
1 of 15

6/24/97 Marshalling

MARSHALLING IN DISTRIBUTED SYSTEMS:
TWO APPROACHES

K.V. Dyshlevoi, V.E. Kamensky, L.B. Solovskaya

In distributed system different modules can use different representations for the same
data. To exchange such data between modules, it is necessary to reformat the data.
This operation (calledmarshalling) needs some computer time and sometimes it is
most expensive part in network communication. The article discusses some problems
and concrete implementation examples of marshaling procedures.

1. INTRODUCTION

In general, modern computer systems are distributed systems. Such systems
are implemented as computer networks, whose components jointly use and
exchange data. To describe distributed systems at abstract level client-server
model can be used. In terms of this model, client makes invocation, containing
all necessary parameters, on server. Server receives the invocation, performs
needed actions and returns the results back. Parameters and results can be
exchanged between different platforms, which use their own data
representation. Platform means programming language and compiler too,
rather than hardware and operation system only.

Client and server can interact directly. In this case, they have to manage
request passing themselves, by their own protocol. To simplify and unify
client-server interaction some mediator-systems, such as ONC RPC, DCE
PRC, OMG CORBA, can be used.

Mediator-systems use some specific communication protocols and encoding
rules for data passing. There are some data coding standards, for example,
CDR, BER, NDR, XDR, and appropriate communication protocol, GIOP, OSI
RPC, ONC RPC, DCE RPC.

In this way, mediator performing client-server interaction, have to be able to
reformat data. The operation of data presentation conversion for further
network passing is known asmarshalling. They can say about marshaling for
passing data in network without restriction of the task. Just notice, that the task
of heterogeneous data conversion into a bit stream has appeared earlier and has
it’s own meaning.

So, “overhead expenses” for data marshalling are inevitable in distributed
systems. Marshalling can be the most expensive part in network
communication, particular, in LAN, when the time needed for network passing
itself is less than time needed for marshalling.

There are various approaches to increase the efficiency of marshalling. One
possible approach is an introduction of new encoding rules in order to reduce

2 of 15

ISP RAS common use

size of data passed in network and time needed for their marshalling [3].
Another approach is to realize fast encoding/decoding procedures by means of
a hardware encoder/decoder or by optimizing implementation of a software
encoder/decoder.

Two implementation techniques are commonly used for the marshalling
routines -interpreted code andcompiled code, which can be extended by
inline-substitutions. These techniques have a well-known trade-off between
code size and execution speed. Interpreted code is compact, but slow,
compiled code is fast, but memory-consuming.

To illustrate possibilities of interpreted and compiled techniques in sense of
marshalling implementation, a model language L is considered. It consists of
two basic types T1 and T2 and one complex typestruct,which resembles C
typestruct. User definedstruct types are recursive and can be of any depth.
There are examples of acceptable types -struct S1 {T1 f1; T2 f2} andstruct
S2{S1 d1; T1 d2}. Special typeTypeInfo describes internal structure of types,
coding subsequently their elements. Type T1 is coded by 1, type T2 - by 2. The
code of user defined types begins with 3, finishes with 0 and contains codes of
their elements. For example, code for type S1, declared above, is “3120” and
code for type S2 is “3312010”.

The simplest example of marshalling interpreter, which supports all types of
language L, is following:

typedef char * TypeInfo;
void interpr (TypeInfo &t, void *data) {

while (*t) {
switch (*t) {
case’1’:

put_T1(data);
((T1 *)data) ++;
t++;
break;

case ‘2’:
put_T2(data);
((T2 *)data) ++;
t++;
break;

case ‘3’:
interpr(++t, data);
break;

case ‘0’:
return;

}
}

}

3 of 15

6/24/97 Marshalling

To use compiled code for marshalling, it is necessary to generate individual
marshalling procedures for each user defined type. For example, marshalling
procedures for types S1 and S2 are the following:

put_S1 (S1 *data) {
put_T1 (&(data->f1));
put_T2 (&(data->f2));

}

put_S2 (S2 *data) {
put_S1 (&(data->d1));
put_T1 (&(data->d2));

}

The article introduces some concrete implementation examples of both
methods and comparison of their abilities on some benchmarks. Marshaling
procedures is considered in the context of Object Request Broker (ORB).

The rest of this paper is structed as follows: Section 2 proposes the notion of
marshalling in more details. Basic concepts of ORB technology are described
in Section 3. Section 4 and 5 give concrete examples of interpreted and
compiled code for marshalling, respectively. Results of experiments are
discussed in Section 6. Section 7 gives our conclusions and possible areas for
future research.

2. MARSHALLING

Marshalling is a data presentation conversion, performed according to special
rules, usually for network transfer. The following data presentation factors
have to be took into account to perform marshalling.

Different platforms use their own character formats (ASCII or EBCDIC),
integers and floats formats (IEEE, VAX, Cray, IBM). For example, the scheme
is acceptable - the native numeric representation is two's complement for
integers, ANSI/IEEE single/double for floats and also that characters are in
ISO Latin/1 (an ASCII superset addressing Western European characters).

Byte order is basically dependent on processor (Big Endian or Little Endian).
But some processors (MIPS, UltraSPARC, PowerPC) support different byte
orders as required for different software environments.

There are different alignment strategies. “Natural alignment” is a policy that
the processor controls the alignment of data based on its type. It means that the
data of basic types are located in memory from the boundaries divisible by
their size. Some CPUs have a maximum alignment requirement of two or four
bytes, others have some type-specific exceptions to the normal "alignment ==

4 of 15

ISP RAS common use

size" rule. “Fixed alignment” ignores data type when establishing alignment;
not all processors support such policies.

Also, realignment is required for the components of record or structure types,
since different CPU’s use different rules for positioning structures fields in
memory.

Linearization is required for data structures that are stored in non-contiguous
memory sections, such as dynamically allocated tree structures.

So, marshalling procedures have to have information on data format for
current platform, convert it into some standard format used for network
transfer, get data from network and be able to decode them back from standard
network format into this platform one. In this way, marshalling includes two
mutually reverse procedures - encode and decode.They have symmetrical
algorithms, whose differ just by basic primitives ‘put’ into and ‘get’ from some
buffer. But decode procedures are always more complex due to the
requirement for error-checking and some memory allocation. Further we shall
call those procedures marshalling and unmarshalling, respectively.

3. BASIC NOTIONS
3. 1. OBJECT REQUEST BROKER

Marshalling procedures are discussed in the context of Object Request Broker
(ORB) design. Also, we shall consider only object-oriented distributed
systems.

Some mediator is needed to allow a client to send a request to an object
implementation transparently. The transparency means independence of
platform (hardware, operating system, programming language) where the
object is resided. ORB plays the role of such mediator and provides
interoperability between applications on different machines in distributed
environments.

Main functions of ORB are:

- to find the object implementation for the request;
- to pack the request and it’s parameters, pass this message to object
implementation;
- to wait for the results, decode and return them back to client.

Additionally, ORB supports security, authorization, persistency and some
others services needed in distributed environments.

Usually, two ORBs take part in the interaction - client-side and server-side
broker. Client’s broker passes the request from client object to server and
received results. Vise verse, server-side ORB gets the request, passes it to the

5 of 15

6/24/97 Marshalling

object implementation and returns results. In general case, an object can be a
client and a server at the same time. So, client and server brokers are ORBs
with full functionality.

The ORB we are going to discuss and objects to be handled by this broker are
implemented in C++ language. The ORB supports OMG CORBA standard.

3. 2. OMG CORBA 2.0 STANDARD: IDL, GIOP, CDR

CORBA is a standard of ORB technology produced by OMG (Object
Management Group). OMG is aimed at design of open standards that provides
interoperability between object-oriented applications in distributed
environment. CORBA is a most popular development of this consortium. The
standard is supported by a lot of companies, e.g. DEC, HP, SunSoft Inc.

CORBA is based on the OMG object model. It is classical client-server model
that allow objects to interact by means of sending and receiving messages. It
is important to notice, that interfaces are separated from implementations and
object model defines interfaces only by means of IDL (Interface Definition
Language).

IDL serves to describe the interfaces that clients call and object
implementations provide in the particular programming languages
independent manner. An interface description consists of a set of named
operations and the parameters to those operations. Syntax of IDL is mapped
onto languages, that are used to implement client and server objects (these
languages may not coincide). Syntax of IDL resembles C++ language. IDL is
just a descriptive language, which does not contain operators.

IDL is a typed language. All types, available by IDL syntax, can be divided
into two groups - basic and constructed types. Basic types include signed and
unsigned integer types, floating-point types (IEEE single-precision and
double-precision floating point numbers), char type (represents the ISO Latin-
1 character set), boolean and some others types.Octet is a special 8-bit type
that is guaranteed not to undergo any conversion when transmitted by the
communication system.Interface is the main IDL type needed for object
descriptions. Interface body can contain operation, type, constant and some
other declarations. Constructed types involvestruct, union, array and
sequence types.Struct type is analogous of C struct type.Sequence andarray
types are the sequences of elements of one type variable and fixed length,
respectively. Semantic ofunion type resembles C union type expanded by case
descriptors.

CORBA describes protocol-level ORB interoperability too. GIOP (General
Inter-ORB Protocol) defines protocol of ORB interconnection, which can be
mapped onto any connection-oriented transport protocol. For example, there
is specific mapping of the GIOP which runs directly over TCP/IP connection,

6 of 15

ISP RAS common use

called the IIOP (Internet Inter-ORB Protocol). GIOP declares some additional
requirements needed to pass messages between ORBs. GIOP consists of
elements:

- CDR (Common Data Representation);
- GIOP message format;
- GIOP transport assumptions.

CDR is a transfer syntax mapping OMG IDL data types into a bicanonical low-
level representation used in the GIOP messages. CDR concerns the following
features:

- each GIOP message contains a flag that indicates the appropriate byte order;
- basic IDL data types are aligned on their natural boundaries within GIOP
messages;
- CDR describes representations for all IDL data types.

CDR specification is based on the notion ofoctet stream. Octet stream is an
abstract notion that typically corresponds to a memory buffer that is to be sent
to another process or machine.

4. MARSHALLING INTERPRETER
4. 1. TYPRCODE

Marshalling of the basic types is performed by means of set of basic
primitives. Also those primitives are used by marshalling procedures of
complex types. This implementation assumes that the native numeric
representation are:

- two’s complement for integers;
- ANSI/IEEE single/double for floats;
- ISO Latin/1 characters;
- alignment policy is the same for data of basic types and for the elements of
complex types; all compilers we know supports this strategy of alignment.

Also, it supports the five extended OMG-IDL data types, which provide richer
arithmetic types (64 bit integers, "quad precision" FP) and UNICODE-based
characters and strings. Those types are not standard parts of OMG-IDL at this
time.

So, basic primitive implementation uses the standard C/C++ representation for
data, and knows how to do things like align and pad according to standard
rules. Marshalling procedures for complex types are driven by CDR marshaled
representations of TypeCodes. TypeInfo from previous example is a simplest
analogue of TypeCode.

7 of 15

6/24/97 Marshalling

There are TypeCodes corresponded to each IDL type, basic and user-defined.
It contains all information about internal structure of type. Abstractly,
TypeCodes consist of a “kind” field, and a set of parameters appropriate for
this kind. CORBA definesinterface TypeCode andenum TCKind types in IDL.
Enumeration TCKind is a set of all possible TypeCode kinds, including basic
(tk_long, tk_float) and user-defined types (tk_struct, tk_sequence).

For each user-defined type TypeCode constants are usually generated by IDL
compiler according to appropriate IDL specification.

TypeCode implementation is a C++ class:

class TypeCode {
public:
// TypeCode kind
TCKind kind(Environment&) const;

// TypeCode equivalence;
// TC_ptr points to TypeCode constants
Boolean equal(TC_ptr, Environment&) const;
...
enum traverse_status {traverse_stop, traverse_continue};
traverse_status traverse(

const void *value; // data
void *context; // stream
...);

...
TypeCode (TCKind, unsigned char*, ...);
private:
Octet *_buffer;
TCKind *_kind;
...
}

The TypeCode class constructor is initialized by TCKind and char * constant
that describes elements of complex types by means of TypeCodes of those
elements. For example, to define TypeCode for IDL typestruct Foo {long l;
string s;} it is necessary to point out tk_struct and the following char buffer:

const unsigned char tc_Foo[] = {
0, 0, 0, 1,
0, 0, 0, 12, ‘I’, ‘D’, ‘L’, ‘:’, ‘F’, ‘o’, ‘o’, ‘:’, ‘1’, ‘.’, ‘0’, 0,
0, 0, 0, 4, ‘F’, ‘o’, ‘o’, 0, // type identifier
0, 0, 0, 2, // the number of fields
0, 0, 0, 2, ‘l’, 0, 0, 0, // field l TypeCode (tk_long)
0, 0, 0, 3,
0, 0, 0, 2, ‘s’, 0, 0, 0, // field s TypeCode (tk_string)

8 of 15

ISP RAS common use

0, 0, 0, 18,
0, 0, 0, 0
}

The method traverse() allow to "visit" each element of a data type in the order
those elements are defined in the type's IDL definition.

4. 2. INTERPRETER

CDR, octet stream and accept methods, implements as C++ class:

class CDR {
public:
...
// basic marshalling primitives
CORBA2::Boolean put_short(CORBA2::Short s);
inline CORBA2::Boolean put_ushort(CORBA2::Ushort s) {

return put_short((CORBA2::Short) s); }
...
CORBA2::Boolean get_short(CORBA2::Short &s);
inline CORBA2::Boolean get_ushort(CORBA2::Short &s) {

return get_short((CORBA2::Short) s); }
...
// marshalling interpreter
static CORBA2::TypeCode::traverse_status encoder(

CORBA2::TC_ptr tc, // TypeCode
const void *data, // data
const CDR *context, // octet stream
...);

static CORBA2::TypeCode::traverse_status decoder(...);
...
private:
unsigned char *buffer;
}

Marshalling is performed by means of CDR class methodsencoder()and
decoder(), based on TypeCode interpretation.

Methodencoder()is called with a data value, needed to transfer, appropriate
TypeCode and pointer to the current position in the octet stream. The algorithm
of the method is exactly the same as the interpreter in the introduction of the
paper. According to the TypeCode the type of data value is determined. If the
data value type is a basic type then appropriate basic primitive put data into the
buffer with alignment restrictions. Otherwise, marshalling interpreter
examines each of the constituents of complex data values. It does so by making
a call to TypeCode::traverse(), and passing itself for future recursive calls. This

9 of 15

6/24/97 Marshalling

"visit" function uses the interpreter's knowledge of the environment's size,
padding, and alignment rules.

There is a table supporting calculation of size and alignment requirements for
any one instance of a given data types. This is indexed via CDR’s TCKind
values, which are “frozen” as part of the CDR standard. Entries hold either the
size and alignment values for that data type, or a pointer to a function that is
used to calculate those values. Function pointers are normally needed only for
constructed types.

This table has system dependent parts, and so should be examined when
porting to new CPU architectures, compilers, and so forth. Issues of concern
are primarily that sizes and representations of CORBA primitive data types are
correct (key issues are verified when the ORB initializes) and that the
alignment rules are recognized.

The methoddecoder() performs the reverse actions and have the same
algorithms as encoder(), whose differ just by basic primitives ‘put’ into and
‘get’ from some buffer. As additional actions decode procedures performs
error-checking (e.g. fixed sequence size exceeding) and memory allocation for
some variable size data (e.g.sequence or string).

4. 3. ADVANTAGES AND SHORTCOMINGS OF THE METHOD

The main advantage of the marshalling interpreter is the compact and unified
code. As well, it can be said about interpreter technique itself. Interpreter of
TypeCode treats data values of any IDL types in the same way. It is important
to notice, that interpreter supports marshalling of the types that are not known
at compile time. But the TypeCodes of such types can be received from
network at run time.

TypeCodes have a number of uses. For example, they are used in the dynamic
invocation interface to indicate the types of the actual parameters. So, there
was no necessity to think of a new special structure to handle information on
types.

Basic primitives are implemented asinline-functions to reduce the execution
time. However, making marshalling code faster has the drawback of increasing
its code size. It can be not desirable for machines with memory size
constraints. So, an optimal way ofinline-substitution usage have to be found
[2].

Among the shortcomings of the marshalling interpreter we can point out that
it assumes the strict fixed structure of data as it is presented in TypeCode. And
if some compiler uses others rules for positioning structure’s fields in the
memory it could not be treated by interpreter correctly.

10 of 15

ISP RAS common use

The basic shortcoming that is faced by any method based on interpreter
technique, is a small execution speed. The loss of productivity is especially
noticeable while working with data of deep embedded constructed types due
to the mechanism of recursion. Compiled code can help to solve this problem.

5. COMPILED CODE FOR MARSHALLING
5.1. MARSHALLING PROCEDURES

It is obviously, that marshalling interpreter for data of a particular constructed
type always performs one and the same algorithm depending on this type. For
example, marshalling of anystruct type consists of consecutive marshalling of
all it’s fields in the order, described in the IDL specification.

So, we can use compiled marshalling procedures to marshall data of
constructed user defined types. Moreover these marshalling procedures can be
generated by an automatic tool from a formal IDL specification.

As it has been said above, IDL specification is mapped into particular
programming language (C++ in our case). For this purpose IDL compiler is
used. The compiler is aimed at the IDL input parsing and translating it into
target language, if no errors occur. The translation includes the mapping of
IDL types, constants and interfaces onto appropriate target language
structures. Also, for each type defined in IDL specification, compiler produces
a pair of procedures for marshalling and unmarshalling as well as a set of some
other associated procedures.

Marshalling procedures for basic types, containing information on size and
alignment requirements for any one instance of a given data types, coincide
with correspondent CDR methods that implement marshalling primitive.

For constructed types marshalling procedures are based on the procedures for
basic types and have embedded structure. In this way, invocation of needed
marshalling procedure performed by means of ordinary procedure call is
possible as well as it’sinline-substitution (not only for basic types as in
marshalling interpreter implementation). In our case,inline-substitutions are
used for compact marshalling methods (few C++ operators) only.

For example, marshalling procedures for typestruct Foo {long l; string s;} are
the following:

// encoder procedure
inline CORBA2::Boolean operator <<= (CDR &trg, const FOO &src) {

return (trg <<= src.l) && (trg <<= src.s); }

// decoder procedure
inline CORBA2::Boolean operator >>= (const CDR &src, Foo &trg) {

return (src >>= trg.l) && (src >>= trg.s); }

11 of 15

6/24/97 Marshalling

Operators <<= and >>= are overridden for each IDL types (basic and user-
defined). In the example, at first <<= operator of typelong and then <<=
operator of typestring are used inFoo type <<= operator implementation.

It is interesting to notice, that marshalling and unmarshalling procedures have
symmetrical algorithms structures as well asencoder() anddecoder() methods
of marshalling interpreter. Right down to some actions special for
unmarshalling (memory allocation, error checking).

5. 2. ADVANTAGES AND SHORTCOMINGS OF THE METHOD

Section 6 presents experiment numbers that shows that the speed difference
between interpreted and compiled marshalling code is significant. Right now,
we just notice that compiled code is consistently faster than interpreted code
by a factor of 2 to 5.

As we can expect, we have to pay for making marshalling code faster by
increasing its code size. IDL Compiler generates marshalling procedures for
each type from IDL specification and those procedures have to be compiled
together with others needed procedures and libraries containing ORB
functions.

Inline-technique is used to reduce the execution time. As rule, marshalling
procedures (for user-defined types too) are exactlyinline-procedures. It is
obviously, that code size directly depends on number of methods and their
parameters in IDL specification.

Marshalling interpreter treats “non-typed” data, which structure is described
by means of appropriate TypeCode. The problems with fixed internal structure
description are faced if a compiler uses another rules for structure’s fields
presentation in memory. Type-safe marshalling procedures avoid these
disadvantages of marshalling interpreter.

The technique of compiled code for marshalling does not support data which
type is not known at compile time. It seams to be the most significant
shortcoming of this technique.

6. EXPERIMENT NUMBERS AND THEIR ANALISYS

In order to determine the practical impact of different techniques for
marshalling code the following IDL specification is considered:

struct S {
long l;
string s;

};

typedef sequence <S> Seq;

12 of 15

ISP RAS common use

struct SC {
S s[10];
any a;
Seq seq;
string str;

};

typedef SC Arr[10][10];

interface Testing {
void test_long (in long par);
void test_struct (in S par);
void test_seq (in Seq par);
void test_arr (in Arr par);

};

The test consists of consequential invocations of methods declared by
interface Testing. As the types ofin parameters different IDL types are used.

Table 1 gives the absolute throughputs of interpreted and compiled code
needed for marshalling of parameters on client and server-side. All absolute
numbers were measured on a Sun SPARCstation 4 / microSPARC 100 Mhz,
using gcc version 2.7.0.

TABLE 1.

long
struct S {
 long l;
 string s;
}

typedef
sequence
<S> Seq

typedef
struct SS {
 S s[10];
 any a;
 Seq seq;
 string str;
} Arr [10] [10]

compiled code 0.250 ms 0.303 ms 6.011 ms 46.550 ms

interpreted code 0.275 ms 0.470 ms 15.500 ms 199.970 ms

compiled code

(C++ optimisation
option)

0.155 ms 0.192 ms 2.344 ms 15.680 ms

interpreted code

(C++ optimisation
option)

0.157 ms 0.255 ms 6.921 ms 92.170 ms

13 of 15

6/24/97 Marshalling

From these numbers we can see that execution speed of marshalling for data
of basic types practically does not depend on code generating technique. In this
case, marshalling interpreter and marshalling procedures of basic types
perform the same basic primitives without additional actions, specific for each
technique.

Compiled marshalling procedures gives great advantage of productivity
treating data with deep embedded structure. In this case, interpreter becomes
long sequence of recursive calls. But compiled procedures withinline-
substitution allow to reduce “overhead expenses” for additional calls. For
example, the compiled code for marshalling data of array Arr type (see Table
1) is faster than interpreted code by a factor of 6, using optimizing option of
C++ compiler, and by a factor of 4,5 otherwise.

It is interesting to notice, that compiled marshalling code has better execution
speed than usage of a standard optimizing option of C++ compiler for some
types (e.g.sequence Seqandarray Arr from the Table 1).

However, the code size is increased due to the compiled marshalling
procedures, and theirinline-substitution especially. Table 2 shows the
difference in code size between interpreted and compiled marshalling code for
some application working with implementation of Naming Service, standard
CORBA service. But the goal of generating execution-time optimal code
under a size constraint can be met by generating a hybrid between the different
implementation technique.

7. CONCLUSION

Marshalling (presentation conversion) is necessary in distributed systems,
since modules of those systems use different representation for the same data.
The article presents two alternative implementation technique for marshalling
in the context of Object Request Broker design.

An experimental evaluation of interpreted and compiled code for marshalling
confirms the well-known size-speed trade-off.

For ORB design the execution speed is most important character, so we show
a preference for compiled code technique. But sometimes (on a machine with
memory size constraints) a more flexible code generation strategy can be
required. Instead of using the same strategy for all types, different code

TABLE 2.

interpreted code compiled code

code size 38408 B 60232 B

14 of 15

ISP RAS common use

generation strategies (interpreted code, compiled code and inline code) should
be used for different types. For example, for a type definition node in syntax
tree, the compiler implemented such “hybrid” strategy must decide whether
interpreted or compiled code should be generated. For a field node, the
compiler must decide whether the marshalling routine for the field should be
written inline.

The selection of a code generation strategy for a particular type depends on the
following factors. The frequency with which the type occurs at run-time. The
execution times of the marshalling routines. The code size increase incurred
by each of the alternatives.

The principle of locality (Knuth, 1971) says that programs spend a large part
of their execution time in a small part of the program code. Analogues
researches [2] have shown that this principle also holds for communication
code. So, large performance improvement of marshalling code can be
achieved by optimizing only a small part of the implementation (e.g. only
marshalling procedures of the types that occur frequently).

It is an IDL specification, that contains hints which part of it will be executed
frequently. Intuitively, it seems clear that types that occur as field of an array
will occur frequently, that types which are referenced frequently by other types
will also occur frequently. Such static approach can be successfully used for
finding IDL specification parts that can benefit from code optimisation [2].
This approach does not depend on particular application working with an IDL
specification. So it can be realized by IDL compiler itself.

On the other hand, for particular application, frequency of type usage can be
achieved more precisely by means of program profilers. Program profile
taking into account run-time peculiarity, such as loops and branches, shows
variables of which types take part in communication more frequently. An
optimizing IDL compiler uses this statistical information to select one of
several code generating alternatives for each node of syntax tree. Also, IDL
compiler can make more informed optimisations based on domain-specific
heuristics.

So, to achieve size-speed balance we can optimize marhalling implementation
only for a part of IDL specification. There are several interesting areas for
future research: algorithm of finding IDL specification parts that can benefit
from code optimisation, the development of appropriate IDL compiler.

REFERENCES

1. The Common Object Request Broker: Architecture and Specification.
Revision 2.0. July 1995. Object Management Group.

15 of 15

6/24/97 Marshalling

2. Philipp Hoschka. Automating Performance Optimisation by Heuristic
Analysis of A Formal Specification. IFIP TC 6 / 6.1 International Conference
on Formal Description Techniques IX (Theory, application and tool), 8 - 11
October 1996, pp. 77 - 92.

3. Hiroki Horiuchi, Tetsuya Kuroki, Sadao Obana, Kenji Suzuki. EPER:
Efficient Packed Encoding Rules for ASN.1. IFIP TC 6 / 6.1 International
Conference on Formal Description Techniques IX (Theory, application and
tool), 8 - 11 October 1996, pp. 179 - 194.

