
Model-Based Testing of Optimizing Compilers

Sergey Zelenov and Sophia Zelenova

Institute for System Programming of Russian Academy of Sciences
{zelenov, sophia}@ispras.ru

http://www.unitesk.com

Abstract. We describe a test development method, named OTK1, that
is aimed at optimizing compiler testing. The OTK method is based on
constructing a model of optimizer’s input data. The method allows devel-
oping tests targeted to testing a chosen optimizer. A formal data model
is constructed on the basis of an abstract informal description of an al-
gorithm of the optimizer under test. In the paper, we consider in detail
the process of analyzing an optimization algorithm and building a formal
model. We also consider in outline the other part of the method, test se-
lection and test running. The OTK method has been successfully applied
in several case studies, including test development for several different
optimizing compilers for modern architectures.

Keywords: model based testing, compiler testing, formalization of re-
quirements, formal data model, test data generation.

1 Introduction

High level programming languages are the main instruments in software devel-
opment. Translation of source text written in a high level programming lan-
guage into executable form is performed by software that is traditionally called
“compiler”.

Compiler defects break execution of entities resulting from translation: their
behavior differs from what is specified in the language specification. Defects in
executable entities induced by erroneous compiler are hard to detect and find a
workaround, thus correctness of executables obtained from an incorrect compiler
is always a doubt. Validation and verification of a compiler is an important
activity for dissemination of a compiler in industry.

Validation and verification of compilers is always a very complicated. The
main source of difficulties is complexity of input and output: the input is a
program with a furcated syntax structure and rich set of context constraints
imposed by the language specification, the output is an executable in machine or
intermediate language and possesses similar or even higher degree of complexity.

The usual way to cope with complications of compiler validation and verifica-
tion is a decomposition the validation and verification task into several subtasks
that in total cover whole functionality of the compiler.
1 OTK stands for “Optimizer Testing Kit”.

A. Petrenko et al. (Eds.): TestCom/FATES 2007, LNCS 4581, pp. 365–377, 2007.
c© IFIP- International Federation for Information Processing 2007

366 S. Zelenov and S. Zelenova

Typical compiler includes the following set of functions:
1. analysis of syntax correctness and parsing of input text;
2. semantic check of input;
3. optimization of the internal representation;
4. generation of the output.

There are many papers concerning validation and verification of the first and
second functions of compiler. Papers [7,11,18,24] describe various approaches
to validation and verification of parsers. Papers [2,5] describe approaches to
validation and verification of semantic checkers.

Nowadays the main function of a compiler is optimization, which allows prod-
icing faster executable programs. So, the main subtask of the compiler validation
and verification is the validation and verification of optimizers.

Papers [6,21,22] describes theoretical studies that use various logical calculi
for compiler verification.

Papers [12,8,15,13] contain ideas on creation of oracles that check preservation
of program semantics during optimizations. The common shortcoming of these
methods is that they do not offer any approach for selection of compiler input data.

Study [9] describes an approach to automation of code generator testing.
Specifications developed in XASM language were used for automated filtering
tests and obtaining reference results. But this approach to test selection is not
systematic and very ineffective.

We use testing [3] based on formal specifications and models [17] as the pri-
mary tool for compiler validation and verification.

In this paper we present the OTK method of automated test generation for
optimizing compiler testing. The method is based on constructing a model of in-
put data of an optimizer under test. The OTK method allows constructing data
models and developing generators of tests targeted to testing a chosen optimizer.

The OTK method consists of the following phases:
1. requirements elicitation;
2. formalization of requirements;
3. automated tests generation;
4. tests execution.

In this paper we zero in on the first and second phases. The third and fourth
phases have been described in details in [10].

The remainder of the paper is organized as follows. In Section 2 we describe
the OTK method. In Section 3 we present practical applications of the OTK
method. In Section 4 the paper is concluded.

2 The OTK Method

The OTK method was developed during joint project of ISP RAS and Intel on
testing a set of optimizer units of Intel C++/Fortran compiler in 2001–2003.

Most of compilers perform optimization on some internal representation that
is built during parsing and semantics analysis. Straightforward approach to ver-
ification of the optimization is to build internal representation of some piece of
source code and then optimize it.

Model-Based Testing of Optimizing Compilers 367

The problem is that since internal representation is encapsulated in imple-
mentation part of a compiler, then it is very uncertain and therefore tests are
difficult to build and are not portable even between different versions of the same
compiler. Another problem is that test developers may not have an access to the
interface of optimizer units, which are working with internal representation of
program code2.

More practical approach to verification is to use purposely built source code.
This approach is easier to implement and is more generic. The OTK method
implements this approach.

The OTK method is based on UniTESK approach [4,20] to model-based test-
ing and consists of the following phases.

The first phase is requirements elicitation: analytics study an algorithm of the
optimization under test, identify input data requirements and categorize them.
The result of the phase is a requirements diagram that contains precisely for-
mulated input data requirements, classified into several groups with established
links between them. The diagram is used on the following phases.

The first phase is described in Subsection 2.1.
The second phase is formalization of requirements. Elicited input data re-

quirements get specified using appropriate formal notation. Such specification is
called formal data model.

The second phase is described in Subsection 2.2.
The third phase is automated tests generation from the formal data model.
The fourth phase is tests execution that results in test reports that contain

information about observed compiler behavior.
The third and fourth phases are described in outline in Subsection 2.3. Details

may be found in [10].
Reports analysis, defects identification and corrections is beyond the scope of

validation and verification. These issues are not discussed here.

2.1 Process of Analyzing an Optimization Algorithm

The first phase of the OTK method is requirements elicitation. An input data re-
quirements are elicited from an abstract description of the optimization algorithm.

An optimization algorithm is formulated using entities of some appropriate
abstract representation of an input data, for example, control flow graph, data
flow graph, symbol table, etc. In order to perform transformations, an optimizer
searches for combinations of entities that match some patterns , for example,
presence of loops in a routine, presence of some specific statements in the loop,
presence of common subexpressions, presence of some specific data dependences
between statements. Patterns contains entities significant for the algorithm of
the optimization. The goal of this phase is to build a UML-like diagram of these
entities.
2 In the project of ISP RAS and Intel we have no access to the interface of optimizers

under test due to Intel security policy. The only information available was that an
optimization algorithm operates similar to the one described in certain section of
the Muchnick’s book [14].

368 S. Zelenov and S. Zelenova

Here we proceed with step-by-step detailed description of the process of ana-
lyzing an optimization algorithm.

First, one should represent the text of the algorithm under consideration in
“if–then” form.

Next, one should mark all branch conditions in this text, i.e. all parts of the
text that are located between “if” and “then” words. These branch conditions
are patterns that the algorithm deals with.

Next, one should mark all entities in all patterns.

Example: Induction-Variable Optimizations Algorithm. Let us consider
the induction-variable (IV) optimizations (see [14]). An induction variable is a
variable whose successive values form an arithmetic progression over some part
of the program, usually a loop. There are three important transformations that
apply to induction variables:

– strength reduction that replaces expensive operations, such as multiplications
and divisions, by less expensive ones, such as additions and subtractions;

– induction-variable removal , when we may remove an induction variable that
serve no useful purpose in the program;

– linear-function test replacement , when a variable is used only in the loop-
closing test and may be replaced by another induction variable in that con-
text.

For simplicity we consider only the principal part of the algorithm, identify-
ing induction variables. Fig. 7 in Appendix presents the “if–then” form of this
algorithm. Patterns are printed in italic. Entities in the patterns are underlined.
�

Next, one should write out a list of all marked entities. Besides, one should add
to this list a principal entity that is a common context where the algorithm is
applied. For each entity in the list, one should create some unique identifier.

Example: List of IV-related Entities. A principal entity for the algorithm
presented in Fig. 7 is a loop body. The list of all entities with corresponding
identifiers is shown in Table 1. �

Next, one should write out a list of all marked patterns. For each pattern, one
should create its graphical representation (a diagram of the pattern) as follows.

– The diagram should contain all entities that the pattern has.
– An entity in the diagram is presented in the form of boxed identifier that

corresponds to the entity.
– If an entity in the pattern has some properties, then these properties should

be reflected in the diagram under the box of the entity by the label of the
form “<property_identifier> : <value>”.

– If two entities in the pattern are related to each other in some way, then
this relation should be reflected in the diagram as an arrow link between
corresponding boxes. An arrow should be labeled by the identifier of the
corresponding relation. All links fall into two categories:

Model-Based Testing of Optimizing Compilers 369

Table 1. List of IV-related entities

Entity Identifier
variable Var
instruction of the form i = i + c or i = c + i Inc
loop constant Const
subexpression Expr
induction variable IndVar
basic IV BIV
dependent IV DIV
temporary dependent IV TIV
assignment Asgn
loop body Loop

• aggregation that means that one entity contains another;
• reference that means that entities are related in some another way.

Any arrow that corresponds to aggregation is marked by a bullet point in
the beginning of the arrow.

– Any relation between two entities has cardinality that is reflected by the
following labels near the end of the corresponding arrow:

• without label – “beginning” entity relates to exactly one “end” entity;
• “0..1” – “beginning” entity relates to 0 or 1 “end” entity;
• “0..n” – “beginning” entity relates to 0 or more “end” entities;
• “1..n” – “beginning” entity relates to 1 or more “end” entities.

Example: Diagrams of IV-related Patterns. The algorithm presented in
Fig. 7 provides us with the following list of patterns:

1. a variable i is modified by exactly one instruction of the form i = i + c or
i = c + i, where c is a loop constant, and the instruction is unconditionally
executable;

2. a variable i is modified by two or more instructions of the form i = i + cn or
i = cn + i, where all cn are loop constants, and all the instructions are un-
conditionally executable;

3.1. a subexpression has any of the forms {i ∗ c, c ∗ i, i + c, c + i, i − c, c − i, −i},
where i is a basic IV, c is a loop constant;

3.2.1. a subexpression has any of the forms {i∗ c, c∗ i, i+ c, c+ i, i−c, c− i, −i},
where i is a dependent IV, c is a loop constant, and the subexpression is
located after modification of i;

3.2.2. a subexpression has any of the forms {i∗ c, c∗ i, i+ c, c+ i, i−c, c− i, −i},
where i is a temporary dependent IV3, c is a loop constant;

4. a subexpression described in the patterns 3.1, 3.2.1, 3.2.2 is assigned to a
variable k, and all assignments to k are unconditionally executable;

3 Any temporary variable is always defined before use.

370 S. Zelenov and S. Zelenova

5. there are two or more cases described in the pattern 4 of modification of one
variable k.

The corresponding diagrams are presented in Fig. 1.
The property uncond reflects that corresponding instruction is uncondition-

ally executable, the property kind keeps the information about form of a subex-
pression, the property afterIV reflects that a subexpression is located after
modification of used induction variable.

Links iv in the patterns 3.1 and 3.2.1 are references since one induction vari-
able (basic or dependent) may be used in several different subexpressions. The
other links in the patterns are aggregations. �

Fig. 1. Diagrams of IV-related patterns

Next, one should improve the diagrams of the patterns, i.e. make the infor-
mation presented on the patterns more exact: Some entities, links or properties
in the diagrams may be renamed or added. The source for such an improvement
are those parts of the algorithm that have not been considered yet, i.e. “then”
clauses.

Example: Improved Diagrams of IV-related Patterns. “Then” clauses
of the items 1 and 2 of the algorithm presented in Fig. 7 say that the variables
are in fact basic IVs, “then” clause of the item 3.2.2 says that the temporary
dependent IV is related to some subexpression, “then” clauses of the items 4
and 5 say that the variables are in fact dependent IVs.

The corresponding improved diagrams are presented in Fig. 2. �

Next, one should check if some entities may be specialized. An entity should be
specialized if it has different sets of properties and/or links in the patterns. In
this case, the initial entity is called a generalized entity.

One should reflect the information about generalization and specialization in
a special diagram of generalization. Any entity may occur in the diagram of gen-
eralization no more then once. Each specialized entity linked to its generalized
entity by a special kind of arrow with big white end. A generalized entity pos-
sesses only those properties and links that are common for several entities in the
patterns. A specialized entity possesses all properties and links of its generalized
entity, and besides, it has some additional properties and links.

Model-Based Testing of Optimizing Compilers 371

Fig. 2. Improved diagrams of IV-related patterns

Fig. 3. Generalization of the Expr entity

Next, one should improve the initial diagrams of patterns: Rename the gen-
eralized entities to corresponding specialized entities.

Note that not all generalized entities can be renamed during such an improve-
ment. If after the improvement some pattern contains a generalized entity, then
this entity may be in fact any of its specialized entity.

Example: Generalization of the Expr Entity. Occurrences of the Expr en-
tity in the patterns 3.1, 3.2.1 and 3.2.2 have different sets of properties and
links. Thus, this entity should be specialized. The diagram of generalization is
presented in Fig. 3.a.

Now we should improve the diagrams of patterns: We rename the general-
ized entities Expr in the diagrams of the patterns 3.1, 3.2.1 (Fig. 1), and 3.2.2
(Fig. 2) to specialized entities BExpr, DExpr, and TExpr correspondingly. Note
that diagrams of the patterns 4 and 5 can not be improved, since these patterns
have no information that may be used for specialization of the Expr entity.

The improved diagrams of the patterns 3.1, 3.2.1 and 3.2.2 are presented in
Fig. 3.b. �

Finally, one should construct a UML-like data model diagram. Any entity may
occur in the data model diagram no more then once. The data model diagram
should contain all entities, properties and links that are presented in all the finally
obtained diagrams of the patterns. Besides, the data model diagram contains
the principal entity that should be linked to some other entities by means of
aggregation links.

372 S. Zelenov and S. Zelenova

Example: IV-related Data Model Diagram. A principal entity for the
algorithm presented in Fig. 7 is Loop. It may contain several Inc entities and
several Asgn entities.

Fig. 4 shows the corresponding data model diagram for the algorithm under
consideration. �

Fig. 4. IV-related data model diagram

The obtained data model diagram is a result of the first phase of the OTK
method.

2.2 Formalization of Requirements

The second phase of the OTK method is formalization of requirements. A formal
data model is constructed on the basis of the data model diagram elicited on
the first phase.

We consider a model representation of a test program as an attributed tree.
The role of nodes is played by entities, the role of edges from parents to children
is played by aggregation links, the role of attributes is played by properties and
reference links.

A formal data model is specified using TreeDL4 language [19] as follows.

– Each entity is specified using the TreeDL-term “node”.
– A generalized entity is specified as an “abstract node”, a specialised entity

is specified as a derived node.
– A property of an entity is specified as an “attribute” of corresponding

node.
– An aggregation link of an entity is specified as a “child” of corresponding

node.
– An reference link of an entity is specified as a “attribute late” of corre-

sponding node.
– The cardinality of properties and links is specified using the following mod-

ifiers:

• without modifiers – exactly one element;
• “?” – 0 or 1 element;
• “*” – 0 or more elements;
• “+” – 1 or more elements.

4 TreeDL stands for “Tree Description Language”.

Model-Based Testing of Optimizing Compilers 373

Example: IV-related Formal Data Model. Fig. 5 demonstrates a formal
data model for the algorithm presented in Fig. 7. �

node Loop : <OtkNode> { node DIV : <OtkNode> {
child Asgn* asgn; }
child Inc* inc; node Const : <OtkNode> {

} }
node Inc : <OtkNode> { abstract node Expr : <OtkNode> {

attribute <boolean> uncond; attribute <int> kind;
child BaseIV base; child Const constant;
child Const+ constant; }

} node BExpr : Expr {
node Asgn : <OtkNode> { attribute late BIV iv;

attribute <boolean> uncond; }
child DepIV dep; node DExpr : Expr {
child Expr+ expr; attribute <boolean> afterIV;

} attribute late DIV iv;
node TIV : <OtkNode> { }

child Expr expr; node TExpr : Expr {
} child TIV iv;
node BIV : <OtkNode> { }
}

Fig. 5. IV-related formal data model

2.3 Automated Tests Generation and Tests Execution

Here we proceed with brief description of the third and fourth phases of the
OTK method. Detailed description may be found in [10].

The third phase of the OTK method is automated tests generation from the
formal data model.

A test coverage criterion is formulated in terms of the data model. A goal of
test generation is to cover various combinations of model entities. Tests should
contain both combinations that match some of the patterns and combinations
that unmatch the patterns in some way. Practice shows that such an approach
allows to achieve high level of code coverage of the optimizer under test.

Test program generator is constructed as a structured system of generators
of separate data model elements. Such generators in their turn are constructed
from generators of subelements, and so on. For example, generator of assignments
is usually constructed from two generators of subexpressions and generator of
dependent induction variables. All these generators work with model representa-
tion of test program structure. The text of test programs appears after applying
special mapper component transforming model representation into textual and
constructed also on the base of data model structure.

The OTK method is supplied by a tool kit for data model formal description
and for developing all required components of a test generator [16].

The fourth phase of the OTK method is automated tests execution.
In the OTK method, an oracle for back-end testing automatically checks

preservation of program semantics during back-end pass. To perform this, a
mapper should map a model structure to a program with functional semantics
being fully described by program’s output trace. For such programs, the problem

374 S. Zelenov and S. Zelenova

of checking program semantics preservation during optimizer pass is reduced to
comparison of output trace of an optimized program with some reference trace.

Checking optimizer correctness is organized as comparison of traces generated
by program compiled with optimization and without it.

Example: IV-related Test Program. Fig. 6 shows an example of a test pro-
gram generated with OTK from the formal data model presented in Fig. 5. The
program consists of one loop with several statements, each of which is modifi-
cation of some induction variable. Some of the statements are located within if-
statements that reflect conditionally executable instructions. The program takes
several parameters that are used as induction variables, which are modified by
the assignments inside the loop and then are printed in the trace. Traces of opti-
mized and nonoptimized programs’ executions with several arrays of parameters
are compared to find differences in their behavior. Each difference detected is
further analyzed for being caused by a bug in an optimizer unit. �

void f_0(int i_0, int i_1, int s_0, int s_1) {
int k;
for(k = 0; k < 100; k++) {

if(cond_asgn()) {
s_0 = i_0 - 7;
s_0 = 7 - i_1;

}
if(cond_asgn()) {

s_1 = -i_0;
s_1 = s_0 * 7;

}
if(cond_inc()) {

i_0 = i_0 + 7;
i_0 = i_0 + 7;

}
i_1 = i_1 + 7;
i_1 = i_1 + 7;

}
printf("%d %d %d %d\n", i_0, i_1, s_0, s_1);

}

Fig. 6. Example of generated test program for IV optimization

3 Practical Applications

The OTK method was used in several case studies.
During joint project of ISP and Intel in 2001–2003, the OTK method has

been applied in testing several optimizing compilers for modern architectures,
namely, in GCC, Open64, Intel C++/Fortran compiler.

Test sets developed with the help of the OTK method and targeted to the
following compiler’s components have been used for testing:

– Common subexpression elimination;
– Jump optimizations;
– Loop fusion optimization;
– Induction variable optimization;

Model-Based Testing of Optimizing Compilers 375

– Linear loop transformations;
– Loop carried dependence detection;
– Register allocation;
– Loop rerolling;
– Subscripts dependence detection;
– Separable and coupled subscripts detection.

Desctiptions of these components may be found in [14,1].
As a result of test execution, several bugs in compilers under test have been

found. In the case of GCC testing, we have achieved about 90% of code coverage
of the units under test.

During joint project of ISP and Intel in 2004, the OTK method has been
successfully applied in testing exception handling mechanism5 in Intel C++
compiler.

During joint project of ISP and DaimlerChrysler AG in 2005, the OTK
method has been successfully applied in testing optimizers of graphical mod-
els [23].

Obtained practical results prove effectiveness of the OTK method.

4 Conclusion

This paper presents the OTK method that implements model-based testing ap-
proach to optimizing compiler testing. The OTK method supports test devel-
opment phases starting on requirements elicitation from an algorithm of the
optimization under test and ending on automated tests generation and test exe-
cution. The process of analyzing an optimization algorithm and building a formal
data model is considered in details.

The OTK method is supplied by a tool kit that supports creating formal data
models and developing test generators. A generator developed with the help of
the OTK allows automatic generating sets of tests that meet a chosen coverage
criteria and are targeted to an optimizer under test.

The OTK may be also used in test development for processors of complex
structured text.

The OTK method was used in several case studies including commercial com-
piler testing projects. Obtained practical results prove effectiveness of the OTK
method.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco (2002)

2. Arkhipova, M.V.: Semantic analyzer tests generation. Numerical
Methods and Programming, vol. 7, pp. 55–70 (in Russian) (2006)
http://num-meth.srcc.msu.su/english/zhurnal/tom 2006/v7r206.html

5 Checking correctness in this case has been organized as comparison of traces gener-
ated by program compiled with compiler under test and compiled by GCC.

http://num-meth.srcc.msu.su/english/zhurnal/tom_2006/v7r206.html

376 S. Zelenov and S. Zelenova

3. Beizer, B.: Software Testing Techniques. van Nostrand Reinhold (1990)
4. Bourdonov, I.B., Kossatchev, A.S., Kuliamin, V.V., Petrenko, A.K.: UniTesK Test

Suite Architecture. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 77–88. Springer, Heidelberg (2002)

5. Duncan, A.G., Hutchison, J.S.: Using Attributed Grammars to Test Designs and
Implementation. In: Proceedings of the 5th international conference on Software
engineering, Piscataway, NJ, USA, pp. 170–178. IEEE Press, New York (1981)

6. Hannan, J., Pfenning, F.: Compiler Verification in LF. In: Proc. 7th Annual IEEE
Symposium on Logic in Computer Science, pp. 407–418 (1992)

7. Harm, J., Lämmel, R.: Two-dimensional Approximation Coverage. Informatica
Journal, 24(3) (2000)

8. Jaramillo, C., Gupta, R., Soffa, M.L.: Comparison Checking: An Approach to Avoid
Debugging of Optimized Code. In: Nierstrasz, O., Lemoine, M. (eds.) Software
Engineering - ESEC/FSE ’99. LNCS, vol. 1687, pp. 268–284. Springer, Heidelberg
(1999)

9. Kalinov, A., Kossatchev, A., Posypkin, M., Shishkov, V.: Using ASM Specification
for automatic test suite generation for mpC parallel programming language com-
piler. In: Proc. 4th International Workshop on Action Semantic, AS’, BRICS note
series NS-02-8, pp. 99–109 (2002)

10. Kossatchev, A.S., Petrenko, A.K., Zelenov, S.V., Zelenova, S.A.: Application of
Model-Based Approach for Automated Testing of Optimizing Compilers. In: Pro-
ceedings of the International Workshop on Program Understanding. Novosibirsk,
pp. 81–88 (2003)

11. Lämmel, R.: Grammar testing. In: Proc. of Fundamental Approaches Software
Engineering, vol. 2029, pp. 201–216 (2001)

12. McKeeman, W.: Differential testing for software. Digital Technical Journal 10(1),
100–107 (1998)

13. McNerney, T.S.: Verifying the Correctness of Compiler Transformations on Basic
Blocks using Abstract Interpretation. In: Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pp. 106–115 (1991)

14. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers, San Francisco (1997)

15. Necula, G.: Translation Validation for an Optimizing Compiler. In: Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
83–95 (2000)

16. OTK: Optimizer Testing Kit. http://www.unitesk.com/content/category/
9/17/35/

17. Petrenko, A.K.: Specification Based Testing: Towards Practice. In: Bjørner, D.,
Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, pp. 287–300. Springer,
Heidelberg (2001)

18. Purdom, P.: A Sentence Generator For Testing Parsers. BIT 2, 336–375 (1972)
19. TreeDL: Tree Description Language. http://treedl.sourceforge.net/treedl/

treedl en.html
20. UniTESK Technology Web-site. http://www.unitesk.com/
21. Wand, M., Wang, Zh.: Conditional Lambda-Theories and the Verification of Static

Properties of Programs. In: Proc. 5th IEEE Symposium on Logic in Computer
Science, pp. 321–332 (1990)

22. Wand, M.: Compiler Correctness for Parallel Languages. In: Conference on Func-
tional Programming Languages and Computer Architecture (FPCA), pp. 120–134
(1995)

http://www.unitesk.com/content/category/9/17/35/
http://www.unitesk.com/content/category/9/17/35/
http://treedl.sourceforge.net/treedl/treedl_en.html
http://treedl.sourceforge.net/treedl/treedl_en.html
http://www.unitesk.com/

Model-Based Testing of Optimizing Compilers 377

23. Zelenov, S.V., Silakov, D.V., Petrenko, A.K., Conrad, M., Fey, I.: Automatic Test
Generation for Model-Based Code Generators. In: Proc. 2nd International Sympo-
sium on Leveraging Applications of Formal Methods, Verification and Validation,
ISoLA (2006)

24. Zelenov, S., Zelenova, S.: Automated Generation of Positive and Negative Tests
for Parsers. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997,
pp. 187–202. Springer, Heidelberg (2006)

Appendix

Identifying basic IVs.
We sequentially inspect all variables in all instructions in the body of a loop.

1. If a variable i is modified by exactly one instruction of the form i = i + c or
i = c + i, where c is a loop constant, and the instruction is unconditionally exe-
cutable, then i is a basic IV.

2. If a variable i is modified by two or more instructions of the form i = i + cn or
i = cn + i, where all cn are loop constants, and all the instructions are uncondi-
tionally executable, then i is replaced by corresponding quantity of different basic
IVs.

Identifying dependent IVs.
We repetitively inspect all subexpressions in all instructions in the body of a loop.

3. If a subexpression has any of the forms {i∗ c, c∗ i, i+ c, c+ i, i− c, c− i, −i}, where i
is an IV, c is a loop constant, then in the following cases we define new temporary
dependent IV j whose value is equal to the subexpression, and we replace the
subexpression by j:
3.1. if i is a basic IV, then j depends on i;
3.2. if

3.2.1. i is a dependent IV or
3.2.2. i is a temporary dependent IV,
and the subexpression is located after modification of i in the body of the loop,
then j and i depends on the same basic IV.

4. If a subexpression described in the item 3 is assigned to a variable k, and all
assignments to k are unconditionally executable, then we does not define a tempo-
rary IV for the subexpression, but we state that k is a dependent IV.

5. If there are two or more cases described in the item 3 of modification of one variable
k, then k is replaced by corresponding quantity of different dependent IVs.

Fig. 7. The “if–then” form of the principal part of the IV optimizations algorithm
(identifying IV) with marked patterns (printed in italic) and marked entities in the
patterns (underlined)

	Model-Based Testing of Optimizing Compilers
	Introduction
	The OTK Method
	Process of Analyzing an Optimization Algorithm
	Formalization of Requirements
	Automated Tests Generation and Tests Execution

	Practical Applications
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

