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Abstract. Cluster structure is one of the main features of social graphs.
Many algorithms have been proposed in recent years that are capable of
revealing fuzzy communities. But a lot of them tend to degrade in some
special cases, for example when nodes assigned to more than two groups.
Taking into account that such highly overlapping membership is rather
common for many social networks, it becomes obvious that there is a
need for flexible techniques and detecting the scope of their effective
applicability for various network configuration parameters. This article
focuses on the resistance to cluster’s growth intersection with emphasis
on local fitness function’s optimization. The testing of the modern fuzzy
clustering methods and generalized classical approaches is performed.
Depending on the scale of fuzziness the conclusion is provided about the
applicability of certain algorithm classes with common methodology and
their representatives.

Keywords: community detection, fuzzy clustering, social networks, so-
cial graph mining, local optimization

1 Introduction

Networks are natural representations of various complex systems from society,
biology, engineering and other fields. The set of networks is characterized by
mesoscopic organisational level inside groups of vertices, which comprise units
with a big number of links. Such units are referred to as clusters (or communities
or modules).

The universal definition of community partition is stated here only in a qual-
itative form. It is due to a big variety of formal community detection problem
statements and different final goals in particular applications. So far, the problem
of partition quality estimation appears to be non-trivial.

In the recent years this research domain has been focused on social and natu-
ral networks, whose internal structure cannot be detected by classical clustering
algorithms. In these areas analogues of communities are the lists of friends and
subscribers, friends circles in Google+ and some social interest groups.

One can figure out several applications of useful information obtained from
the network partitioning into communities: system functional units detection;
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identification of the community vertices similarity; vertices from a community
can be classified in accordance with their position (leaders, linking ones and so
on); convenient method of system visualization; vertices’ attributes learning on
the basis of general attributes of communities which include them. Furthermore,
one can specify several methods of machine learning: classification, recommen-
dation, prediction, filtration of non-typical elements (where case division into
modular units is a sub-problem). In addition, it’s appropriate to mention issues
of optimal storage, placement and compression of data; analysis of information
distribution; influence inside the global networks.

In spite of the applied problems variety, let us sort out the most general
requirements to the methods. Here we also regard some important features of
social networks structure.

– The vertex could be found in more than one communities with various de-
grees of belonging (fuzzy clusters) [2-10,24,27]

– Communities may have a hierarchical structure [4,6,8,11,22,24] that is re-
quired for the efficient management in large-scale organizations, and its pres-
ence stresses the stability of the system [12].

– In addition high density of edges doesn’t indicate the cluster. Therefore, in
order to cut-off ”pseudo-communities” a probability of a particular subgraph
configuration (”statistical significance”) is calculated, under assumption of
random edges distribution hypothesis (for the given values of vertices degree)
[9,13]. For this purpose it makes sense to look for ”significant” subgraphs by
taking into account weak links [8]. The link (edge) between nodes assumed
to be weak if it is not a part of a triangle.

– In some cases (such as for defining attributes of vertices) one need to manipu-
late vertices and edges with additional parameters [1,2,14]. But the majority
of current algorithms take only one input parameter like weight of a link.

– While searching for implicit individual user communities (circles of friends,
egomunities) the execution time and access to graph structure are often
limited. Usually in such a case only second friends’ neighborhood is known.

– One may also put an additional problem of studying the community dy-
namics [15].

This article focuses on identifying overlapping communities in large networks
(n = 108,m ∼ n ) with a high coefficient of intersection (r ∼ 10). Here P is a
set of communities G = (E, V ),m = |E|, n = |V |, r =

∑
|P i|/n. These charac-

teristics are inherent for many real networks. In the Fig.1 one could find more
specific communities settings as a vertexes degree function in social Facebook’s
subgraphs.

We are going to discuss a variety of modern algorithms that is initially char-
acterized by the ability to identify fuzzy communities. In addition, several uni-
versal generalizations of classical algorithms will be proposed for the case of
graphs with overlapping clusters. The first purpose of this research is to deter-
mine of algorithm classes in accordance with their basic ideas. The second aim
is to identify the most relevant methods of fuzzy (overlapping) clustering and
ways to assess the quality of graph partition.
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Fig. 1. Social network properties. Coefficient of intersection in Facebook’s subgraphs.
Shows dependence of communities count that includes node and number of its neigh-
bors. Right column illustrates amount of vertices in the point with certain color.

2 Graph clustering methods overview

Considered clustering methods is divided into classes according to the generality
of underlying principles and specification of community definition.

2.1 Null graph model

In methods within this class the given configuration of edges is compared with
their uniform distribution for each vertex in graph. For this reason one should use
a probabilistic graph model (null model). In its definition the expectation of the
nodes degree is fixed. Follows the edge existence probability (i,j) is defined as a

composition of node’s degrees divided by the doubled count of edges: Pij =
kikj
2m .

The classic variant here is to maximize the target modularity function and
its modifications [16-21], that characterize sum of differences between the total
number of edges in the community and its mathematical expectation:

Q =
1

2m

∑
c∈P

∑
i,j∈c

[Aij − Pr(Aij = 1)],

where P - communities set, A - adjacency matrix.
Similarly, instead of edges triangles and more larger cliques could be taken

into account. Considering that a link between vertices is weak if it is not a trian-
gle’s edge, the community is optimized to increase amount of internal triangles.
At the same time the count of adjacent triangles that have exactly two nodes
inside the community should be reduced [8,20].
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Originally modularity measure was introduced to describe disjoint partitions,
but there are some generalizations for the case of overlapped communities [17,21].
Additionally it is worth mentioning its quantum-mechanical modification [18,19],
that allows to improve the resolution limit and to give it an energetic sense. So
it becomes a hamiltonian for a set of particles with various spin values (spinglass
[19] ).

A more common approach is the detection of “significant” clusters. In this
case algorithms tend to include in each module those nodes that are most
strongly connected to each other. Such cluster type should have a low prob-
ability of gathering better interacted users according to random graph model.
But due to correlations it is rather complicated to calculate the statistics of the
internal connections. Really it is more practical to fix inner community structure
and calculate the statistics for the external vertices. This inform us of how much
of users for some group are compatible with the null model distribution (oslom)
[9].

Alternatively one could define probability of link existence to be proportional
to the number of communities to which the link belongs (moses) [5] and then
find the maximum likelihood. This model doesn’t account for node degree dis-
tribution.So it leads to worse results in some cases but it is rather stable in
implementations with high fuzziness.

2.2 Random walks

Here we have three most common methods.
infomap [10,22]: In this case, the clusters are formed to minimize the descrip-

tion length of a random walk in the graph. One of the code length’s estimators
is entropy that is widely used in various information theory branches. Based on
it, [22] propose to consider the following function as a partition quality measure:

L(P ) = qH(Q) +
∑
i

piH(Pi),

where q - probability that the random walker switches module, pi- fraction of
within module movements, H(Q)- entropy of module names, H(P i)- entropy of
inner module movements including its exit code, i - module number.

walktrap [23]: Here the formation of communities is based on the following
proposition: Let the vertices i, j belong to the same cluster, then

Pr(k → i, t) ≈ Pr(k → j, t) for all k ∈ V , where Pr - transition matrix from
a random walk process.

betweenness [9]: Using the measure called ”betweenness” on the set of edges
(the higher runs count along the edge during a random walk, the greater is
measure value). Edges with a high ”betweenness” are naturally considered as
links between communities (conga, GN ) [3].

2.3 Local expansion

In a local study and formation of the cluster is generally considered the ratio be-
tween the amount of interior edges or triangles and the exterior ones (cohesion
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[8], GCE [7]). In some approaches link density is additionally compared with
its possible maximum. And all such optimizations are usually done disregard-
ing the rest of the graph structure. So the distinguishing feature of this class
is an iterative addition of new nodes to the cluster and removal of the existing
ones independently of any other clusters. Communities can also be formed on
the basis of similarity to a complete graph or a set of connected cliques with
different sizes (CFinder, GCE ) [7]. Besides that, above-mentioned ”statistical
significance” can be used as a local characteristic of similarity between a sub-
graph and real community. There is also a set of methods in this section which
allow independent subgraphs detection to provide high-value influence of ver-
tices within the module (moduland [6]). For this class methods a selection of
intersecting communities is rather natural, but at the other hand there are some
difficulties with the subsequent formation of the final partition in the graph.

2.4 Agent based model

In this case an epidemic process is generated that usually represent a speakers-
listener model (copra [3], slpa [27]). During the execution we should fix a listener
node and start gathering information from each of its neighbours. So every such
node could save recommendations per each module from received messages. After
that it could give an advice to others basing on obtained experience. Here we
don’t have to define any functional for community, we only spread labels between
nodes according to pairwise interaction rules.

There are two types of execution of such epidemic process: synchronous and
asynchronous. Synchronous type is more preferable because it prevents monster
communities and is easily parallelized. But at the other side it may trigger oscil-
lation phenomenon which should be calmed down with colouring phase (linked
nodes get different colours and aren’t handled synchronously). .

2.5 Rn metric space

Another elegant approach is to assign coordinates to vertices in the graph [26].
Such coordinates are components of the eigenvectors for the normalized Lapla-
cian matrix L.

Lij =


1, i = j

− 1√
kikj

, i− edge− j

0, else

This method of clustering is very useful if one wants to take in account some
additional attributes of the vertices.

Summing up the review we can distinguish such methods as spinglass, in-
fomap, wolktrap that have the highest rates of Normalized Mutual Information
[24] (for the case of disjoint communities) with a relatively short execution time
and the possibility of parallel execution [25].
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3 Generalization methods in the case of overlapping
communities

Unfortunately, not all algorithms from the considered classes support fuzzy clus-
terization. That is why methods of their generalization are required.

3.1 Static

Using the measure of “betweenness“ on the set of nodes, one can divide each
vertex with high value into two ones connected by an edge. Thus after clustering
of the modified graph some user parts could be included into different modules
and consequently perform overlapping communities.

The alternative is a generation of line graphs (where edges are turned to
vertices and vertices are turned to zero or several edges) and successive edge
clustering.

3.2 Dynamic

Introducing membership coefficients for the vertices (which are equal to prob-
abilities of being the member of the particular community), one then assigns a
vertex to several classes simultaneously during the algorithm’s run. As a first ap-
proximation for the membership coefficient one can use the following functions:

– Individual contribution to increase of objective function:

Pr(Vi ∈ Pk) ∼ Q(Vi ∈ Pk)−Q(Pk\Vi) = 4Qik

– Probability of being at the particular energy level:

Pr(Vi ∈ Pk) = e−βQ(Vi∈Pk)/
∑
S

e−βQ(Vi∈PS),

where Q - objective function, - value that is inversely proportional to the
overlapping coefficient.

It worth noticing that introduction of membership coefficients often improves
partition into non-overlapping communities. The main idea here is that by set-
ting probabilities of vertex transition to other communities (staying with some
probability in the original one) we let other vertices know about their behaviour
tactics. Thereby the following expression can be used in order to set up the
coefficients in this case:

Pr(Vi ∈ Pk) ∼ 4Qik −min
h

(4Qih), Vi ∈ Ph

Pr(Vi ∈ Phmax) ∼ 0.1
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4 Implementation methods

Let us try sort out several implementation ways without binding ourselves to a
particular community detection algorithm.

1. Greedy algorithm (used by the majority of the algorithms mentioned above):
Originally each vertex is a community itself. Then at the each step of the
algorithm every vertex selects the communities to be appended to by com-
paring relative increases of objective function. A completion phase in this
implementation is a clustering of obtained modules, whose unions improve
final graph partition.

2. Central vertices: In this method one sets several central users. So the others
are gradually attached to them by selecting the closest cluster.

3. Recursive graph partition into two or more parts: In the beginning vertices
are randomly partitioned. Then those of them which give the maximal ob-
jective function increase are relocated.

4. In the case of local optimization one can recommend to apply the following
scheme:

Single-cluster analysis → Internal structure validation → Clusters consoli-
dation → Membership coefficient computation 	

At single-cluster analysis stage each community either gets new nodes or
loses those nodes weakly connected with the rest of vertices in the commu-
nity. So to reach an extremum in this process we should define a function
F (nin,min,mext, kin) depended on internal nodes count, internal and exter-
nal edges set, links between the community, and the considered node.

Also, one could use order statistics to work with ranks defined vertex-community
closeness. Then to optimize cluster structure one search for a minimum of
rank distribution value: min[Fq(rq)], where q - order number of rank. For
this purpose one of null graph models should be chosen (Girvan and Newman
[16] or Molloy and Reed [28], for example). If the first stage has a proba-
bilistic character it repeats several times. The final cluster contains those
vertices that appear to be included into the group more than fixed times.
The considered subgraph is significant cluster if the single-cluster analysis
yields a non-empty subgraph in more than definite percent of iterations.

At the following step of clusters consolidation we may unite some closely
located modules or divide them to more small parts. In this case the following
measures are usually used:

common nodes fraction:
|Pi∩Pj |

min(Pi,Pj)

edges density: dQ = (
∑
Aij − Exp(

∑
Aij)),

where Q - objective function, P - communities set, A - adjacency matrix.

Another way is to run a single-cluster analysis on the subgraph of two mod-
ules that are to be united or separated.
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5 Testing

LFM 1 benchmark algorithm is used as a generator of networks with overlapping
cluster structure. In order to investigate the algorithms performance for various
degree of community overlapping, two sets of test graphs with predefined par-
tition were generated. The following variables were given to the generator as
input parameters: n - number of nodes, k - vertex degree average, kmax - maxi-
mal value of vertex degree, |Pi| - number of nodes in a cluster, τ1 - value of the
exponent of power law distribution for vertex degree, τ2 - value of the exponent
of power law distribution |Pi|, µ - averaged normalized vertex degree inside par-
ent community, on - number of vertices owned by more than one community,
om - number of communities containing fixed vertex. Parameters of the graphs
from the first community differ by the ’om’ value, from the second community -
by the ’on’ value.

For a comparison of partitions obtained by different methods (Fig 2: fig.1,
fig.2, fig.4), let us introduce measure Normalized Mutual Information (Inorm)
[24] based on the following assumption: if two graph partitions are similar then
there is a little information required to obtain the first partition when the second
one is known.

I(X,Y ) = H(X)−H(X|Y )

Inorm(X,Y ) = 2I(X,Y )
H(X)+H(Y ) ,

where H - Shannon entropy
In addition to graph partitions from the first set, let us calculate modularity

generalized for fuzzy clustering.
From the results, one can conclude that for the case of considerable overlap-

ping only following methods show acceptable performance: oslom [9], moses
[5], gce [7], which are representatives of the local optimization class. In particu-
lar, first two of them prove the effectiveness of exploiting statistical significance
as an individual (local) characteristic of cluster structure. It is also worth to
notice the effectiveness of overlapping edge clusterization, that can be applied
to the networks of small and moderate size. For the networks of large size with
insignificant overlapping one can exploit methods of complexity no more than
O(nα), α ∈ [1, 2] - fuzzy infomap [10], gce [7], spinglass [18] generalization, slpa
[27].

Besides this, after analyzing plots of modularity values (Fig 2: fig3), its worth
to emphasize a discrepancy of NMI partition quality while increasing ’on’. There-
fore, modularity provides impartial partition estimate only if overlapping coeffi-
cient ’r’ is small.

We also have tested the same methods in local community detection task.
Our purpose here was to identify fractions of global network clusters that are the
friend circles. We deals only with the second area of the fixed central user, that is

1 http://sites.google.com/site/andrealancichinetti/files
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Fig. 2. Testing algorithms of overlapping community detection.
fig.1,fig.3: n = 2000, k = 15om, kmax = 45om, |Pi| ∈ [15, 60], τ1 = 2, τ2 = 0, µ =
0.2, on ∈ {0, 1000, 2000}, om ∈ {1, 1.5, 2, 3, ..., 9, 10}
fig.2: n = 1000, k = 20, kmax = 50, |Pi| ∈ [20, 100], τ1 = 2, τ2 = 1, µ = 0.3, on ∈
{0, 200, 400, ..., 1000}, om = 2
fig.4: n = 4000, k = max(3om, 10), kmax = 3k, |Pi| ∈ [20, 80], τ1 = 2, τ2 = 1, µ =
0.3, on = 800, om ∈ {2, 3, ..., 10}
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the graph information about friends and connections between them. Such kind
of local communities (egomunities) could be obtained from the corresponding
global ones generated the same way as mentioned above.

Fig. 3. Testing algorithms of user’s second neighborhood egomunity(local community)
detection. n ∈ [30, 250], |Pi| ∈ [7, 33], τ1 = 2, τ2 = 0, µ = 0.2, om = 6

In case of local tests attention is drawn to the instability of using ”statistical
significance” [9] with the small circles of friends. So here in some situations
(Fig.3) algorithms that do not use null graph model [16,28] work more efficiently:
cohesion [8]. On the other hand moses [5] utilizing alternative random graph
model is quite suitable in such cases. But if the size of the friends neighborhood
is rather large the methods similar to oslom [9] have higher NMI scores.
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6 Conclusion

In summary, several basic features of social and natural graphs were pointed
out and algorithms were divided into five classes. Also several different types of
their generalization were proposed, and main variants of their implementation
were provided. Artificially created networks were used to compare an applicabil-
ity of the most modern methods. We tested the methods with various network
generator parameters. The most effective ones were identified for the particular
overlapping coefficient values.

One of the plausible directions of further research is an investigation of weak
and strong features of the discussed algorithm classes depending on graph prop-
erties and application goals. Herewith all features of social networks mentioned
in the beginning of the paper will also be taken into account. In particular,
among considerable enough problems are: hierarchical structure detection and
methods of its assessment, clustering of graphs with attributes (ordered graphs
[14]) on a set of vertices and edges. The last is a task of the highest priority
for unknown attributes prediction. Also accumulation of the results of the con-
ducted experiments may possibly result in the development of supervised graph
analyser. It will determine at which parts of a graph it would be possible to
effectively apply a particular method.
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