to the B/O�semantics and the general
reduction but are considered on restricted classes of
implementations. Because of such restriction, there
arise nontrivial dependences between errors, which
requires a nontrivial optimization of tests [6, 7].

All this can be considered as a particular case of the
general problem of restriction of the class of imple�
mentations under test, that gives rise to dependences
between errors and allows one to optimize tests. Con�
sider a few examples of such restriction of the class of
implementations under test that are not directly
related to the choice of one or other semantics or
safety hypothesis. In theses examples, we will show
that such a restriction allows one to apply finite com�
plete collections of tests. All these examples suggest
that the B/O�semantics and the LTS specification S
are finite. We will assume that the total number of but�
tons and observations is not greater than m, while the
number of states of the deterministic LTS specification
is not greater than k.

The first example is a class of LTS implementations
with a limited number of states. If the number of states
of the implementation is not greater than n, then, for
the completeness of testing, it suffices to restrict one�
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self to tests of length at most nk. Then this collection
of tests contains at most O(mnk) tests.

To prove this assertion, it suffices to construct a
composition of an LTS implementation and a specifi�
cation by the following rules. The states of the compo�
sitional LTS are given by pairs of states of implementa�
tion and specification, and the initial state is given by

the pair of initial states. A transition (s, t)  (s', t ')

is defined if and only if there is a transition s  s' in

the implementation and a transition t  t ' in the
specification. The implementation is nonconformal if
and only if it contains an error of the first kind, i.e., a
specification trace. In a deterministic specification,
such a trace ends in a state that is declared finite. There
is such a trace in the implementation if and only if, in
the compositional LTS, a state of the form (s, t), where
t is the terminal state of the specification, is reachable
from the initial state. Such a state can be reached by a
simple path (that passes through each state at most
once) whose length is not greater than the number of
reachable states of the compositional LTS, which, in
turn, does not exceed the total number of states equal
to nk. Thus, an implementation is nonconformal if
and only if there is an erroneous trace of length at most
nk in this implementation. In other words, the collec�
tion of all primitive tests of length at most nk is com�
plete. The number of such sequences in an m�symbol
alphabet is obviously equal to O(mnk).

The second example is a finite (up to an isomor�
phism) class of implementations under test. For a
finite semantics, the class of LTS implementations
with a limited number of states is obviously finite up to
an isomorphism. Therefore, the first example is a par�
ticular case of the second example. If a semantics and
a specification are finite, then, for any finite class of
implementations, there exists a finite complete collec�
tion of tests. To prove this assertion, it suffices to
notice that any finite class of implementations I is a
subclass of the class of implementations the number of
whose states is bounded by a number n, where n is the
maximal number of states in the implementations
from the class I.

The third example is a finite subclass of nonconfor�
mal implementations from the class of implementa�
tions under test. In [16, 17], such a subclass is called a
failure class. For the completeness of a test collection
to be finite, it suffices that a subclass I\CS of failures of
the class I, rather than the class I itself, be finite.
Indeed, in every nonconformal implementation from
the class I ∈ I\CS, there is some error of the first kind;
let us choose one of such errors σI. The collection of
errors SI = {σI\I ∈ I\CS} is finite and, obviously, is a
complete test, whereas the collection {{σI}|I ∈ I\CS} of
primitive tests constructed by these errors is a com�
plete collection of tests for the class I.

Thus, while testing, we actually try to find a finite
subset SI ⊆ S of the set of errors of the first kind rather

a

a

a

than all errors of the first kind defined by the specifica�
tion S. This is equivalent to that, instead of the speci�
fication S, we use the specification SI. In other words,
on the class of implementations I, the specifications S
and SI are equivalent. To tell the truth, while carrying
out a testing by the specification S, we can detect an
error faster than when testing by the specification SI.
This is attributed to the fact that the nonconformal
implementation I ∈ I\CS may contain not only an
error σI, but also some errors that do not belong to the
collection SI. For example, the specification S may
define some observations as erroneous from the very
beginning (before pressing buttons); a, b1, b2, b3, …,
and SI contains only one such error a. While testing,
we can wait for observations from the very beginning
and, based on the specification S, we give the verdict
fail if we obtain any of the errors a, b1, b2, b3, …; how�
ever, based on the specification SI, we give the verdict
fail only for the error a.

These arguments give the fourth example—a finite
subset of errors SI ⊆ S such that every nonconformal
implementation (i.e., implementation containing at
least one error from SI) from the class I contains at
least one error from SI. Instead of a finite class of fail�
ures, it suffices to simply use a finite subcollection of
the collection of errors defined by the specification.

Next, recall that the class of implementations I
defines errors of the second kind: traces that are not
encountered in conformal implementations of the
class I but are encountered in some of its nonconfor�
mal implementations. Such an error of the second
kind σ may not be an error of the first kind, i.e., σ ∉ S.
Therefore, the fourth example is a particular case of
the last, fifth, example when, for the class I of imple�
mentations under test, a finite collection of errors (of
the first and second kind) SI is defined such that every
nonconformal implementation (i.e., an implementa�
tion containing at least one error from S) from the
class I contains at least one error from SI. This is the
last example, because its condition is simply equiva�
lent to the condition of the existence of a finite com�
plete collection of tests. If such a collection of tests
exists, then the set of errors SI is given precisely by the
set of traces of all tests of the collection.

8. SUBSTANTIATION OF THE CHOSEN 
INTERACTION MODEL

In this concluding section, we substantiate the
interaction model chosen. We consider six questions
that arise in connection with this model: (1) When
does a button is inserted into a trace: when it is pressed
and/or when the LTS implementation executes a tran�
sition by a button? (2) Why does pressing a button
block observations? (3) Why the operator should be
able to press a button sufficiently quickly after obtain�
ing a trace? (4) Why pressing a button does not block
τ�activity? (5) Why pressing a button blocks diver�
gence, i.e., why it allows only finite τ�activity? and (6)
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Why a transition by every button is defined in every
state of implementation?

8.1. When Is a Button Inserted into a Trace?

Pressing a button is executed by the operator of the
testing machine, and, at this moment, he knows what
trace is already obtained. Therefore, there is no reason
why the operator should not notice the fact that he
pressed a given button after the observation of a given
trace. On the other hand, the behavior of the imple�
mentation generally depends on the trace after which
the operator presses a button. Therefore, in any case,
when a button is pressed, the implementation is
inserted into a trace.

If, when the LTS implementation executes a tran�
sition by a button p, the button p also appears on the
screen, then this is similar to the situation when, while
the implementation executes a transition by observa�
tion, this observation is displayed on the screen. This
means that the execution of a transition by the button
p is in fact an observation, whose appearance in a trace
is denoted by p' to distinguish it from p, which means
pressing the button p.

In principle, such an observation is no different
from other observations; therefore, the operation
mode with an observable transition by a button can be
considered as a particular case of the general model of
interaction. In order to reproduce such an operation
mode in this model, it suffices to replace every transi�

tion s  t by a button in the LTS implementation by
two transitions by introducing an additional interme�

diate state: s  s'  t.

8.2. Why Does Pressing a Button Block Observations?

If pressing a button does not block observations,
then additional dependence between implementation
traces (and, hence, between errors) arises. Let us
explain this by an example. Suppose that, during inter�
action with an implementation, one can observe a
trace up, where u is an observation and p is a button.
Then, since one observes the trace up, one also
observes its prefix—the trace u. If the operator presses
the button p before the observation u but observations
are not blocked by this pressing, then the implementa�
tion can anyway execute a transition by u. Therefore,
one observes the trace pu. Hence, if one can observe
the trace up during interaction with the implementa�
tion, then one can also observe the trace pu.

In the interaction model chosen, there is no such
additional dependence between traces. At the same
time, the operation mode with missing blocking of
observations under pressing a button is easily simu�
lated in our model. To this end, it suffices to systemat�
ically perform the following transformation of the
implementation, while this is possible: if there are

p

p p'

transitions s  sp, s  t, and t  tp in the imple�

mentation, we add a transition sp  tp. Thus, if, in the
state s, a trace up starts that ends in the state tp, then there
also is a trace pu that ends in the same state.

Thus, the interaction model with blocking of
observations under pressing a button is a more general
model. The class of all implementations for a model
without blocking corresponds to a subclass of imple�
mentations, obtained by the above�described proce�
dure, for a model with blocking. Just as in the general
case, such a restriction of the class of implementations
gives rise to dependences between implementation
traces (in particular, between errors).

Moreover, the blocking of observations is a conse�
quence of the priority of a test action over observa�
tions. This priority is needed in order that one could
simulate the behavior of systems with priorities, in
particular, to interrupt a chain of external actions by
the command cancel.

8.3. Why the Operator Should Quickly Press Buttons?

First of all, notice that we proceed from the basic
assumption of τ�activity: the implementation can have
τ�activity before or after any observation, as well as
before or after any transition by a button. It is clear
that any constraints imposed on the τ�activity could
only restrict the class of implementations considered,
which would give rise to additional dependences
between errors. The presence of τ�activity does not yet
mean that it should certainly manifest itself; however,
it is naturally assumed that it manifests itself at least for
some interaction. Naturally, a τ�activity may manifest
itself when no button is pressed. In the next subsec�
tion, we will consider whether or not pressing a button
blocks the τ�activity.

In addition we want that any reachable transition in
the LTS implementation could be executed under
some or other interaction with this implementation
(depending on the behavior of the operator and
weather conditions that simulate the nondeterministic
behavior of the implementation). If this is not the case
and some transition is not executed for any interac�
tion, then this is equivalent to the absence of this tran�
sition in the implementation. This, in turn, leads to
the restriction of the class of implementations consid�
ered, which is also fraught with the rise of additional
dependences between errors. Only safety hypotheses
prohibit the execution of some “unsafe” transitions in
the implementation; however, as we have considered
above, this also leads to the restriction of the class of
implementations and may give rise to additional
dependences between errors.

Why do we require that the operator be able to press
buttons sufficiently quickly after obtaining a trace,
although he should not do this always? If the operator
cannot press a button sufficiently quickly after a trace,
then the implementation can have time for executing

p u p

u
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one or several τ�transitions after this trace. Hence, a
transition by a button that starts in the state before
these τ�transitions will never be executed.

8.4. Why Pressing a Button Does not Block τ�Activity?

Here we again proceed from the requirement of
executability of every reachable transition. If pressing
a button blocks τ�activity, then, in order that the
implementation could execute a certain chain of
τ�transitions (and, after them, a transition by a but�
ton), the operator should not press a button until this
chain is executed and should press the button immedi�
ately after the execution of this chain. Since the
τ�activity is unobservable, the operator should just
wait for some period of time before pressing a button.
Thus quite nontrivial requirements are made to the
operator concerning the efficiency of his work: after
obtaining a trace, he should sustain a pause before
pressing a button; in general, the duration of this pause
should be arbitrary in different testing sessions.

Instead, we have chosen a variant when pressing a
button does not block the τ�activity. Then a single
requirement is made to the operator, which was con�
sidered in the previous subsection: the operator should
be able to press a button sufficiently quickly after
obtaining a trace, although he should not do this
always. The implementation will have a choice: to exe�
cute either a τ�transition or a transition by a pressed
button. As usual, this choice is nondeterministic and is
determined by weather conditions.

8.5. Why Pressing a Button Does not Block Divergence?

Although pressing a button does not block τ�activ�
ity, it allows only a finite τ�activity, i.e., it allows one to
execute only a finite number of τ�transitions. Thus,
pressing a button blocks divergence. This is necessary
to implement “exit from divergence, i.e., the priority
of a test action over divergence.

8.6. Why A Transition by Every Button Is Define
in Each State of Implementation?

Until now we assumed that a transition by a button
is defined in each state of the LTS implementation (by
default, the absence of such a transition is interpreted
as the presence of a loop transition). In fact, this
requirement is not too essential; if we omit it, this will
affect only the execution condition of τ�activity under a
pressed button. The new condition is as follows: the
implementation may execute no transition by a pressed
button p only if, after a finite number of τ�transitions,
it will move infinitely along an infinite τ�path that
passes only through those states where there are no
transitions by the button p. Otherwise the implemen�
tation executes a finite number of τ�transition and
then a transition by the button p.

An LTS implementation in which transitions by
buttons are not defined in all states can be simulated by
an LTS in which such transitions exist in all states.
To this end, the following changes are made in the
original LTS implementation.

1. If a transition by the button p is missing in the
stable state s, then a deadlock arises: the implementa�
tion cannot execute a transition by p or a τ�transition
because there are no such transitions and cannot exe�
cute a transition by observation because such transi�
tions are blocked by the pressed button p and can be
unblocked only after a transition by p. Outwardly (for
the operator of the testing machine), such a deadlock
looks like the absence of observations. One can exit
from such a deadlock by pressing a different button, by
which there is a transition in the stable state s. In our
model, this is implemented by adding a transition

s  s' leading to a new state s' in which loop transi�

tions s'  s' are defined by all the buttons q by which
there are no transitions from the state s, as well as tran�
sitions by buttons by which there are transitions from
the state s that lead to the same state to which they lead

from the state s: a transition sp  t is executed when

there is a transition s  t.

2. If there is no transition by the button p in an
unstable state s in which an infinite τ�path does not
start that passes only a finite number of times through
the states in which there is a transition by the button p,
then some transition by p will be executed after a finite
number of τ�transitions. It suffices to add an arbitrary

transition s  t ' if the state t can be reached from the
state s by τ�transitions and there is (or is added by the

first change) a transition t  t '.

3. If a transition by the button p is missing in a
divergent state s in which an infinite τ�path starts that
passes only a finite number of times through the states
in which there is a transition by the button p, then it is
possible that the implementation will pass precisely
through this infinite path. In this case, no transition by
p may be executed, and transitions by observations
remain blocked. Outwardly (for the operator of the
testing machine), such divergence looks like the
absence of observations. One can exit from such diver�
gence by pressing another button for which the condi�
tion of this subsection is not fulfilled. This is com�
pletely analogous to Subsection 1: when simulating in
our model, the same changes in the implementation
are valid that are described in the first change.
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