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Abstract

The article discusses problems of model based test construction and ways of their so-
lution using different kinds of models (operational, contract, axiomatic, and history-
based specifications). The main idea is that the integration of model based tech-
niques having different underlying formalisms can give valuable practical results in
test construction. The idea is illustrated by successful applications of UniTesK test
development technology based on the combination of contract specifications used to
describe system behavior and operational models used for test sequence generation.
UniTesK was designed in RedVerst [1] group of ISP RAS on the base of experience
obtained in several industrial software testing projects.
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1 Introduction

More and more of critical human activities in the contemporary world are
falling under control of software. Such situation requires effective methods to
ensure high level of software reliability and other aspects of its quality.

Testing is one of the most useful methods of quality checking. But with
growth of the software complexity the effort needed to test it thoroughly seems
to grow according to some nonlinear law.

Software engineering has developed a variety of techniques based on ab-
straction and various kinds of composition to construct complex software sys-
tems. They help to make the growth of effort needed for software construction
more manageable. Unfortunately, now we lack similar techniques for software
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verification and validation. So, we are able to verify or test thoroughly only
systems smaller and simpler than the ones we can construct.

Model based testing is one of the promising approaches to checking quality
of extremely complex systems. Its main idea is to use simple models abstract-
ing the target system to construct tests for it. Model based testing approach
allows high degree of test development automation because the models used
can be represented in a formal way and can be processed by computer. On the
other hand models themselves may represent different aspects of the system
under test, for example, requirements and design decisions, making possible
their collation to measure various quality factors of the target system.

But theoretic advantages of model based testing do not lead straightfor-
ward to its usefulness in practical applications. It is not quite obvious that
model based methods can be applied successfully to complex software systems
produced in the industry. Moreover, a single success in such an application
does not mean that the techniques used can be easily extended to large variety
of industrial software. All these problems can be solved only by experimenta-
tion and finding out the characteristics of the approach critical for its success
in industrial practice.

RedVerst [1] team of ISP RAS proposes UniTesK test development tech-
nology as an example of model based testing method suitable for use in the
industry. Our confidence in its suitability is based on 10-year experience of ap-
plication of similar techniques in the industrial software verification projects.
But it also has a base in the unique features of the technology itself.

Industrial use of model based testing methods needs the full-scale support
of all aspects of test development and testing. UniTesK provides such a sup-
port as it is shown in the main part of the article. Moreover, it seems that to
obtain valuable practical results of formal models we need to combine different
formal methods. UniTesK is an example of multi-paradigm technology where
different approaches to formal treatment of software live in symbiosis and only
being used together they are able achieve the goals stated.

Further sections of the article consider various problems related with test
development and testing on all the phases of software lifecycle. The next
section provides some description of problems to be solved by the test de-
velopment technology claiming its applicability to industrial software. The
section also briefly depicts existing solutions of these problems in various for-
mal frameworks. Its main conclusion is that no single formal approach gives
all the features we want to have in the successful test development technology.
The third section presents the main ideas of UniTesK approach and shows
how different formal techniques are integrated in it. The last section provides
some conclusions and describes possible directions of future work.
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2 Problems of Model Based Test Development

Main problems of test development.

Each testing technology claiming its applicability to the wide variety of
industrial software has to deal with the following problems.

• Problem of correctness checking.
When we want to test something, we usually want to check if it works
‘properly’. For simple and small systems we usually know very well what
the ‘proper’ behavior is and what is not. For complex systems it is not only
difficult to check that their behavior is correct, but also the correct behavior
itself usually requires to be defined more precisely, because it is too hard to
have in mind all the possible variants of system’s behavior at once. Testing
should somehow take this precise definition into account.

• Problem of test quality assessment.
The full-scale method of test development should include means to measure
the quality of resulting tests. Such means are usually represented as test
coverage criteria. The method based on models of the target software should
contain definitions of test coverage criteria based also on models, maybe the
same. Presence of test coverage criteria allows so called coverage-driven test-
ing, that is construction of tests in such a way that maximizes the coverage
obtained.

• Problem of test sequence construction.
For systems, which produce output only on the base of their input, high
quality tests can be constructed only using separate test actions. This is
not the case for software systems, which behavior depends on the history of
their interaction with environment, i.e. on previously applied inputs. For
such a system each good test coverage criterion considers system states,
which accumulate all actually necessary information on the history. To test
them thoroughly we need to construct sequences of test actions. The task
becomes even more complex when the set of permitted actions depends on
the results of the previous operations. Such situations are rather ordinary
for industrial software and should be embraced by test construction methods
intended to be used there.

• Problem of changes.
It is well known that software and industrial software in particular is not
static entity, it is always changing. Testing technology cannot be consid-
ered as a serious candidate for industrial use if it does not deal with possible
changes in the target software and in the environment and does not con-
tain special techniques to cope with them. The common method used to
minimize influence of changes in software construction is abstraction. We
will see that the same approach is widely used and provides good results in
testing too.
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• Problems of testing concurrency.
The useful testing technology should support widely used features of con-
temporary software. If we consider the most ‘popular’ kinds of software sys-
tems, which are actively developed in the modern industry and supported by
modern development technologies, we find concurrent and distributed sys-
tems. For sequential systems interpretation of their reactions in response to
external action is rather simple and straightforward. Concurrency (which is
also the main characteristic of distributed systems) being considered from
the viewpoint of model based testing gives rise to a problems even in this
seemingly simple domain. More hard become the previously mentioned
problems of test development when we try to solve them for concurrent
systems.

There are a lot of formal methods that can be applied to description,
construction, or analysis of concurrent systems. But authors do not know
references on some formal and at the same time full-scale consideration of
testing issues for concurrent and distributed systems. First, if we have a
model of such a system, how to stimulate test actions for it in a way that
explicitly check its concurrent behavior? And how to interpret observable
system responses in order to check their conformance to the model given?
Here we face with unclear notion of concurrent actions and impossibility to
introduce a full order on the input actions and system responses, if they are
observed in different places, which is ordinary for concurrent and distributed
systems.

Most test development techniques targeted for concurrent and distributed
systems are based on models that hide system concurrency and describe its
operation in terms of mostly sequential actions and responses. The only
concurrency-related feature in such models is their nondeterminism. We
think that this is far from the appropriate solution and concurrent actions
should be explicitly addressed when we are trying to develop good tests for
a concurrent system.

More subtle is the question on what kinds of models give the most clear
and practically useful answers on the previous questions from the testing
viewpoint. Of course, it requires a lot of case studies and comparison of
applications of various methods. But now it is not even considered by the
researchers.

Below in this section we briefly consider existing solutions for the problems
stated.

2.1 Behavior Correctness Checking

The well known solution for the problem of automatic correction checking is
test oracles. Test oracle in general is a program, which evaluates the work of
the target system and decides if it works correctly or not. The good source to
construct oracles is formal specifications stating the requirements to program
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behavior in the formal way. Such specifications are usually more clear and
reusable than the oracles themselves and can be processed by computer, so
the oracle development can be automated.

Different kinds of specifications give rise to different methods of oracle
construction. Below we regard the main such methods in short. The reader
interested in more exhaustive review and technical details may refer to [2].

• Operational specifications. Operational specifications describe the system
behavior in the form of explicit sequences of operations to be performed.
Operations used should be simple enough to have obvious and precise se-
mantics. At the same time a system of these operations should be general
enough to make possible representation of wide classes of systems. Usually
operations of some abstract machine are used. Examples of such specifica-
tions are various kinds of automata: from finite state machines (FSMs) to
Turing machines through communicating and/or extended FSMs (CFSMs,
EFSMs, CEFSMs), labeled transition systems (LTSs), input/output state
machines (IOSM) and transition systems (IOTS), Statecharts, timed au-
tomata, abstract state machines (ASMs), etc. Petri nets, CSP, CCS, SDL,
Estelle, LOTOS, and other concurrency-related formalisms and languages
based on operations performed by some virtual machine are also examples
of this approach. Specifications in VDMor RSL [3] languages can also be
written in an operational manner.

The obvious and the most usual way to produce oracles from operational
specifications is to execute them, obtain a result, and compare it with the
result of the corresponding operation of the target system. The more details
on test oracle construction on the base of ASM specifications can be found
in [4,5].

Operational models of complex systems are usually nondeterministic,
since they are much more abstract than the corresponding systems. Wide
nondeterminism is a serious obstacle for effective test construction. In the
works of Software Engineering Foundations group in Microsoft Research [6]
this problem is addressed by postponing the calculation of specification re-
sults until the implementation result is available. This approach solves the
problem when the set of possible results is not too large, but it does not cover
all possible systems. For example, when the target system solves the system
of differential equations, in general we cannot adequately evaluate its be-
havior on the base of some other algorithm that solves such systems. This is
because the bounded precision of calculations makes possible several locally
‘correct’ solutions (that can be distinguished with machine floating-point
numbers) and the instability of the system may make them very different
globally, so the number of distinguishable solutions becomes very large.

• Contract specifications. Software contracts [7,8] describe requirements to
the system as contracts of its interface operations. Contract of an oper-
ation includes its precondition and postcondition. Precondition describes
the obligations of the operation’s clients, it should hold when one of them
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calls this operation. Postcondition describes the obligations of the system
in response to call of this operation when its precondition holds. Usually
types of arguments and results of interface operations also have contracts.
Contract of a data type is formulated as a number of constraints on the
constituents of an object of this type. Such constraints are called data in-
tegrity constraints or invariants. Contract specifications are supported by
Z, B, VDM, RSL [3] , and Eiffel [9].

The way to construct oracles from contract specifications is quite obvi-
ous: we can check the precondition, then, if precondition holds, call the
target operation and obtain its results, and then check the postcondition.
Invariants can be checked as parts of both pre- and postconditions. The
approaches similar to this one are used in [10,11,12]. One of the problems
of the approach is concerned with storing the pre-state of the system, which
can be used to check the postcondition after the operation execution. The
other problem is description of active systems, which can provide actions
without any external stimuli and may not terminate. Nontermination prob-
lem is addressed by LD-relations introduced by D. Parnas and used in [10].

• Axiomatic specifications. Axiomatic specifications describe the system as a
set of functions with interrelated behavior. The interrelations are stated as
a set of constraints on the combined behavior of several functions. These
constraints can be formulated in first order logic or higher order theories.
In the first case such specifications are usually called algebraic. Examples
of languages used for algebraic specifications are OBJ, Larch, ML, and so
on.

Strictly speaking, other types of specifications can be considered as ax-
ioms of special kind. For example, contracts are also axioms of the kind:
”when precondition holds before the operation call, then the postcondition
holds after the call”. But the structure of contracts and the techniques
used to deal with them are so special, that they worth to be considered
separately.

Authors do not know on any use of axiomatic specifications other then
algebraic ones (for, example, higher order theories) for test development.
Algebraic specifications can be transformed into tests, but usually they can
hardly be used to check the arbitrary possible call of system operations.
An example of an approach for constructing general oracles from algebraic
axioms is presented in [13]. This approach is based on rewriting terms into
normal form and requires algebraic axiom set to be complete and confluent,
that is, to guarantee the uniqueness of normal form for terms.

The main problem of algebraic specifications is extreme difficulty of their
construction for real-life systems. Specification developer should have ad-
vanced mathematical education and specific experience to deal with them
in a useful manner.

• History-based specifications. History-based specifications define the set of
possible sequences of actions related with the target system. This can be

6



Kuliamin

done with the help of some constraints on such sequences or by explicit pre-
sentation of parts of such sequences with some combination rules for them.
History-based specifications include the approaches using various temporal
logic formalisms, which makes possible to refer to past or future, trace spec-
ification methods, and scenario-based approaches, including methods based
on MSC notation.

Examples of oracle construction methods based on temporal logics are
given in the works [14,15,16]. Trace specification methods are presented
in [17,18]. Test construction on the base on scenario-based specifications
is dealt with in [19]. Oracles constructed from specifications of this kind
usually evaluate some trace presenting the history of observable actions
related with the target system. Usually, there are no ways to produce an
oracle to evaluate system behavior in response to a single call.

From the one side, history-based methods are useful to provide a de-
scription of history-dependent behavior without introduction of auxiliary
variables for storing history information, but from the other side they seem
to be suitable only for a class of systems, which behavior depends on the
history in a specific simple way, or can be constructed by composition from
a small number of scenarios. In more complex cases such methods become
too hard to use.

2.2 Test Quality Measures

For adequate measurement of testing quality both coverage of source code
and coverage of requirements should be taken into account. Since we consider
model based approaches here, implementation-based coverage metrics details
are skipped. The interested reader may refer to [20] where the basic metrics
are presented or to the general survey in [21].

Model based test coverage criteria should be considered in connection with
method used to construct a model.

• Operational specifications. On the base of operational specifications we can
obtain test coverage metrics if consider them as a program for abstract
machine and construct coverage metrics as it were a source code.

Coverage criteria based on EFSM-like models of the target system are
considered in [22]. They are divided in control flow-based, such as tran-
sition coverage, transition-pair coverage, and data flow-based, as all-uses
coverage or du-path coverage. Examples of such approaches based on ASM
specifications are given in [23].

The problem of coverage criteria based on operational specifications is
their possible dependence on the structure of the modeling algorithms cho-
sen. In general there is no guarantee that the algorithms actually used in the
system have the similar structure. For example, we can calculate the square
root function with the help of iteration process xn = (xn−1 + x/xn−1)/2, as
a sum of infinite row expansion of (1 + (x− 1))1/2, or use an identity, such
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as sqrt (x) = exp (ln (x)/2). Each of these methods gives its own coverage
criteria, weakly related to each other. It is not easy to decide which one we
should consider as the most natural one. And we need some implementation-
specific information to choose one of them as more suitable.

• Contract specifications. Software contracts can be used to define coverage
criteria if we separate different kinds of behavior described with different
expressions in operation postcondition or try to apply usual code coverage
metrics to pre- and postconditions considered as a code.

Category-partition method [24] stays at the origin of most part of ap-
proaches using contract specifications for defining test coverage criteria.
Examples of such approaches are given in [25,26].

The coverage criteria constructed on the base of contract specifications
can be too abstract and lack details actually significant for test quality
measurement. So, in practice they usually need to be augmented with
additional predicates related to the problem considered.

• Axiomatic specifications. Axiomatic specifications themselves provide cover-
age criteria based on the rules covered and states, which can be constructed
as reduction of all possible histories. These metrics seem to be too coarse
for practical usefulness. Some additional techniques should be used to ob-
tain more useful measures for test quality. For example, we can construct
a derived automaton model or use some combinational approaches. See the
last item in the list on details.

• History-based specifications. History-based specifications give us only a set
of possible traces and we can measure test coverage only on the base of
actually executed traces. This is even less than we can extract from axioms.
Again, we need to add some combinatoric considerations to achieve useful
test adequacy criteria. See the last item on combinational approaches.

• Probabilistic models. Probabilistic usage models give a group of test quality
metrics assessing not the degree of system features exploration during test-
ing, but the degree of exploration of possible usage scenarios. Such models
may serve to estimate the reliability of the system under test. They are
usually represented as Markov chains describing the probability of external
events depending on the history of previous system-environment interaction.

Probabilistic models are used mostly as guides to the test data selection.
They are presented, for example, in works [27,28,29].

• Combinational approaches. If we have a program model we usually can find
various types of prime elements in it, which make up all the models of the
same kind. For example, algebraic description of the system consists of a
number of axioms, each being the equivalence of two sequences of operation
calls. The elements we can see here — calls of operations, their sequences,
and correspondence between such sequences. FSM-like models consists of
states and transitions.

We can introduce measures of test quality based on the complexity of
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possible combinations of prime elements, corresponding to the test executed.
In case of algebraic specifications we can consider complexity of ground
terms used for test construction and measure the test adequacy by the
complexity of terms used. To make this measure more adequate to actual
testing quality we may introduce an additional regularity hypothesis stating
that it is sufficient to cover only terms of the complexity less than some fixed
value [30,31].

The same approach may be used to measure test quality on the base
of history-based specifications. We can try to calculate the percentage of
bounded-length subsequences of the traces executed related to the total
number of possible subsequences with the same bounds on their length.

We call such approaches combinational. They can help to introduce cov-
erage criteria related with any kind of specifications used. Their practical
usefulness for test adequacy measurement still needs to be investigated.

2.3 Methods of Test Sequence Construction

Methods of model based test sequence construction are considered here in
connection with the kind of model used. In most cases they are targeted to
obtain high or complete coverage according to some test coverage criterion.

• Operational specifications. Operation specifications in the form of automata
of various kinds are the most widely used source for test sequence construc-
tion. The systematic exploration of test sequence construction methods
based on FSMs are presented in [32,33,34]. [35] gives review of EFSM-
based methods. The main idea of all these approaches is to construct a
set of paths on the state-transition graph to obtain maximum coverage ac-
cording to some coverage criterion — to cover all transitions, all adjacent
transition pairs, all simple du-paths, and so on.

The most part of methods based on (C)(E)FSM models provide construc-
tion of test sequence able to guarantee the conformance between a model
and an implementation successfully tested in such a way. These methods
and their derivatives are used to construct test on the base of formal spec-
ifications written in SDL [36], Estelle [37,38], LOTOS [39], or represented
as Statecharts [40].

Methods of test sequence construction based on ASM specifications of
the target system are considered in [4,41]. The approach presented there is
based on construction an FSM, which states correspond to combinations of
values of prime logic formulas in branching conditions of ASM specification.

FSMs provide the most suitable and deeply investigated methods of test
sequence construction. Their main problem is state explosion — when a
realistic system is considered, its FSM model adequate for sufficiently thor-
ough testing appears to be huge and unmanageable. EFSMs and other kinds
of state machines with possibility to extend states with data and transitions
with parameters are more suitable to represent complex systems, but less
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convenient for analysis and test sequence generation. They present infor-
mation on possible behaviors of the system in more implicit way and require
deep analysis, which sometimes cannot be conducted automatically, to ex-
tract it in a form ready for test sequence generation.

• Contract specifications. Software contracts themselves cannot be used to
construct test sequences. They should be transformed in or augmented by
other models to become useful for this purposes.

For example, Dick and Feivre [42] describe the method to construct FSM
model from contract specifications and partition of the domain of each op-
eration under test. The predicates defining the partition elements for some
operations are considered in the parameters-states space. Each predicate
corresponds to the set of pairs (parameters, state). The states of the re-
sulting FSM are obtained as projections of such sets. The stimuli of this
FSM correspond to the elements of the initial partitions for all operations.
So, each operation gives rise to several stimuli. The transition tour on this
FSM provides a complete coverage of the partitions chosen. The similar
techniques are used in [43,44,45].

• Axiomatic specifications. Axiomatic specifications are rarely used for test
sequence generation. There exist approaches that use their transformation
into automata of some kind. A possible way to use axioms themselves to
construct test sequences can be based on term rewriting. We can choose a
sufficiently long seed sequence and try to rewrite it in as many ways as it
sufficient for our testing needs or as it is possible due to our resources and
budget, and then check the equivalence of system behaviour on the initial
sequence and on any of the ones obtained by rewriting.

• History-based specifications. History-based specifications give the obvious
method of test sequence construction based on the possible histories de-
scribed. Usually specifications of this kind are transformed into some au-
tomaton to provide more convenient way of test sequence construction.

Examples of test sequence construction methods using history-based spec-
ifications (temporal logic and MSC) are given in [46,47,48].

• Other methods. Other methods of test sequence construction include prob-
abilistic and combinational approaches. They are usually designed to maxi-
mize some test adequacy metric. Such metrics are discussed in the previous
subsection.

2.4 Problem of Changes in Test Development

The usual way used to solve the problems caused by continuous changes in
requirements to the software, in development technologies used, in developer
teams, or in the system’s environment is abstraction. Abstract descriptions
and specifications are more reusable. Stepwise refinement process helps to
produce more detailed and specific specifications and code. Abstraction and
refinement are also used to cope with changes in test development.
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The first and the most obvious place for abstraction is the boundary be-
tween model and implementation. If the model used for test development
has the same level of abstraction and the same details as the implementation,
it does not provide an effective tool for testing, because requires to increase
expenditures on the development in more than two times.

So, usually model is an abstraction of implementation. But then the ques-
tion arises on the conformance relation between them, which is the main object
of testing.

Designers of test development methods in academic community pay at-
tention to strict definition of conformance relation checked by their methods.
Examples of such relations for FSM-based approaches are given in [33]. In the
works of J. Tretmans [49] ioco-relation is defined as conformance relation for
LTS and IOLTS-based approaches to test construction.

To define conformance relation specification and implementation are con-
sidered as models of the same kind: both as FSMs, LTSs, and so on. The other
characteristic of the existing definitions is one-to-one correspondence between
observable events, i.e., inputs and outputs, in specification and in implemen-
tation. Both these factors may cause problems when the testing method is
applied to real software. First, the software is required to be implicitly modeled
in the metamodel used by the method, whatever it really means. Second, the
observable events related with implementation usually should be abstracted
to stay in correspondence with model events.

Such a situation leads to a shift in an abstraction level between a model
used for test construction and the real software under test. This abstraction
shift is not considered by the methods and usually processed in so called
system adapters, which development is not regulated by any explicit rules.

One may object that formal rules for development of binding components
between the formal model and informal implementation cannot exist. But
some rules should be stated, lest the formally defined conformance relations
will not be related with reality as soon as we begin to develop an adapter.

We need not only more strict rules of adapter construction, but also some
extension of their possible functionality. We think that it is important to
introduce in use more complicated conformance relations, for example, con-
sidering model as a factorization of implementation [50]. Such complication,
although requires more strong hypotheses to enter in the area of formal test-
ing, allows more simple models and more simple methods of test construction
for complex systems, which appears to be rather useful in real practice.

The other important place for changes related with model-based testing
is changes in requirements. Here systematic use of abstraction should lead to
development of systematic formal models of various problem domains. The
development of such models is now conducted in the context of MDA initiative
of OMG [51]. Existence of such models poses another problem for designers
of specification languages — they should introduce more flexible and powerful
mechanisms of reuse. Such mechanisms should help to develop more flexible
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and reusable test suites based on more abstract models.

2.5 General Review Results

The review presented above shows that all techniques of formal description of
system functionality have their advantages and drawbacks. None of them can
be easily recognized as the most convenient for use in test development.

FSM-based models are very simple and comprehensible for developers, can
be easily used for test sequence generation, but are too simplistic for software
of real-life complexity. They can be made more scalable by introduction of
data and parameters of transitions, but then they loose their suitability for
analysis and still not obtain the generality and flexibility of more implicit
descriptions, which are more suitable for construction of general-purpose test
oracles.

On the other side, algebraic specifications, being the most implicit ones,
are too difficult for use in real life development. They also lack suitability for
construction of reasonable test adequacy metrics.

The solution seems to lie in integration of different techniques to use any
of them in the domains where it is more suitable. We already have mentioned
use of FSM models constructed on the base of contract specifications, or in-
troduction of combinatoric considerations to measure test adequacy on the
base of algebraic specifications. The next section provides a detailed presen-
tation of UniTesK technology as an example of such integrated approach to
test development.

3 UniTesK as a Symbiotic Solution

UniTesK [45,52,53] test development technology is designed by RedVesrt [1]
group of ISP RAS to be used in industrial testing of complex software systems.
It is based on the experience obtained by the group during several industrial
software testing projects including operating systems for telecommunication
switches, protocol implementations, P2P messaging management system, and
compilers for C and FORTRAN languages.

The technology uses methods of test construction on the base of formal
models of target software. But to make this process more effective, models of
different kinds are used on different phases of development. The technology
includes methods to construct one model on the base of others, thus seam-
lessly integrating them in the test development process. The main features
of the technology, underlying test development process, and test architecture
are described in the articles [45,52]. This section presents in more details
the models used in UniTesK test development, relations between them, and
reasons for choosing the presented solutions.

The functional requirements to the system behavior are represented as
contract specifications. Contracts were chosen as the specifications that can

12



Kuliamin

be made either abstract or specific according to the goals of modeling. So,
they do not impose too much determinism where it is not needed and are not
ambiguous in necessary details. They are well-structured and close enough
to requirements, and so do not lead to much effort spending for their devel-
opment in real situations. In addition they are very suitable for automatic
transformation into test oracles.

In the next sections we present a formal definition of language-independent
part of contract specifications used in UniTesK. Then, we define formally the
conformance relation between contract specifications and a target system rep-
resented as typed ASM. Since this relation in practically significant cases re-
quires too much work to be checked, we introduce a hypothesis on equivalence
of target system behavior in certain situations. Good candidates for such sit-
uations are given by natural partitioning of operation domains to subdomains
of behavior described by one and the same constraint expression in postcondi-
tions. After that we give a method to construct an automata model based on
the specifications given and set of predicates describing subdomains of equiva-
lent behavior. When the behavior equivalence hypothesis holds and the target
system obeys some reasonable restrictions, the tests constructed as a transi-
tion tour on this automaton are exhaustive, that is their successful execution
proves the desired conformance between specifications and the system.

3.1 Typed Contract Specifications

A many-sorted signature Σ = (S, F ) consists of a set S of sorts and a set
of function symbols F =

⋃
w∈S∗,s∈S Fw;s layered by function profiles (w; s)

consisting of a sequence of argument sorts w ∈ S∗ and a result sort s ∈ S.
We often suppose that S includes sort bool and that F includes sym-

bols of Boolean constants t, f ∈ FΛ;bool, functions ¬ ∈ Fbool;bool and ∧,∨ ∈
Fbool,bool;bool, and equation symbol =s∈ Fs,s;bool for any sort s.

Then, we can define sort terms T Σ and function terms or simply terms FΣ

on a signature Σ = (S, F ) in the following inductive manner.

• Sorts are sort terms and function symbols with a profile where the sequence
of argument sorts is empty are terms.

S ⊆ T Σ and ∀s ∈ S FΛ;s ⊆ FΣ
Λ;s

• For each profile we have variables vi, which are terms of this profile.

• We obtain a sort term s1 × s2 if we apply a product operation to sort terms
s1 and s2.

∀s1, s2 ∈ T Σ s1 × s2 ∈ T Σ

• We obtain a term if we apply a function symbol to an array of terms with
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corresponding profiles.

∀f ∈ F(s1,...,sk);s, t1 ∈ FΣ
s11,...,s1l1

;s1
, . . . , tk ∈ FΣ

sk1,...,sklk
;sk

f(t1, . . . , tk) ∈ FΣ
s11,...,s1lk

,...,sk1,...,sklk
;s

• We obtain terms if we take a pair of terms or a projection of a term with
corresponding profile

∀t1 ∈ FΣ
s11,...,s1k;s1

, t2 ∈ FΣ
s21,...,s2l;s2

(t1, t2) ∈ FΣ
s11,...,s1k,s21,...,s2l;s1×s2

∀t ∈ FΣ
s11,...,s1k;s1×s2

π1t ∈ FΣ
s11,...,s1k;s1

and π2t ∈ FΣ
s11,...,s1k;s2

• We obtain a sort term if we take a subsort of sort term s according to a
term t with the profile (s;bool).

∀s ∈ T Σ, t ∈ FΣ
s;bool {s : t} ∈ T Σ

A many-sorted structure or simply structure A of a signature Σ = (S, F )
maps each sort s to a career set sA and each function symbol f ∈ Fs1,...,sk;s to
a partial function fA : |A|s1 × . . .× |A|sk

→̇|A|s. If S includes bool we require
boolA to have precisely two elements and map symbols for Boolean functions
into corresponding operations on these elements. Equation symbol for each
sort should be mapped in function mapping equal elements of the sort’s career
set into the image of t symbol.

Model mapping ·A can be extended onto sort terms and closed terms (hav-
ing no free variables) in an obvious way.

(s1 × s2)
A = sA

1 × sA
2

s : tA = {x ∈ sA : t(x) = t}
(f(t1, . . . , tk))

A : x 7→ fA(tA1 (x), . . . , tAk (x))

(t1, t2)
A : x 7→ (tA1 (x), tA2 (x))

(πit)
A : x 7→ πi(t

A(x))

Σ-formulae ΦΣ on the signature Σ are the usual many-sorted first-order
formulae built from atomic formulae using quantifications and logic connec-
tives. The atomic formulae are applications of function symbols f ∈ Fw;bool

to argument terms of appropriate sorts.

The value of a closed term, the definedness of a term on an array of argu-
ments, the satisfaction A |= φ of a closed formula φ in a structure A is defined
by induction on their structure. The application of f ∈ Fw;bool to a sequence
of arguments holds in A iff the values of all argument terms are defined and
fA is defined on these values and is equal to tA.

A typed asynchronous contract specification consists of the following parts.

• A basic signature Σb = (Sb, Fb) consisting of a set of basic sorts and basic
function symbols.
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• A dynamic signature Σd including a set Sd of dynamic sorts and a set Fd

of dynamic function symbols. Dynamic function symbols may have mixed
profiles including sorts of Sd and sort terms on Σb. Dynamic sorts and func-
tion symbols represent the state of the system under specification. Further
we denote the union signature Σb ∪ Σd = (Sb ∪ Sd, Fb ∪ Fd) as ∆.

• Initial state specification I, which is a set of ∆-structures.

• A procedure symbols set Π =
⋃

w∈(T ∆)∗,s∈T ∆(Πw;s∪Πw)∪
⋃

s∈T ∆ Πa
Λ;s consist-

ing of a set of procedure symbols, which can have profiles (w; s) (procedures
returning a value) or (w) (procedures returning nothing) constructed from
sort terms on the union signature. Procedure symbols from Πa are intended
to specify asynchronous reactions of the system.

• Preconditions and postconditions of all procedures. pre : Π → Φ∆ and
pre(p) have the only free variables corresponding to the arguments of p ∈ Π.
post : Π → Φ∆′

, where ∆′ is constructed below. post(p) have the only free
variables corresponding to the arguments of p and its result.

Sorts of ∆′ contains all basic sorts from Sb and two copies of each dynamic
sort from Sd (say, s and s′). Function symbols of ∆′ include all basic func-
tion symbols, all dynamic function symbols, and for each dynamic function
symbol f they also include a function symbol f ′ with the profile, where each
dynamic sort s met in the profile of f is replaced by s′. The basic sorts in the
profile of f ′ remain the same as for f. So, we can express in postcondition a
constraint on both the state preceding the procedure call and the resulting
state.

The problem is to match corresponding elements of the dynamic sort in
pre-state and post-state. This problem can be solved (see [54] for more
detailed explanation and references) by adding a tracking map symbol tm :
s → s′ to ∆′ for each dynamic sort s. This map is intended to map an
element to the same element in the post-state, if it is preserved in s, or to
nothing, if the procedure call removed it from s.

We can interpret formulae from Φ∆′
in two ∆-structures A and A′ in

the following way. Basic sorts and function symbols are interpreted as
usual. Unprimed dynamic sorts and symbols are interpreted in A, and their
primed counterparts – in A′. Symbols tms are interpreted as partial one-
to-one mappings tmA,A′

s : sA → (s′)A′
. Then, by usual induction we define

satisfaction (A,A′) |= φ of closed formula φ ∈ Φ∆′
in pair (A,A′).

If Πa is empty in the previous definition we say about typed contract spec-
ification.

3.2 Conformance Relations

For a system represented as a typed ASM (see for example [55] for general def-
inition of ASM and [56] for typed ASM) that has a signature extending ∆ we
can define conformance relation, which formalize the concept of conformance
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between the specification and the system. First, consider the specifications
without asynchronous reactions. We need to interpret calls of procedures as
transitions in our ASM. To do so, we should add Π to ASM sorts. Then,
we may have in ASM signature, for example, an external function symbol in,
which in each state says what procedure with what arguments was just called
(it has no parameters and returns a sequence starting with procedure symbol
from Π and ending with the sequence of values of argument sorts), and a sym-
bol out having the parameter of sort Π and returning the value of result sort
of the procedure called just before the current state.

A typed ASM A with static signature Σ′
b ⊇ Σb and dynamic signature

Σ′
d ⊇ Σd ∪ {in,out} conforms to the specification with basic signature Σb,

dynamic signature Σd, procedure set Π, and possible initial states I, iff the
following requirements are satisfied

• For each initial state of A it is isomorphic to some element of I when we
forget about all additional symbols in A signature.

• For each achievable transition A 7→ A′ of A (that is a transition between
two states, first of which can be achieved by A transitions from some ini-
tial state of A), such that in A′ |= in = p(v1, . . . , vk) and A′ |= out(p) =
r, the following implication holds A |= pre(p)(v1, . . . , vk) ⇒ (A,A′) |=
post(p)(v1, . . . , vk, r). This means that the transition is permitted by speci-
fication.

The concept of conformance in situation where asynchronous reactions are
permitted is more sophisticated and not elaborated yet into the fully formal
definition. It is based on the novelty introduced by UniTesK method – plain
concurrency axiom. If a system obeys this axiom its asynchronous reactions
can be ordered in such a way that the corresponding sequence of transitions
can be found in specification. To model such a behavior we need to introduce
in an ASM additional function symbol outa, which returns an element of Πa.
Then, the system conforms to the specification if the achievable paths in its
states starting from an initial state and controlled by calling procedures from
Π (that is, after each step of this path out returns p ∈ Π or outa returns
p ∈ Πa) can be split into pieces, each of which has the following properties

• The sequence of procedures called on this piece (the symbols returned by
out and outA can be ordered in such a way that the corresponding sequence
of transitions between specification states (∆-structures) is permitted by
specification.

• The corresponding specification path starts and ends in stationary states
A1, A2, that for each p ∈ Πa Ai 6|= pre(p). And the ends of the piece itself
are also stationary, that is no there are no transitions from them to other
state, in which outa is defined.

Now we have discussed the form of specifications of the system function-
ality and conformance relation. In general case and actually for almost any
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example of real (really used for some purposes) software system we can de-
velop a specification in a described manner, but it is impossible to construct
test suite that can guarantee after successful execution that the system con-
forms to specification. The problem is the complexity of real systems and
the consequent complexity of their specifications, even if we specify only the
constraints we really want to check.

To cope with this complexity we need other model to be used. But the
contract specifications constructed should be in clear relation with that model,
since they state the requirements to the system. To construct more appropri-
ate model we need to introduce some behavior equivalence hypotheses, which
can help to reduce the effort needed for testing to a manageable size.

If we consider the postconditions of procedures, they can be represented in
a normal form post(p) =

∧
i(φi ⇒ ψi), where all formulae φi do not depend on

post-state, that is do not include primed symbols and a variable corresponding
to the procedure result. This gives us a partition of procedure domain defined
by its precondition. Each part of this partition is called a functional branch.
Such a partition is a natural tools to measure the coverage obtained during
testing.

We also can consider more detailed partition corresponding to single dis-
juncts in the DNF of pre(p) ∧ φi. Corresponding coverage criterion is called
disjunct coverage in UniTesK.

Functional branches or disjuncts naturally determine regions of similar be-
havior of the corresponding procedure. So, we may state a hypothesis that
the system operation corresponding to the specified procedure behaves uni-
formly with respect to errors in these domains, that is if it has an error, this
error causes it to work incorrectly (according to specifications) for all values
of arguments falling into one of the regions.

We can state such a hypothesis for any set of predicates that determine
partitions of all operation domains. In this case we call such a predicate set
suitable for testing. The reason to start from functional branches and disjuncts
is that they are close to the natural way of operation implementation and so
the hypothesis is more likely to hold for them.

3.3 Constructing an Automata Model

Having a specific system (represented as typed ASM), contract specifica-
tion, and a finite suitable for testing set of predicates, we can construct an
automata-like model actually suitable for test development. First, for each
predicate P corresponding to the procedure p ∈ Π consider the set of system
states where exist such arguments of p, for which P holds. Then, take all
nonempty intersections of such sets for all the predicates. That gives us a
finite family Si of sets of system states, which can be called generalized states.
Correspondingly, let us call the predicates we use generalized symbols, and let
say that a generalized symbol P is admissible in a generalized state S, iff there
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exist a state A ∈ S and a set of values vi ∈ sA
i of argument sorts si in the

career sets of these sorts in the structure such that A |= P (v1, . . . , vk).

By construction of generalized states, if a generalized symbol P is admis-
sible in a generalized state S, then for each A ∈ S there exist a set vi ∈ sA

i

such that A |= P (v1, . . . , vk). So, if we want to apply an admissible generalized
symbol in a generalized state, that is to execute a procedure with an argu-
ments satisfying it, we always can do it, whatever particular state we use to
represent the generalized one.

So, we can consider an automaton with states Si and input symbols Pj. An
application of an input symbol can lead us other state. Note, that this state
in general depends both on the specific state A used to apply the symbol and
values of arguments chosen. But in many cases we can iteratively split the
generalized states, starting from the initial one, to impose determinism. The
paper [50] describes a procedure that always stops if in the beginning we have
finite deterministic system and gives a deterministic FSM as a result.

The other possible way is to resolve (maybe, with many possible solutions)
constraints stated in pre- and postconditions and split the generalized states
constructed from all nonisomorphic ∆-structures on the base of the solutions
obtained. In this case the system under test is not involved in the process. If
the specification actually defines a finite deterministic system, which is often
the case for real systems, the process also results in a deterministic FSM.

It can be easily proved that if we construct a transition tour on the resulting
FSM, we will cover all the situations represented by generalized symbols (for
example, functional branches), which are achievable in the system considered.
Therefore, if we start from a set of symbols suitable for testing, a transition
tour on the FSM will be a strong test.

More formal statement is the following. If the system under test is repre-
sented as a typed ASM, we have all the premises of the conformance definition
in the previous section, the system also satisfies the admissibility hypothesis –
the application of procedure is defined in the system since it is admitted by
the precondition in the specification, and we construct an FSM from a suitable
for testing set of predicates, then successful execution of the transition tour
will guarantee the conformance between the system and the specification.

FSM models are also attractive, because they are very suitable for test
sequence construction and have a lot of different test selection methods pro-
viding test development flexibility often needed in practice. Use of combined
model – contracts for description of system functionality and FSM for test
selection – makes possible rather efficient test development using the suitable
aspects of both and escaping their problems. The one noticeable problem of
the approach is that the procedure of FSM construction requires either un-
derstating of the work of the system under test or the possibility to resolve
completely implict constraints to all possible solutions, which is not always
achievable and cannot be automated.

The same procedure as the one described above can be applied to con-
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struct an input/output automaton from the specifications with asynchronous
reactions. But in this case the author does not know the similar formal results.

4 Conclusion

The idea to use multi-paradigm models for test development can be illustrated
on several examples of both commercial tools and tools developed in academic
society.

Rational TestRealtime [57] uses contract specifications in combination with
FSM models. AsmL Test tool [58] developed in Microsoft Research uses ASM
specifications for behavior description, but includes both automatic FSM con-
struction on the base of ASM and user-defined definition of observable prop-
erties, which make up structure of states for some EFSM model. Gotcha-
TCBeans tool [59,60] developed in IBM Research uses EFSM-like behavior
specifications written in Murphy language and test directives that rule the
test construction process. TorX [61] and TGV [62] tools both are based on
LTS models augmented with test purposes described in scenario language.

UniTesK also is based on integration of several formal techniques. Its
specific is in the following.

• Target system behavior is described in contract specifications — precondi-
tions, postconditions, and invariants. Asynchronous system reactions also
have contracts.

• Test adequacy criteria are formulated by user in the form of predicates defin-
ing the areas of equivalent behavior. More detailed criteria are constructed
automatically on the base of user definitions and structure of specifications.

• On the base of coverage criterion chosen as a goal of testing and behavior
specifications an (IO)FSM is constructed in such a way that a transition
tour on it gives complete coverage according to the criterion chosen. After
that test sequences can be constructed by means of standard techniques
applied to the resulting IOFSM.

• Implicit representation of (IO)FSM models used as test scenarios makes
them more compact and flexible in comparison with traditional approaches.

• Concurrent behavior of the system is tested using the same specifications
as are used to test its sequential behavior.

• Mediators used to bind specification and implementation can realize rather
complex conformance relations providing powerful mechanism for extensive
reuse of specifications and tests.

UniTesK technology shows that integration of various formal techniques
appears to be quite effective in test development for industrial applications.
The technology is supported by tools developed in ISP RAS. Now tools for
testing Java [63], C/C++ software, and .Net components are developed. All
of them are commercial products [64], free licenses available for educational
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organizations. The tool for testing C software was successfully used to test
several implementations of IPv6 protocol. The report on one of these projects
can be found in [65]. The full list of projects conducted using the technology
can be found on RedVerst web page [1].
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