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Abstract

The problem of search efficiency through large
amount of text data is well-known problem in
computer science. We would like to introduce a
BST data structure that allows searches through
a set of string values, and is optimized for read-
ing and writing large blocks of data. This paper
describes the algorithms for insertion, deletion
and search of variable-length strings in disk-
resident trie structures. This data structure is
used for value indexes on XML data. We also
compare our implementation with existing B+
tree implementation and show that our structure
occupies several times less space with the same
search efficiency.

1 Introduction
The problem of developing data structures that provide
basic dictionary operations (insert, deletion and lookup)
and is optimized for disk storage has been investigated in
computer science for a long time but remains very impor-
tant. This work describes a new disk-resident data struc-
ture BST that stores a set of string keys and algorithms
for insertion, deletion and search for this structure. Also
we compare the existing implementation of B+ tree with
our novel approach within Sedna XML DBMS [8, 18]
and show that the latter has an opportunity for significant
economy of disk space providing the same search time
as B+ tree.

Our structure has been developed for use as a value in-
dex backend in Sedna XML DBMS. Sedna XML DMBS
has native support for value indices on nodes and it has
the following requirements to the structures used for in-
dex management:

1. Structure must provide the ability to store keys of
unlimited length. For example, URI’s can be very
large in practice.

2. Structure must implement the concept of multimap
abstract data type. An index for an XML document
in Sedna may have duplicate (key, value) pairs.

2 Review of existing solutions
Most common data structures for implementaing
database index are B-tree[3] and its variants[4, 19, 13].
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B-trees are widely used in modern databases for index-
ing [6]. Storing the keys of arbitrary length in B-trees
is possible however causes implementation problems. It
is difficult to implement the efficient storage of variable
length keys. In practice usually only a limited part of the
key is stored in the tree node, and the remainder is stored
in separate overflow pages[2, 16]. This approach is quite
effective if the keys are short or differ only in first char-
acters.

The other problem arises if one key corresponds to a
set of different value nodes; it is difficult to implement an
efficient search by key/value pair. Most of B-tree imple-
mentations do not provide an ability to store such mul-
timaps. At the same time our indexes may have duplicate
key/value pairs. To be able to store identical logical1 keys
the concatenation of key/value pairs is usually used as a
physical key.

This article describes an index implementation for
disk-resident usage that fits our requirements. It can be
shown as an extension of a data structure known as a
trie[5] which is also called prefix tree.

The idea of using prefix trees as a replacement for B-
trees has already been discussed in other works. A mod-
ified B-tree, called S(b)-tree [7], stores a binary Patri-
cia[17] tree in its nodes. The feature of S(b)-tree is that
nodes do not store a key itself, but the number of bits
passed during the comparison. During the search for the
string you may have to compare this string with the string
stored in external memory. However, such a comparison
is not a big problem in itself. The problem is to store all
string keys in a separate location. S(b)-tree is presented
as a data structure to support full-text index and it is good
enough for this task[12].

The B-trie[1] is very similar to our approach. The ba-
sis of this work was the implementation of a prefix tree
that provides efficient usage of CPU cache [9]. Both
structures propose effective partition of the prefix tree
into blocks (buckets). But in our work we do not use
stored supplementary data structures and provide more
effective strategy to keep the blocks filled.

In addition, there are quite simple implementations of
similar data structures, i.e. Index Fabric[14], which is a
B-tree with keys stored in a prefix tree in internal nodes.

3 Building the structure
In this paper we introduce a prefix tree based data struc-
ture which is optimized for reading and writing large

1Here the physical key is the key that is actually used in comparison
and search. Logical key refers to a key that is passed to index system
interface.



blocks of data. We call our structure the Block String
Trie or BST. Let the set of stored strings be denoted by
K = {s1, s2, . . . , sn}. The basic operations for our
structure are defined as follows:

1. Insert string s to the set K.

2. Find all the strings with the prefix s in the set K.

3. Remove string s from the set K.

Such structure implements a set abstract data type but
not a map. Now we specify how exactly we store the
(key,value) pairs in our data structure. Each pair can be
represented as s = k + c + v (we call it physical key),
where k is a key (or logical key), v is string representa-
tion of a value, and c is a symbol that is absent in the
alphabet that k is built of 2. To find all (key,value) pairs,
that correspond to a given key k we look for all strings
prefixed with k + c. Thus the dictionary problem can be
solved using the introduced data structure.

3.1 Prefix tree

Our data structure is a rooted tree T which stores a set K
of strings. The structure is as follows:

1. Each vertex x of tree T has the following properties:

(a) A prefix prefix(x) is a string which may have
zero length.

(b) An array E(x) of n(x) exiting edges ordered
in lexicographic order of characters c(e) they
are labeled with.

(c) Auxiliary flags (will be described as they ap-
pear further in text).

2. Each edge e = (x, Li(x)). Li(x) is a node, pointed
by i-th edge from the array E(x). Each edge is la-
beled with character c(e). In this case we consider
a character the string of the length of one.

3. Any path S(x1, xn) = x1e1x2e2 . . . en−1xn in the
tree is string s, obtained from the path S(x1, xn)
by concatenating its substrings s = prefix(x1) +
c(e1) + prefix(x2) + c(e2) + · · · + c(en−1) +
prefix(xn). We also introduce the flag final(x),
that shows whether a node has a corresponding
key from the set K. Thus the string s defined by
S(x1, xn) belongs to the set of strings K if and only
if the vertex xn is labeled with flag final(xn).

The last property implies that a set K may have more
than one corresponding tree T . To build a tree T ′ that
represents the same set as tree T we can add vertex x′

with an arbitrary prefix and not marked as final(x′).
Both trees T and T ′ will represent the same set of strings
K. Thus it seems reasonable to introduce an additional
condition, which covers such situations:

4. Each vertex x ∈ T , is such that n(x) ≤ 1, is marked
as final(x). A tree that satisfies that condition is
called minimal. Each vertex x that satisfies (doesn’t
satisfy) the condition n(x) ≤ 1 ⇒ final(x) is
called important (redundant).

2For text strings, we use null character.

If this condition holds, the set K uniquely defines a tree
T .

Theorem. Any non-empty set of strings K defines one
tree T and the one tree only for which the conditions 1–4
holds.

Proof. Let us assume that this statement does not hold
and the set of strings K does not define the single tree T .
This may happen in two cases: the set of strings K does
not define any tree at all, or the set K defines more than
one tree. We are not going to consider the first case, as
any non-empty set K defines at least one tree construc-
tion procedure.

Let us assume that the set of strings K defines more
than one tree T that satisfies the conditions 1–4. Con-
sider two trees which corresponds to a set K. That means
that there is a string k ∈ K that has paths S(x1

1, x
1
n) and

S(x2
1, x

2
m) in trees T and T ′ respectively, such as:

k = prefix(x1
1) + c(e11) + prefix(x1

2) +

+c(e12) + · · ·+ c(e1n−1) + prefix(x1
n) =

= prefix(x2
1) + c(e21) + prefix(x2

2) +

+c(e22) + · · ·+ c(e2m−1) + prefix(x2
m)

The fact that trees differ means either of the following:

1. In trees T and T ′, there are vertices x1
i and x2

i , such
that prefix(x1

i ) 6= prefix(x2
i ).

2. In trees T and T ′, there are edges e1i and e2i such
that c(e1i ) 6= c(e2i ).

3. In trees T and T ′, there are vertices x1
i and x2

i , such
that one vertex has the flag final(x

1|2
i ), while the

other does not.

First two cases contradict the definition of our tree and
the third case is in conflict with the condition 4. That
means that trees T and T ′ are equal, hence there is only
one tree, corresponding to the set K.

We consider only minimal trees in further sections un-
less stated otherwise. However the condition (4) is not
required in the implementation of the structure and may
be not held if lazy removal technique is implemented.

3.2 Block separation

The structure described in the previous section is de-
signed primarily for storage and retrieval of strings in
memory. But we require the structure, that can be stored
in external memory and our algorithms should effectively
operate with reading and writing blocks of the fixed size.

First of all we introduce a special type of vertex that
does not store the prefix and links to other vertices and
keeps only a reference to a node located in another block.
We call such vertices reference nodes and we mark them
with the service flag external(x). It should be noted that
the nodes that are referenced by a reference vertices, can
not be reference nodes themselves.

In addition we introduce the notion of twig.
A twig is a rooted tree B such that all leaf vertices are

marked as either final(x) or external(x). If a tree T
has no reference nodes it consists of a single twig.



Figure 1: BST example without blocks

The concept of twig is a key for the problem of divid-
ing BST into blocks. Every tree T can be divided into
twigs by inserting a new reference node before any other
node. Twigs

Blocks consist of the constant amount bytes W 3. The
distribution of twigs into blocks is organized in such a
way that in one block one or more twigs from the initial
tree can be stored. All the twigs in one block have a
common direct ancestor. These conditions are necessary
to ensure that the locality of changes in the tree and for
block level locking. These conditions also imply that the
block containing the root node has no other twigs.

Figure 2: BST block separation example

3In the Sedna DBMS the default block size is 64KB.

3.3 Algorithms

3.3.1 Search

The search algorithm for the BST requires two input pa-
rameters: a pointer to r to the root node of the tree and
string k to be found. The algorithm BST−Search(r, k)
returns a node xn+1 which satisfies the following:

1. String s(xn) defined by path S(r, xn) is a prefix of
the string k or equals it if exists.

2. The search string k is a prefix of a string s(xn+1) or
equals it.

We define the relationship A ≤ B as follows: string A
is a prefix of B or equals it. Thus our requirements for
result may be expressed using the following inequality:
s(xn) ≤ k ≤ s(xn+1).

The search procedure starts from the root of the tree.
The function takes a pointer x to the root node and the
search string k, an intermediate result is stored in the
stack S. In addition there is also an auxiliary function
y = L(x, c) which returns node y which is pointed by
that edge of vertex x, which is marked with character c
(or NULL if there is no such an edge). This feature is im-
plemented using binary search algorithm and the edges
are stored in sorted array in our implementation. We also
introduce the function Cut(p, s) which returns a string,
that is produced by removing the prefix p from a string
s, so that p + Cut(p, s) = s. The search algorithm can
be written in compact form as follows:

BST-Search(x, k, S)
1: Push(S, x)
2: if external(x) then
3: Disk-Read(J(x))
4: return BST-Search(J(x), k, S)
5: end if
6: if not Is-Prefix(prefix(x), k)) then
7: if Is-Prefix(k, prefix(x)) then
8: return x
9: else

10: return NIL
11: end if
12: else
13: s← Cut(prefix(x), k)
14: if Empty(s) then
15: return x
16: else if L(x, s[1]) = NIL then
17: return NIL
18: else
19: return BST-Search(L(x, s[1]), Cut(s[1], s), S)
20: end if
21: end if

The search function returns node x such that all the
paths from the root to all possible leaf vertices which
contain node x define the strings prefixed by a search
string. The function returns NULL if there is no such a
node. We can find all strings prefixed by k traversing the
tree starting from node x.



3.3.2 Insertion

The insert operation begins with building the structure,
that describes the modifications we are going to make in
our tree. If some block on the way of our modifications
does not enough space for modifications to be made, the
block is split (this process is discussed in the next sub-
section) and the insertion process is invoked again.

The insert procedure starts with executing the BST −
Search(k, r, S) (where k is the string to be inserted)
method, but we need only the path S as result. Also
we will need three additional strings derived from path
S and string k: common, rest and key. We construct
these strings in the following way. First of all, we need
the string s′, that is the string that corresponds to S with
the last vertex’s prefix removed. From the definition of
search procedure it is obvious that this string is a prefix
of added string k or equals it. We also need the string k′

which is built from k by removing s′ from the beginning.
To build the string common common we take the great-
est common prefix of strings k′ and p = prefix(S[n]),
where S[n] is the last vertex of the path S. In turn the
strings rest and key are p and k′ with no prefix common
at the beginning respectively. The idea becomes clearer
if illustrated by the following scheme:

We consider five cases in our insertion procedure:

1. There are no nodes in the tree. In this case, we need
to allocate new page for a new node.

2. Rest and key are empty strings. In this case, it
is sufficient to mark the latest node of the path as
final (in case of a minimal tree it will already be
marked as final).

3. Key is an empty string, rest is non-empty. In this
case, we should split the final node of the path in
two parts. One of these parts contains the prefix
common and is marked as final.

4. Key is a non-empty string, rest is empty. In this
case, we need to add an extra node with the prefix
key that will be a child to the last node of the path.

5. Key and rest are non-empty strings. In this case,
the node xn is split into three ones, with prefixes
common, rest and key respectively, the last one is
marked as final.

The tricky part is related to splitting of a block on
steps 4 and 5. If the vertex which is being split is a leaf
node of a twig that has a descendant twig we create a
new vertex with a prefix key in a new twig. We need to
find a child twig which lies in a block which has more
free space left. In theory this is a very expensive op-
eration because it affects all the blocks that contain the
child twigs. The number of such blocks is not greater
than the number of children twigs. But in practice such
an approach is unacceptable since in addition to the com-
pactness of storage the number of blocks being accessed
should also be minimized. There is a compromise that al-
lows to meet both requirements in practice: we limit the
number of blocks accessed by some constant D (in our
implementation D = 2 ). If none of the D blocks have
enough space for the new vertex to be added, the block

splitting procedure starts and after that the insert proce-
dure should be executed again. By mean of this approach
we will access not more than D+2 blocks (excluding the
possible block splitting).

3.3.3 Block splitting

One of the distinguishing features of BST compared to
B-trees is that the BST tree is not balanced. As we have
proven earlier1 T is uniquely determined by the set K
of stored strings so we can not decrease the height of
the tree. Nevertheless there are studies that show that
unbalanced tree affect the performance very little ([12]).
The height of BST is the height of its twigs which must
be read to find given prefix in the worst case.

The procedure of new space allocation performs the
splitting of the block and is called only in case the block
doesn’t have enough space to insert a new vertex. We use
two different strategies for block splitting.

The first strategy makes the blocks grow in “width”
and doesn’t affect the height of the tree so it is more
preferable. The algorithm handles the situation when
one block contains several twigs. In this case we divide
twigs contained in block into two sets P1 and P2 such
that |

∑
w∈P1

w(B)−
∑

w∈P2
w(B)| is minimal over all

possible partitions P1 and P2. Thus these sets must sep-
arate twigs contained in the block to about half of their
total size. One of these sets remains in its original block,
and a second set is moved to the new block. This al-
gorithm affects exactly three blocks — one block that
contains the parent node (this is a significant fact, which
will play a role in calculating the total number of units
affected by the separation.) and two blocks containing
the twigs (old and new).

The second strategy is used in case the block where
the vertex is added to has only one twig and there is still
not enough space. In this case we are looking for the first
node x starting from the root of the twig which has N >
1 links. This node has N child nodes that will be the
roots of N new twigs. Next, we move all nodes from the
root to x to the a parent twig contained in another block4.
Next, we split the remaining N resulting twigs using the
first split strategy. If the initial twig is the root of the tree,
then the set of nodes is not transferred to the block that
contains an parent vertex node (since it does not exist)
but into the new block. This is the only case when the tree
grows in height. This algorithm accesses exactly three
blocks; one of these blocks contains the ancestor twig
and two blocks contain the newly created twigs.

So the only case left to handle is the one when the
block contains only one twig, and the first algorithm is
applicable and at the same time in the block containing
the branch of an ancestor there is not enough space to
move the set of nodes of the twigs contained in the block
that we are trying to separate.

While looking for a key during the insertion process,
we build a path to the vertex which is going to be split
during insertion. We collect some auxiliary data about
blocks on our way: how many twigs do these blocks con-
tain, how much space is occupied by the root nodes, how
much free space do these blocks have, etc. It is very im-

4Strictly speaking there is no guarantee that the block that contains
a parent twig has enough room to accept this set of nodes.



pref(x1) + c1 + · · ·+ pref(xn−1) cn−1 prefix(xn)︷ ︸︸ ︷
s brownfoxjumpsoverala z y︸︷︷︸ dog︸ ︷︷ ︸

common rest

k brownfoxjumpsoverala z
︷︸︸︷
y gopher︸ ︷︷ ︸

key

Figure 3: Example for insert

portant to note that we do not evaluate this data every
time. It is stored in a block header and is updated only
when the block is being changed.

With all this information collected we build the block
splitting sequence starting from the block we need to in-
sert new vertex to. The number of accessed blocks to
2h+ 1 in worst case where h is the height of the tree.

3.3.4 Deletion

Following the example of most papers on B-trees, we in-
troduce an operation of lazy removal[10]. This approach
is widely applied to the database systems because the
procedure for the deletion of the element from the B-
tree can be even trickier than the insert procedure. Lazy
removal allows to significantly accelerate updates on the
database.

In the developed structure delete is simply removing
the flag final from the vertex, that corresponds to the
string we are looking for. Thus after the removal of the
vertex we have the redundant vertex and consequently a
non-minimal tree. This approach requires a procedure to
minimize the tree (or a separate twig). We remove all
redundant vertices, which in turn are of two types:

1. Vertices that are not marked as final and have no
outgoing edges. These nodes can be simply re-
moved.

2. Vertices that are not marked as final and have ex-
actly one outgoing edge. In this case it is enough to
merge the nodes with the concatenation of prefix+
edgecharacter + prefix.

After this procedure is applied there are no redun-
dant nodes remaining. It may also happen that some
twigs have no nodes or only a single external-node re-
mains. Such twigs must be removed and the child twigs
are propagaded. In some cases this may require splitting
of the block.

Thus minimizing the procedure for one twig may ac-
cess 4 blocks in the worst case: 3 blocks by separation
procedure of the original block and 1 block containing
the descendant twig may be accessed.

3.4 Tests and results

Tests were performed within Sedna DBMS. All the
tests were made on loaded DBLP Computer Science
Bibliography[11] using B+ tree structure and BST both
implemented in Sedna for handling indexes. Requests
for the construction of the index are as follows:

For B+ tree:

> create index "urlbtree[1]"
on doc("dblp.xml")/dblp/*
by ./url as xs:string
using "btree"&

For BST:

> create index "urlbstrie[1]"
on doc("dblp.xml")/dblp/*
by ./url as xs:string
using "bstrie"&

In our tests we measure space occupied by the same
indexes for both structures, the time needed for updates
and search time. Indexes were created on publications
by their identifiers, URI and EE field. The total number
of indexed publications is about 3 million. However we
show here only the space occupied by index, because the
search time is almost the same for both types of trees.

Distinct Key volume BST B-tree
values Kb Kb Kb

key 2 989 811 59 337 98 752 106 432
url 1 915 933 72 828 81 984 103 296
ee 1 667 275 74 975 53 440 101 248

Table 1: Comparison between BST and B+ tree

As one can see, BST can archive even significant data
compression, while times of search and update are al-
most the same for both structures.

3.5 Conclusion

We have introduced a new trie structure that effectively
solves the dictionary problem for strings of unlimited
length and operates with large blocks of data.

Structure is implemented and is ready to use within
Sedna XML DBMS[15]. The code is open source under
Apache license and is available on the project site.

Tests show that the structure is well suited for use with
indexes on fields that contain URI or strings which may
contain the same prefixes. The BST structure also shows
good results in the general case.
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